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ABSTRACT

The paper discusses how a computational hydralician got involved in the design, implementation,

and application of genetic algorithms – search procedures based on the mechanics of natural

selection and genetics – and how that involvement depended critically upon the modern

hydroinformatician’s sense of appropriate modeling of complex phenomena such as fluid mechanics.

The paper starts by briefly reviewing the mechanics of genetic algorithms and then connects that

mechanics to the fundamental intuition that GAs have something in common with human innovative

processes. The paper continues with a short aside on a difference in the way hydroinformaticians

and computer scientists are taught to reason with models. This leads to a discussion of the race

between selection and recombination in a GA, and how understanding the race leads immediately to

the construction of a critical dimensionless quantity in GA analysis. This dimensionless quantity is

then sketched in the GA’s control map, and the paper concludes with a brief discussion of how such

knowledge leads to the design of competent GAs – GAs that solve hard problems, quickly, reliably,

and accurately. The paper concludes with an invitation to hydroinformaticians to both use genetic

algorithms in the solution of difficult hydroinformatics problems and to apply their analytical skill to

the design of ever more capable genetic and evolutionary algorithms.
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INTRODUCTION

I was pleased by the invitation to write an article for the

Journal of Hydroinformatics for three reasons, one intel-

lectual, one personal, and one speculative. The intellectual

reason is that I value the opportunity to share some recent

results on the design of effective genetic algorithms

(GAs) – computer search procedures based on the mech-

anics of natural selection and genetics. The personal

reason is that I started my academic career as a compu-

tational hydraulician – someone who would today be

pleased to call himself a hydroinformatician – and I

welcomed the opportunity to discuss how this background

and intellectual outlook has shaped the way I analyze and

design GAs. My GA friends know that John H. Holland,

the inventor of genetic algorithms, was one of my PhD

advisors at the University of Michigan, but they are largely

unaware of the influence on my thinking by my other PhD

advisor, E. Benjamin Wylie, the noted fluid transients

authority. Here I pay homage to Ben and the subtle

lessons he taught me about the rich complexity of the

hydro-world, and how those lessons have led to a design

methodology for genetic algorithms that works. Finally,

my speculative reason has to do with wanting to present

a hypothesis that has gnawed at me for the better part of

20 years: that is, that genetic algorithms have something

in common with what we call human innovation.

So these are the reasons I was pleased to be asked to

write the paper, but to try to present a coherent story, let’s

proceed in the following way. First, let’s briefly review

what genetic algorithms are, and then let’s make our initial

pass at understanding the connection between GAs and
*Portions of this paper have been excerpted from a paper by the author entitled ‘3 lessons of
genetic algorithms for computational innovation’, Hydroinformatics ’98, 1–7.
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innovation at an intuitive level. Then, let’s digress briefly

and discuss a curious difference between we hydro-

informaticians on the one hand and computer scientists

on the other. This apparent digression will set the stage for

my hydraulician’s approach to modeling and designing

complex conceptual objects like genetic algorithms. From

there we will briefly review some key GA design theory

that borrows from one of the hydraulician’s favorite tools,

dimensional analysis, and then we will look at how

that theory has helped create competent genetic

algorithms – GAs that solve hard problems, quickly, re-

liably, and accurately – and how competent GAs are a

first-order computational model of the processes of

human innovation.

THE NICKEL TOUR OF GENETIC ALGORITHMS

Elsewhere, I have written at length (Goldberg 1989) about

GA basics, and here we briefly review the elements of GA

mechanics.

GAs search among populations of chromosomes that

may be decoded to represent solutions to some problem.

Basic to the operation of a GA is the ability to evaluate the

fitness to purpose of one solution relative to another. With

a population in place, selection and genetic operators can

process the population iteratively to create a sequence of

populations that hopefully will contain more and more

good solutions to our problem as time goes on. There is

much variety in the types of operators that are used in

GAs, but quite often (1) selection, (2) recombination, and

(3) mutation are used. Simply stated, selection allocates

greater survival to better individuals, recombination com-

bines bits and pieces of parental solutions to form, new,

possibly better offspring, and mutation makes one or more

changes to an individual’s trait or traits.

THE FUNDAMENTAL INTUITION

Our nickel tour doesn’t do justice to GA mechanics, but

even a longer explanation would leave us scratching our

heads and asking how such simple operators might do

anything useful, let alone promote an effective, robust

search for good stuff. It is something of an intellectual

mystery to explain why such individually uninteresting

mechanisms acting in concert might together do some-

thing useful. Starting in 1983 (Goldberg 1983), I have de-

veloped what I call the fundamental intuition of genetic

algorithms or the innovation intuition to explain this

apparent mystery. Specifically, I liken the processing of

selection and mutation taken together, and that of selection

and recombination taken together, to different facets of

human innovation, what I will call the improvement and

cross-fertilizing types of innovation. Here we will concen-

trate on the cross-fertilizing type of innovation exclusively.

