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The last decade has seen increasing interest in the application of Artificial Neural Networks

(ANNs) for the modelling of the relationship between rainfall and streamflow. Since multi-layer,

feed-forward ANNs have the property of being universal approximators, they are able to capture

the essence of most input–output relationships, provided that an underlying deterministic

relationship exists. Unfortunately, owing to the standardisation of inputs and outputs that is

required to run ANNs, a problem arises in extrapolation: if the training data set does not contain

the maximum possible output value, an unmodified network will be unable to synthesise this

peak value. The occurrence of high magnitude, low frequency events within short periods of

record is largely fortuitous. Therefore, the confidence in the neural network model can be greatly

enhanced if some methodology can be found for incorporating domain knowledge about such

events into the calibration and verification procedure in addition to the available measured data

sets. One possible form of additional domain knowledge is the Estimated Maximum Flood (EMF),

a notional event with a small but non-negligible probability of exceedence. This study investigates

the suitability of including an EMF estimate in the training set of a rainfall–runoff ANN in order to

improve the extrapolation characteristics of the network. A study has been carried out in which

EMFs have been included, along with recorded flood events, in the training of ANN models for six

catchments in the south west of England. The results demonstrate that, with prior transformation

of the runoff data to logarithms of flows, the inclusion of domain knowledge in the form of such

extreme synthetic events improves the generalisation capabilities of the ANN model and does not

disrupt the training process. Where guidelines are available for EMF estimation, the application of

this approach is recommended as an alternative means of overcoming the inherent extrapolation

problems of multi-layer, feed-forward ANNs.
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INTRODUCTION

Over the last decade, there has been a marked increase in the

number of applications of Artificial Neural Networks

(ANNs) for the solution of hydrological problems. Reviews

by ASCE (2000a, b) and Dawson & Wilby (2001) have

demonstrated the wide variety of modelling problems for

which ANNs might be used to advantage. To date, the

majority of studies have been directed towards the relation-

ship between precipitation and streamflows.

A significant problem with ANN rainfall–runoff models

is their inability to extrapolate. The input to each node in

the hidden layer of a multi-layer perceptron consists of a

summation of the products of the weights assigned to each

connection from the input layer and the inputs themselves.

This sum is then passed through an activation function,

generally of sigmoidal form, such that the outputs from any

layer are constrained to a range (say) from zero to one.
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The result is that the extremes in the training data set are

scaled to the zero–one interval. If then (say) the largest

values in the testing data set exceed those in the training set,

then the former will not be reproduced by the model. Some

latitude is provided by varying the range of standardisation

to, for example, 0.2 to 0.8, but the ability of the ANN to

extrapolate remains limited (see Minns (1996) and Minns &

Hall (1996)). Although the use of a linear activation function

in the output layer may appear to offer a degree of

extrapolation beyond fixed bounds, in practice the amount

of extrapolation is then limited by the saturation of the

nodes in the hidden layer. More recently, a more elaborate

method of scaling the activation function to leave “room”

for extrapolation has been proposed by Varoonchotikul

et al. (2002) and Varoonchotikul (2003), but at the expense

of introducing an additional, initially arbitrary, parameter.

In addition, Imrie et al. (2000) have proposed that, in order

to assist the ANN to extrapolate, a guidance system should

be added to the output layer. However, the procedure

suggested for determining an appropriate form for the

guidance system involves the use of the testing data set,

thereby disrupting the cycle of training and independent

verification and introducing even greater dependence on

the available input and output records.

Bearing in mind that ANNs are knowledge encapsula-

tors, an alternative approach to extrapolating an ANN-

based rainfall–runoff model might involve the introduction

of extra domain knowledge about the catchment of interest

over and above that contained in the available data sets. For

example, in determining the capacities of spillways for large

dams whose failure may involve heavy loss of life, design

engineers have adopted as their standard an Estimated

Maximum Flood (EMF), which is intended to approximate

the physical upper limit of catchment response to the

Probable Maximum Precipitation (PMP). More realistically,

the EMF might be defined as the flood with a very small, but

non-negligible, probability of annual exceedence. The

importance of EMF estimation to public safety, and the

position of the design engineer in legal terms, has resulted in

many countries adopting standard procedures for EMF

estimation. In the United Kingdom, for example, the EMF is

estimated by a procedure that is an extension of the unit

hydrograph plus design storm approach in the UK Flood

Studies Report (NERC 1975), which has been perpetuated in

the UK Flood Estimation Manual (Houghton-Carr 1999).

