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ABSTRACT

Schemes for linear advection modelling in multiple dimensions on structured grids use either

time-splitting or an unsplit approach for flux computation. In the case of strongly divergent flows,

time-splitting introduces anisotropy in the solution whereas, with the unsplit approach, more mass

than actually available may be abstracted from the computational cells, leading for instance to

oscillations and sometimes instability. A simple correction for the flux, taking into account the

divergence of the flow, is proposed to eliminate the problem for the unsplit approach. This correction

introduces a limitation on the computational time step. An experiment carried out using a

market-available software package shows that the problem above is of practical interest, and that

verification procedures of modelling software should take into account simulations under

non-uniform flows.
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INTRODUCTION

The explicit numerical solution of multi-dimensional

advection problems on structured grids can be carried

out using either one-dimensional algorithms with time-

splitting (typically, alternate directions; Strang 1968;

Yanenko 1971) or unsplit algorithms. In the first case, the

multi-dimensional problem is split into a series of one-

dimensional problems that are solved sequentially. The

simplest possible sequence of computations, that has first-

order accuracy in time (Strang 1968), is as follows (written

here for the two-dimensional case):

Fn + 1 = LyLxF
n (1)

where Fn is the discretised variable at time level m, Lx and

Ly are the difference operators used to solve the one-

dimensional problem in the x- and y-directions respect-

ively, and Fn + 1 is the resulting variable at time level n + 1.

The problem associated with this technique is that, due

to the successive use of the operators, computational

solutions may become anisotropic (see tests below). The

accuracy in time can be increased to the second order

using the sequence (Strang 1968):

Fn + 1 = L�
yLxL

�
yF

n (2)

where L�
y is operator Ly applied over half a time step

only. A second option consists of computing all fluxes

simultaneously without having recourse to time splitting:

Fn + 1 = LxyF
n (3)

where Lxy is an operator that solves the advection problem

in the x- and y-directions simultaneously. This approach is

commonly used in the engineering community (Zhao et al.

1994; Canson et al. 1999; Toro 1999). Although very simple

to program, it has two major drawbacks in addition to its

reduced stability: (i) the advected variable is spread arti-

ficially over the computational grid if the flow is oblique

with respect to the grid, and (ii) if the flow is strongly

divergent, the overlap between the domains of depen-

dence of the edges of the computational cell may cause an

artificial increase in the mass that is being taken out of the

cell. Then, undesirable phenomena and non-physical

results such as negative concentrations are likely to

appear. The present paper aims to address the second

point.

Strongly divergent flows can be encountered in a wide

variety of problems, a typical example being the simu-

lation of contaminant transport in aquifer systems in the
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presence of pumping or injection wells. For the sake

of clarity, two-dimensional linear advection problems

will be considered, although the approach can be easily

generalised to three-dimensional problems.

PROBLEM ANALYSIS AND PROPOSED SOLUTION

We examine hereafter the case of finite volume—and finite

difference with control volume—type schemes. For such

schemes, equation (1.3) can be rewritten as:

where Fn+�
i − �, j and Gn+�

i, j − � are the average x- and y-fluxes

respectively between time levels n and n+1 across the

interface between cells (i − 1, j) and (i, j), and cells (i, j − 1)

and (i, j) respectively, ∆t is the computational time step,

∆xi and ∆yj are the widths of cell (i, j) in the x- and

y-directions respectively. The semi-discretisation of the

flux is in general the following:

Fn+�
i − �, j = Ui − �, jF

n
i−�, j (5a)

Gn+�
i, j − � = Vi, j − �F

n
i, j − � (5b)

where Ui − �, j and Vi, j − � are the average x- and y-velocities

normal to the cell edge and Fn
i − �, j and Fn

i, j − � are the

average values at the cell edges. These values are a func-

tion of the averages Fn
i, j in the neighbouring cells. The

simplest possible formulation consists of taking the value

of F at an interface equal to the average value in the cell

that is located upstream of this interface:

Fn
i − �, j = Fn

i, j if Ui − �, j <0 (6a)

Fn
i − �, j = Fn

i − 1, j if Ui − �, j≥0 (6b)

Fn
i, j − � = Fn

i, j if Vi, j − � < 0 (6c)

Fn
i, j − � = Fn

i, j − 1 if Vi, j − �≥0. (6d)

In the case of strongly divergent flows, the use of Ui − �, j

and Vi, j − � directly in equations (5) leads to oscillations.