Selection+recombination=innovation

To understand how selection and crossover might give us

anything useful, we appeal to our own sense of human

cross-fertilizing innovation. What is it that people do

when they are being innovative in a cross-fertilizing

sense? Usually they are grasping at a notion – a set of good

solution features – in one context, and a notion in another

context and juxtaposing them, thereby speculating that the

combination might be better than either notion taken

individually. My first thoughts on the subject were intro-

spective ones, but others have written along similar veins,

for example, the French poet-philosopher Valéry:

It takes two to invent anything. The one makes up
combinations; the other chooses, recognizes what he wishes
and what is important to him in the mass of the things which
the former has imparted to him.

Verbal descriptions are far from the exacting rigor of

computer code, but it is interesting that the innovation

intuition has been articulated by philosophers of earlier

times. In a moment, we will see if we can’t make this

connection between innovation and genetic algorithms a

little tighter with some quantitative theory, but right

now we pause to explore a curious difference between

hydroinformaticians and computer scientists.

A difference between hydroinformaticians and

computer scientists

As I’ve tried to better understand the operation of genetic

algorithms, I’ve approached the subject with the toolkit
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that my training in computational hydraulics provided me.

Over the years, it has seemed to me that my experience

with the toolkit has been one of those ubiquitous good

news, bad news stories. The good news has been that the

analytical toolkit of my training has permitted both the

successful analysis and design of increasingly complex and

effective GAs. The bad news has been that I’ve come to

realize how alien that type of theory is to the mass of GA

practitioners and theoreticians who largely come to the

subject through training in modern computer science. As

I’ve struggled to understand this situation, I’ve come to

realize that there are biases in the education of these two

groups, and that those biases fundamentally shape how

they approach the analysis of problems.

A bias in the education of a fluids engineer exposed

There is a bias in the training of hydroinformaticians,

hydraulicians, and for that matter, all engineers that

largely goes unremarked, but it subtly shapes the way such

people approach the analysis of problems. Specifically,

engineers of all stripes are taught to apply the simplest

model that will enable the effective design of the object

system or technology. This sounds fairly obvious, and to

engineers it is almost second nature, but the bias is perva-

sive in the engineering curriculum. For example, engineers

are taught statics before dynamics. They are taught linear

systems before nonlinear ones. Ideal flow is taught before

the Navier–Stokes equations. Strength of materials is

taught before elasticity, and so on. In short, engineers are

taught a number of different models for the same phenom-

enon, and their ordering in the curriculum implicitly

teaches the engineer to grab for the simplest model first in

the hopes that it will be sufficient to solve the design issue

at hand.

A bias in the education of computer scientists exposed

The engineer’s training contrasts rather sharply with the

treatment of analysis in the education of scientists, par-

ticularly computer scientists. In physics, Newton’s second

law is taught first, and equilibrium is taught as a rather

uninteresting special case. In computer science, study

of theory begins with theorems and proofs in discrete

mathematics, and respect for rigor in derivation is valued

very strongly. CS theoreticians are taught to advance the

state of theory by the development of ever more exact

calculations for different algorithms.

Note that the perspective of the engineer and that of

the scientist are both reasonable ones, depending upon the

goals of the study. If one is designing a complex system,

the relaxation of rigor for applicable design theory could

not be more useful. If one is attempting to develop ever

more rigorous models, than theorem-proof is the way to

go. The problem comes when individuals become con-

fused as to their goals. If one is attempting to design better

systems – whether they be airplanes, toasters, or genetic

algorithms – it is puzzling why a designer would reflex-

ively adopt the rigor-above-all stance of the CS theor-

etician. But the firewall that exists between theory as

taught in CS and theory as needed in practice makes it

difficult for computer scientists to grab for the right tool at

the right time.†

Stated somewhat differently, if one’s goals are the

development of more rigorous models, then by all means

be more rigorous. But if one’s goals are the design of some

complex system such as a genetic algorithm, then theory is

useful as it is instrumental toward the design of better

systems. Elsewhere (Goldberg 1996), I have put this argu-

ment on firmer footing through a discussion of economic

models, where I use an analysis of the costs and benefits of

modeling toward the advancement of some technology.