Although based upon the well-tried unit hydrograph and

loss function methodologies, the computation of the EMF is

founded upon an extensive regionalisation exercise of data

from UK catchments. Similarly, the associated PMP storm

profile is based upon the extrapolation of UK rainfall

statistics. The results may therefore be regarded as comp-

lementary to any catchment-specific rainfall and flow data,

thereby providing a ready source of additional domain

knowledge. Such knowledge is easily incorporated into an

ANN modelling exercise by adding an EMF hydrograph, or

that of any appropriate long return period design event,

together with the associated storm profile, into the training

data set. Since the EMF or any long return period event may

represent a peak flow well in excess of those in the available

flow record, the question arises as to what effect its

inclusion might have on the training process and the ability

of the ANN to generalise. A series of numerical experiments

were therefore developed to investigate the efficacy of this

approach, and the results are reported in this paper.

HYDROLOGICAL DATA

Hydrological data were obtained for six catchment areas in

the south west of England (see Table 1). The data for

individual storm events were taken from the Representative

Basin catalogue for the United Kingdom, an archive of flood

events maintained by the Centre for Ecology and Hydrology

(formerly the Institute of Hydrology), Wallingford, UK.

The EMF hydrograph for each of the six catchments

was constructed using the procedure summarised in the

Flood Studies Report (NERC 1975, ch. 6). In brief, a PMP

profile is constructed using mapped values of the 2-h and

24-h estimated maximum rainfall. The storm duration, D, is

a function of the (mapped) average annual rainfall and the

time to peak of the 1-h unit hydrograph, Tp. A series of

tabulated growth factors and areal reduction factors are

used to construct a PMP depth–duration curve from which

the D-h total is interpolated. An additional allowance is

made for snowmelt runoff at a rate of 42 mm/d. The

estimated maximum D-h rainfall total is distributed symme-

trically such that the estimated maximum total is contained

within each sub-duration centred on the peak.
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A design percentage runoff for the EMF is computed

from the sum of three elements. Firstly, an allowance is

made for “standard” conditions, dependent on a (mapped)

soil index and a proportion of urban area. Antecedent

conditions are then allowed for using a catchment wetness

index, assuming that the D-h PMP occurring in the middle

of a 5D-h storm. Finally, a contribution dependent on storm

size is added that increases linearly with the total depth of

precipitation. The hyetograph of effective rainfall is then

convolved with a triangular unit hydrograph whose pro-

portions are entirely dependent on the estimated time to

peak. An allowance for baseflow, based on the catchment

wetness index and the net 1-d, 5-year rainfall total, is then

added to the direct runoff hydrograph to produce the EMF

hydrograph. This synthetic event is then inserted into the

time series of existing rainfall–streamflow data for the

selected catchments. The peaks of the EMFs for each of the

six catchments are summarised in Table 1.

NEURAL NETWORK MODELLING

In all cases, a multi-layer perceptron (MLP) ANN was

employed for rainfall–runoff modelling, with the weights

determined by error back-propagation. Sigmoidal activation

functions were used at all nodes in the hidden and output

layers. Before presentation to the networks, all series of

events were converted into time series. In some cases, the

serial order of the recorded events was changed to obtain

closer coincidence between the end of one recorded event

and the start of the rising limb of its successor. Where the

flow discrepancies between recessions and rising limbs were

too large, the recorded recessions were extended artificially,

assuming the logarithms of flows were reducing linearly.

The sections of the rainfall time series corresponding to the

flow recessions were infilled with zeros.

The configurations of the ANN models were deter-

mined initially by trial and error, with different selections of

inputs and different numbers of hidden nodes. The best

results in this study were obtained with five inputs: two

antecedent rainfalls, the concurrent rainfall and two

antecedent flows. In all cases, the output consisted of one

value of concurrent flow. For these trials and for all

subsequent experiments, the available data were divided

into three subsets. The first subset, comprising some 40% of

the data, was used for training, with another 20% reserved

for cross-validation and the remaining 40% for testing. The

networks are initially run with the training subset, the back-

propagation algorithm ensuring that the mean square error

between observed and computed outputs decreases with

repeated presentations (“epochs”) of the input data.