The reason for this phenomenon is illustrated by the

following simple example.

Consider the case of a cell (i, j) in which the flow is

strongly divergent, so that the flow is directed outwards

from the cell at all edges (see Figure 1). This is, for

example, the case of an injection well in an aquifer, where

the flow is radial near the well. Equations (5) implicitly

assume that the streamlines are parallel near the interface

and that the flow is uniform over space. According to this

assumption, the dependence domain of the interface [AB]

in Figure 1 (i.e. the set of points that will cross the

interface [AB] during the time step) is the rectangle

(ABCD). In reality, because of the divergent nature of the

flow, the domain of dependence is given by the quadrangle

(ABC′D′). The amount of mass, and therefore the flux, that

will cross interface [AB] is therefore overestimated if

equations (5) are used. Reproducing this reasoning for all

edges yields the following remark: there is an overlap

between the domains of dependence of the four edges of

cell (i, j) because equations (5) assume that all domains of

dependence are rectangles (see Figure 2).

Figure 1 | Case of a strongly divergent flow. The block arrows represent the flow

average over the cell edges. Rectangle (ABCD) represents the domain of

dependence computed from the average velocity values. Trapezium (ABC′D′)
represents the domain of dependence computed using an interpolation on

the velocities.
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The mass contained in the intersections between two

consecutive domains (dark grey areas on the figure) will be

removed twice from the cell. Consider the extreme case

where the dependence domains cover half of the cell in

each direction. Then the mass contained in the cell is ab-

stracted twice instead of once. This excessive mass abstrac-

tion may lead to oscillations and, sometimes, instability.

The proposed solution consists of applying a cor-

rective multiplication factor on the flux computed by

equations (5). This multiplication factor is taken equal to

the ratio between the surfaces of (ABC′D′) and (ABCD):

The area of rectangle (ABCD) can be approximated with:

SABCD = ∆yjUi+�, j∆t (8)

whereas the area of (ABC′D′) is approximated as:

SABC′D′ = �(U*
i+�, j∆t)(∆yj+C′D′) (9)

where U*
i+�, j represents the average x-velocity over the

domain of dependence. The measure of the oriented

distance C′D′ is given by:

C′D′ = ∆yj+(VB − VA)∆t (10)

where VA and VB are the velocities at points A and B

respectively. The difference between VB and VA can be

estimated as a function of the partial derivative of the

velocity with respect to y:

Substitution into equation (10) and then into equations

(7)–(9) yields:

Because the oriented distance C′D′ must be positive for

the above formula to be valid, the time step must be lower

than or equal to the limit value ∆tmax given by:

Similarly, we have:

where V*i, j+� is the average y-velocity over the domain of

dependence of interface (i, j+�). The velocity derivatives

can be estimated as follows:

The velocity U* is estimated as the ratio of the height H of

the trapezium (ABC′D′) to the time step ∆t. The height of

Figure 2 | Overlapping domains of dependence. Light areas: domains of dependence.

Dark areas: overlapping regions.
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the trapezium is estimated using a first-order Taylor series

expansion:

By definition, H is given by:

H = − U*
i+�, j∆t. (17)

Substituting equation (16) into equation (17) gives:

The derivative ∂U/¤x is approximated by:

Another time step limitation now has to be introduced: the

two domains of dependence issuing from interface (i − �, j)

and (i+�, j) should not intersect, and similarly for the

domains of dependence in the y-direction issuing from

(i, j − �) and (i, j+�). Therefore the following conditions

should be satisfied:

(U*
i+�, j − U*

i − �, j)∆t ≤ ∆xi (20a)

(V*i, j+� − V
*
i, j − �)∆t ≤ ∆yj . (20b)

These conditions can be rewritten as:

Now focus on condition (21a) only. If, for a given interface

(i+�, j), it is already satisfied by the current time step, no

further reduction is necessary. If it is not, two cases must

be considered:

(1) ∂U/¤x)i − �, j = ∂U/¤x)i+�, j, in which equation (21a)

is only a first-degree equation and the reduced time step is

given by:

(2) ∂U/¤x)i − �, j≠∂U/¤x)i+�, j, in which case a second-

degree equation in ∆t must be solved. The only possible

root is the positive one:

∆t = t1+t2 (23a)

The final formula for the fluxes is:

where ∂U/¤x and ∂V/¤y are computed according to

equations (15) and (19) and ∆t is limited by equations

(14b) and (21).