We will not pursue that analysis here, but instead we will

examine one economic model in detail by deriving a

scaling law for innovation on dimensional grounds.

A DIMENSIONAL MODEL OF INNOVATION: TWO
TIME SCALES AND THE RACE

Our digression may puzzle some, and indeed when I

present or write for engineering audiences particularly

those familiar with the importance of dimensional argu-

ments in the study of the hydro-world, I am preaching to

†To keep the argument symmetrical, it is also hard for the trained engineer to put on the rigor
cap when his goals shift toward the development of pure theory.

157 David E. Goldberg | Hydroinformatician’s approach to computational innovation Journal of Hydroinformatics | 02.3 | 2000



the choir. Nonetheless, it is important to understand how

the arguments to be made in this section may be contro-

versial to some, even if they seem eminently reasonable

to us. Returning to our discussion of the innovation

intuition – the assertion that the process of selection and

exchange of genetic algorithms is similar to a kind of

innovation displayed by human beings – it would be nice

to go beyond mere hand waving and understand some of

the underlying issues of innovation. The first key to greater

insight is to understand the critical race that goes on in a

competitive innovating system. In an evolving system

acted upon by selection alone, we expect to see an

S-shaped time history of the market share of the best

individuals in the population (Figure 1), and we may

calculate the time it takes to go from a small market share

to a large one as a characteristic takeover time or t*. This

seems reasonable enough, but real GAs have selection and

recombination. What difference could it possibly make to

understand the behavior of a competitive system under

selection alone?

The answer to this question comes quickly and con-

vincingly if we imagine another characteristic time, call it

the innovation time ti, which we shall define as the mean

time for recombination or innovation operator to achieve

a solution better than any achieved to this point. With

such a characteristic time in mind there are two basic

situations that we must be concerned with: the situation

where the takeover time is greater than or equal to the

innovation time, t*≥ti, and that where the innovation time

exceeds the takeover time t*< ti.

In thinking about these two situations, we immedi-

ately wonder which is the more advantageous for a selecto-

recombinative GA, and the answer is apparent with some

straightforward reasoning, as follows. The condition where

innovation time leads (is less than or equal to) the takeover

time is most advantageous for continuing innovation, be-

cause prior to the best individual dominating the popu-

lation, recombination creates a better individual. Thereafter

this better individual starts to dominate the population, and

in essence, the innovation clock is reset. This cycle of partial

takeover and continued innovation is repeated over and

over again, resulting in the happy condition I have dubbed

steady-state innovation.

Contrast this virtuous setting with the condition

where innovation time lags (is greater than) takeover time.

In such a situation, the current best guy continually

increases in market share without serious competition

and ultimately takes the population to substantial con-

vergence, and now it is too late because diversity is a

necessary condition of selectorecombinative success. This

situation was called premature convergence (De Jong

1975) fairly early in the GA literature, but until the intro-

duction of the above time scales argument (Goldberg et al.

1993b), there was no means of analyzing the boundary

between innovative success and failure. With the under-

standing of the crucial role of time scales and the race,

rational analysis and design of competitive innovating

GAs has advanced quite rapidly.

A GA’S CONTROL MAP AND ITS SWEET SPOT

One of the tools critical to these rapid advances is the

so-called control map, which helps us delimit a genetic

Figure 1 | A schematic of the race illustrates the tension between between innovation

and selection. When the innovation time t i is less than the selection takeover

time t*, innovation proceeds apace (steady-state innovation). When the

situation is reversed, innovation is stalled (premature convergence).

158 David E. Goldberg | Hydroinformatician’s approach to computational innovation Journal of Hydroinformatics | 02.3 | 2000



algorithm’s sweet spot. Technical details of these develop-

ments are in the original papers (Goldberg et al. 1993b;

Thierens 1995; Thierens & Goldberg 1993), but here we

strive for qualitative understanding of the key points.

These can best be obtained by focusing on the schematic

of the sweet spot of a genetic algorithm operating on an

easy problem as shown in Figure 2. In this map, we plot

the feasible settings of the GA’s control parameters, s, the

selection pressure, and pc, the probability of crossover.

The selection pressure is simply the number of copies that

are given to the best individual in the population under

selection alone. The crossover probability is the frequency

with which mated chromosomes actually undergo the

exchange of crossover.

In the previous section, we discussed the race between

innovation and selection. If we take this argument

seriously and develop an equation from the condition

when the takeover time is of the same order as the inno-

vation time, we obtain the mixing or innovation boundary

shown on the graph, where the crossover probability must

increase as the logarithm of the selection pressure. Any

value of crossover probability above this line is expected

to succeed and any value below this boundary is expected

to fail.