However, every 100 epochs, the mean square error of the

cross-validation subset is checked. Once the latter measure

reaches a minimum, the training is terminated, thereby

ensuring that the ANN does not “overlearn” and retains an

ability to generalise beyond the events in the training data

subset. This facility was a standard option in the Neurosolu-

tions software that was employed in this study.

There were three phases to the experiments that were

undertaken with the data sets from all six drainage areas.

For convenience in presentation, only the results from the

Thrushel catchment will be presented in detail, since

Table 1 | Summary of the catchment areas and pertinent flow characteristics. Mean annual floods (MAF) from Rees et al. (1993); estimated maximum floods (EMF) by calculation

Catchment Area (km2) Years of data Number of events MAF peak (m3/s) EMF peak (m3/s)

Dart 248 1963–1969 22 228 1867

Thrushel 112.7 1971–1985 37 54 760

Plym 79.2 1971–1975 15 – 665

Yealm 54.9 1965–1976 17 21 446

East Dart 21.5 1964–1976 22 44 335

Swincombe 14.2 1963–1968 18 – 233
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comparable outcomes were obtained with the other five. In

addition, although the need to address more than one index

of goodness-of-fit is acknowledged, for brevity the results

presented are confined to graphical comparisons and

coefficients of correlation between the observed and

computed flow hydrographs. The three phases of exper-

imentation may be summarised as follows:

Phase 1: A confirmation of the ability of ANNs to

identify usable relationships between the flows and the

selected input variables, during which the highest (peak)

flow on record was included in the training data subset.

Phase 2: An illustration of the problems of extrapolation

and the impaired ability of the ANN to generalise that

accrue from the highest (peak) flow on record being

included in the testing data subset. For this purpose, the

40% of the total available data that had been used for testing

in Phase 1 became the training data subset, with the cross-

validation data subset remaining unchanged.

Phase 3: The inclusion of the EMFs for each catchment

in the training data subsets in order to evaluate any

problems which may arise in training in the presence of

such extreme events, and to assess the ability of the trained

network to generalise.

MODELLING RESULTS

The Phase 1 training and testing procedure produced

similar results for each catchment. For example, for the

River Thrushel, the largest recorded peak flow of 123.7 m3/s

was contained in the training subset and the largest peak

flow in the testing subset was 61.5 m3/s. The trained ANN

had no problems in learning to reproduce the catchment

behaviour with high accuracy. The overall reproduction of

the hydrographs was good, with the coefficients of corre-

lation between the computed and observed data being 0.994

for the training and 0.988 for the testing subsets. The

maximum absolute errors for both training and testing of

the Thrushel data were both in the region of 11–12 m3/s,

although such figures, being derived from the concurrent

ordinates, reflect small timing errors as well as errors in

magnitude.

When the training and testing subsets were inter-

changed in Phase 2, the reduction in the coefficients of

correlation was marginal for all catchments, but as could be

anticipated, the ANN models now failed to reproduce the

maximum values in the testing subsets. For example, for the

River Thrushel, the threshold of about 65 m3/s imposed by

the training data meant that it was intrinsically impossible

for the trained ANN to produce an output value greater

than 65 m3/s, no matter how large the rainfall inputs were

as shown in Figure 1(a). These results demonstrate once

more the exceptional performance of ANN models to

reproduce the rainfall–runoff relationship for a given

catchment with well-posed input and output data sets and

highlight the poor extrapolation properties of these models

for the unwary user.

The objective of the study was then to improve the

extrapolation performance of the ANN without decreasing

the level of performance already demonstrated in Phase 1.

In Phase 3, the estimated maximum rainfall profiles and

EMF hydrographs derived from application of the Flood

Studies Report procedure were added to the original

training subsets of all six catchments. The EMF peaks (see

Table 1) represent events that vary between 6 and 20 times

the magnitude of the largest peaks contained within the

period of available record, and therefore present a con-

siderable challenge in training an ANN model. Taking again

the example of the River Thrushel, the learning process was

slowed considerably, although after some 10,000 epochs the

EMF peak had been successfully reproduced. The training

continued to improve, but even after 60,000 epochs, the

performance in testing was notably poorer than before the

addition of the EMF. In particular, the hydrograph reces-

sions were consistently overestimated in the testing data set,

even though reproduction of high flows was good. The

coefficients of correlation between observed and computed

flows for the Thrushel were 0.992 for the training data set

but only 0.909 for the testing data set. These tests were

repeated with the data from the Dart and East Dart with

very similar results.