There are two other boundaries shown on the control

map. To the left we see the region of success bounded by

the so-called drift boundary, where convergence is con-

trolled by the vagaries of random fluctuation when the

selection pressure is small. To the right, we see the region

of failure dominated by what we call cross-competition,

when semantically independent traits end up competing

with one another when the selection pressure is close to

the population size.

THE HURDLE TO EFFECTIVE MIXING

GA control maps and the sweet spot can be used with

some precision to predict the success (or failure) of a given

GA on some specified problem. It has been demonstrated

both theoretically and empirically elsewhere (Goldberg

et al. 1993b) that easy problems – problems that may be

solved through bitwise exchanges – have large sweet

spots, and almost any selectorecombinative GA with any

reasonable choice of crossover operator can be expected

to do well in such cases. On the other hand, as a problem

becomes more difficult – that is, as a problem has building

blocks larger than single bits – the size of the sweet spot

shrinks even as the population size is increased nominally

to account for the increased noise of the more difficult

problem instance. This is a big problem, and ultimately the

sweet spot vanishes. Another way to view the same prob-

lem is to ask the question, what size population is required

to solve problems of increasing difficulty and length. Both

theoretically and empirically it has been shown (Thierens

& Goldberg 1993; Thierens 1995) that population sizes

must grow exponentially to accommodate harder

problems.

This leaves us with a split decision regarding the

efficacy of simple GAs. If a problem is bitwise solvable,

modest population sizes may be used and accurate, re-

liable solutions may be expected in small numbers of

function evaluations, and we should expect those numbers

to scale well, growing no more quickly than a subquadratic

function of the number of decision variables or bits. On

the other hand, with a more difficult problem instance,

simple recombination operators scale badly, requiring a

Figure 2 | A control map shows the GA’s sweet spot or zone of success for setting GA

control parameters. The mixing boundary grows as the logarithm of the

selection pressure s, as may be derived from the dimensional argument of

the race presented in this paper.
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superexponential number of function evaluations to get

reliable answers to even boundedly difficult problems, and

therein lies the rub, the hurdle to the design of competent

GAs. Is there some way to design crossover mechanisms

that allow solutions to hard problems to scale more like

those of easy problems?

COMPETENT GA DESIGN: 1993 TO PRESENT

Remarkably, the answer to this question is a resounding

‘yes’, and the trick is to both identify and exchange clusters

of genes appropriate to solving a problem without the

need for human intervention or advice.

A line of work dating back to 1989 (Goldberg et al.

1989) set this as its goal and succeeded in achieving this

goal for the first time in 1993 (Goldberg et al. 1993a) with

the creation of the fast messy genetic algorithm (fmGA).

Detailed description of the fast messy GA is beyond the

scope of this treatment, but the key to competent GA

design is to tame the race between selection and crossover

by identifying building blocks before deciding among

them. This is easy to say, but hard to do. Most naive efforts

at accomplishing this goal fail, and subtle designs are

necessary to get a competent GA to fire on all cylinders.

Figure 3 shows the results from the first competent

GA, the fast messy GA (Goldberg et al. 1993a). In a

problem with order-5 difficult building blocks, the fast

messy GA is able to find global solutions in times that

grow as a subquadratic function of the number of decision

variables, as expected. In contrast, the original messy GA

and mutation-oriented hillclimbing (Mühlenbein 1992)

have numbers of function evaluations that grow as a

quintic function of the number of decision variables, and

the exponent on this polynomial gets worse as problems

get harder. On the other hand, a competent GA appears to

require only subquadratic growth on all problems of fixed

difficulty, and this kind of performance characteristic is

the kind of robust solution genetic algorithmists have been

seeking for so long.

Since 1993, many different competent genetic algor-

ithms have been discovered, including the gene expression

messy GA or gemGA (Kargupta 1996), the linkage learning

GA (Harik 1997; Harik & Goldberg 1997), and the

Bayesian optimization algorithm (Pelikan et al. 1999), to

name a few. The reader should consult the original litera-

ture for more details about these procedures, but a careful

comparison would reveal a marked diversity of mechan-

ism. Closer examination, however, would show that each

algorithm obeys essentially the same physics. This obser-

vation lends support to the suggestion that the kind

of theory discussed herein is uncovering important

truths that are useful to both the development of

advanced genetic algorithms and to a more mechanistic

understanding of human innovation.

INNOVATION AND GAS REDUX

Earlier in the paper I argued that the selection and recom-

bination were possibly powerful search mechanisms by

appealing to our intuition of human innovation, but in

later sections I argued that GAs done right give us sub-

quadratic, scalable solutions of boundedly difficult prob-

lems. This latter possibility is more than a little suggestive

that modern competent GA design is giving us something

besides very useful practical algorithms to solve hard

Figure 3 | The fast messy GA results reported in Goldberg et al. (1993) demonstrate

subquadratic growth in the computation time compared to the original messy

GA and simple mutation-based hillclimbers, which grow as the fifth power of

the number of variables and are much slower across the board than the

fmGA.
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problems, quickly, reliably, and accurately. Simply put, it

now appears that competent GA design is giving us first-

order models of the processes of human innovation. More

work needs to be done to connect with both theoretical

and experimental results in cognitive science and psychol-

ogy to see if these computational models hold up under

closer scrutiny; however, the very possibility that good

engineering design (using the approach of a hydro-

informatician, no less) might result in both practical tech-

nology and novel science is an interesting one to say the

least. At a minimum, the case is a plausible one, and work

is ongoing to pursue it further.

CONCLUSIONS AND AN INVITATION

This paper has briefly reviewed genetic algorithms and the

fundamental intuition that there may be a connection

between the operation of GAs and human innovation.

A brief digression explored a difference between

hydroinformaticians and computer scientists in terms of

their training in the use of models. The paper went on to

develop a dimensional argument regarding the relation-

ship between characteristic time scales of takeover and

innovation, arguing that when innovation time is rela-

tively fast with respect to takeover that GAs (and other

innovating processes) tend to innovate continually and

when innovation time is relatively slow with respect to

takeover, there is a tendency for progress to stall or

prematurely converge. This observation led to the quanti-

tative mapping of a GA’s parameter space in a control

map, where a sweet spot of high quality convergence

was observed. Finally, the effectiveness of these tools

for the design of competent GAs was demonstrated by

presenting scalability results on a boundedly difficult

problem.

These results connect back to my original intellectual,

personal, and speculative reasons for writing this paper.

Intellectually, the existence of predictive models that can

be used in genetic algorithm design has been a blessing,

albeit one that has not been widely realized or embraced.

It is the hope of this paper that more GA users and

practitioners will embrace the kind of scaling laws

and modeling demonstrated herein in their GA usage and

design.

Personally, and professionally, it is very interesting

that the style of analysis that comes so easily to the

hydroinformatician because of his or her training in or

familiarity with fluid mechanics is so very useful in the

realm of complex, conceptual objects such as genetic

algorithms. Fluid flows are physical systems and genetic

algorithms are conceptual systems, but in a sense, com-

plexity is complexity, wherever it is found. In that way, it is

of little surprise that the toolkit that has been so useful in

fluid mechanics for the taming of friction, turbulence,

convection, shear flow, separation, boundary layers, and a

host of other complex fluid phenomena should be so

useful in understanding selection, mixing, drift, building

blocks, deception, and the many complex phenomena of

evolving, innovating systems.

More speculatively, the paper makes the connection

between GAs and human innovation somewhat closer.

Indeed, there is more work to do, and studies of GA

computations and animal, human, and organizational

examples of innovation should add to our knowledge a

good bit, but at the very least, the results presented

here should make the utterance of genetic algorithms and

innovation in the same sentence a plausible speech act.

Finally, I close with a twofold invitation to all

hydroinformaticians. First, I urge hydroinformaticians

everywhere to become familiar with recent work in com-

petent GAs. Scalable, general-purpose algorithms that

solve hard problems quickly, reliably, and accurately are

immediately applicable to a host of hydroinformatics

problems in optimization, system identification, data min-

ing, and machine learning. Although genetic algorithms

have been used in hydroinformatics, the general tendency

has been to use first-generation GAs, and these have been

shown not to scale well with problem size and difficulty.

As more hydroinformaticians come to the GA party, and

as larger, more complex problems are tackled, the use of

competent GAs will not be an option.

Second, I urge analytically minded hydroinfor-

maticians to consider using their well-honed skills at

dimensional reasoning and facetwise modeling for the

betterment of GAs themselves. As you can see from this

paper, relatively straightforward arguments have resulted
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in new theoretical understanding of critically important

phenomena in GAs and innovation. Although progress

has been made on a number of important fronts,

much more exciting work remains to be done. Hydroinfor-

maticians are in the enviable position of having the com-

puter expertise to advance the state of GA art and the

habits of mind to productively employ scaling laws and

other little models in design. Together, these form a sig-

nificant competitive advantage that could help place

hydroinformaticians at the forefront of a growing

research area, with important technological and scientific

implications.
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