Clearly, the ANNs are capable of capturing the high

flow behaviour of the catchments when the EMFs are

introduced, but training tends to be dominated by the EMF

at the expense of reduced attention to low-flow behaviour.

This obviously does not satisfy the objective stated above. A

method is therefore required to reduce the domination of

the EMF in the training procedure whilst maintaining the

additional information contained within. One possible
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means of improving the training is to reduce artificially the

range of events by transformation to the logarithms of flows.

The ANNs are then trained with rainfall inputs as observed

but with log-transformed flows.

For all of the catchments, the benefit of the transform-

ation in improving the reproduction of the observed (log)

flows was evident. For the River Thrushel, the correlation

coefficients between observed and computed (log) flows

were 0.996 in training and 0.988 in testing, easily compar-

able with those obtained in the Phase 1 tests. The training

times for the ANNs were also considerably less than using

the non-transformed inputs. Indeed, over all six catchments,

correlation coefficients in either training or testing never fell

below 0.98. In addition, comparisons were made between

the observed flows and the back-transformed model

outputs. The back-transformation has the effect of exagger-

ating the discrepancy in the training of the EMF, resulting in

a correlation coefficient for the (non-transformed) training

subset of 0.961, although that for the testing subset was

higher at 0.992.

The point is further emphasised in Figure 1, which

shows two individual hydrographs from the testing data

subset for the River Thrushel from the Phase 2 and Phase 3

experiments. With the peak flow in the testing data subset

and no EMF in the training subset, the ANN is unable to

reproduce flows above about 60 m3/s. However, with the

EMF included and the training performed on the logarithms

of flows, the larger of the two events is successfully

captured, if not slightly overestimated.

The results for the Plym, East Dart and Swincombe

rivers showed a similar reduction in the correlation

coefficient for the training subsets. In contrast, for the

Yealm, both correlation coefficients were 0.989, and for the

Dart, the coefficient for the testing subset fell to 0.954

compared with 0.977 for the training subset. In all cases, the

maximum absolute errors were associated with the EMF

peak ordinates, but in percentage terms the discrepancies

were small, amounting to some 4% in the case of the Dart.

Moreover, for all six catchments, the low flow recessions

were extremely well reproduced.

Thus a method has been introduced in which the

extrapolation properties of a “standard” MLP-type ANN

have been significantly improved for rainfall–runoff model-

ling by adding hydrological domain knowledge to the

training data set without compromising either the measured

data values themselves or the architecture of the ANN.

CONCLUDING REMARKS

The three sets of numerical experiments that were carried

out on over 130 individual flood events for six different

catchments in the south west of England have demon-

strated once again that ANN-based rainfall–runoff models

are capable of reproducing recorded behaviour to a high

degree of fidelity. The Phase 2 results also provide a further

illustration (if one were required) of the dangers of

extrapolation of ANNs beyond the range of the training

data set. The benefits of incorporating additional domain

Figure 1 | Comparison between two storm events for the River Thrushel (a) trained with the maximum recorded peak flow rate in the testing data subset and (b) trained with the

estimated maximum flood included in the training data set.
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knowledge on catchment response into the training process

by way of estimated maximum rainfall profiles and EMF

flood hydrographs are clearly evident from the Phase 3

results. With the additional step of applying a logarithmic

transform to the flow data prior to training, the fit of the

computed to the observed flows was comparable to that

obtained under the artificially well-posed conditions of the

Phase 1 experiments. Moreover, when the ANN that was

trained with the EMF on log flows was tested on the

training data without the EMF, the coefficients of corre-

lation between observed and computed flows in both

training and testing could only be distinguished in the

fourth decimal place. These results demonstrate that

the training process appears not to be affected adversely

by the inclusion of an EMF event, and that the ANN

obtained from the training has the ability to extrapolate

beyond the recorded maxima in the training data. Further-

more, the EMF estimate can be derived using established

hydrological techniques, thus reducing the arbitrariness in

the generation of “synthetic” training data.

The adoption of this approach is therefore rec-

ommended for those areas in which procedures have been

established for the estimation of EMF hydrographs. In this

way, the inherent extrapolation problems of a neural

network based solely on measured data may be overcome

using physical insight into the catchment behaviour rather

than a mathematical sleight of hand.
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