APPLICATION EXAMPLE

The proposed correction was applied to an extreme case,

that is a purely divergent flow resulting from a continuous
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injection. The spreading of a contaminant is studied in an

aquifer of constant thickness subject to a pointwise injec-

tion of pure water. The injection well is represented using

one computational cell only. The initial location of the

contaminant is the injection cell, the rest of the aquifer

being free from contamination. Pure water is injected at a

constant rate. Table 1 below summarises the experimental

parameters.

The analytical solution behaves as follows: the con-

taminant is spread away from the injection well in such a

way that the contour lines for the concentration will form

rings. The concentration in the ring decreases as time

grows, because the perimeter covered by the ring becomes

larger. Of course the numerical solution cannot be

expected to behave exactly in this way because of the

square shape of the cells, but as time grows the shapes of

the contour lines are expected to become closer to circular

rings.

Figure 3 displays the results obtained after 40 d with

first-order (a) and second-order (b) time splitting and

Table 1 |

Symbol Value Meaning

h 10 m Aquifer thickness

∆x 100 m Cell size in the x-direction

∆y 100 m Cell size in the y-direction

Qi 4 × 105 m3 d − 1 Injection rate

C0 1 kg m − 3 Initial concentration
(only in the injection cell)

Figure 3 | Computed concentrations after 40 d for a time step ∆t=0.5 d, using first-order (a) and second-order (b) time splitting and using unsplit fluxes without (c) and with (d)

divergence correction. z-values have been truncated between −10−2 and +10−2 for the sake of clarity of (c), where the maximum of the truncated peaks is equal to unity and

the minimum is equal to −1/3.
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using unsplit fluxes without (c) and with (d) the diver-

gence correction for a time step ∆t of 0.5 d. This value was

chosen on purpose because it corresponds to the situation

where the domains of dependence (ABCD) in Figure 1

cover exactly half of the cell. When fluxes are split accord-

ing to equations (1), the total amount of concentration

available in the injection cell is taken away by the first

x-step of equation (1a). No mass is left in the cell to be

taken away in the y-direction. This results in an aniso-

tropic solution that exhibits a slot in the y-direction (Fig-

ure 3a). The use of equation (2) allows this anisotropy to

be reduced to some extent (see Figure 3b), but the align-

ment with the main directions of the grid is obvious. When

unsplit fluxes are used, the total area of the four domains

of dependence associated with the four interfaces of the

injection cell is equal to twice the area of the cell. There-

fore, if the divergence is not accounted for, the initial mass

contained in the cell is removed twice. At the next time

step, the concentration in the injection cell is then the

exact opposite of what it was initially, that is it oscillates

between − C0 and +C0 from one time step to the next.

These oscillations are transmitted to the neighbouring

cells. Figure 3c shows the two-dimensional field for the

concentration obtained after an even number of time

steps. For the sake of clarity of the figure, the vertical scale

has been truncated between − 10 − 2 and +10 − 2. Any

value of the time step bigger than 0.5 d leads to an unstable

behaviour, the absolute value of the concentration in

the central cell growing up to infinity. In contrast,

Figure 3d shows the profile obtained using the divergence

correction to be free from such oscillations. In these

computations, it was not necessary to apply the time step

reduction of equations (13), (14), (21) and (22) because

the initial value ∆t = 0.5 d already complied with this

condition.

Figure 4 shows the concentration fields obtained for a

time step ∆t = 1 d. In that case, each of the dependence

domains of each interface covers the entire computational

cell. When the time-splitting algorithm in equations (1) is

used, the x-step removes twice the mass available from the

injection cell, leaving a concentration − C0. Conversely,

the y-step removes twice the negative mass from the

cell, bringing the concentration back to +C0. The

numerical solution is stable, but causes an artificial, nega-

tive concentration wave to spread in the y-direction,

whereas an artificial positive one is spread in the

x-direction. In addition to the lack of physical meaning,

the result, as shown in Figure 4a, exhibits a strong aniso-

tropy along the gridlines. The more accurate algorithm

given by equation (2) improves the solution to some

extent, but does not succeed to eliminate the artificial

influence of the main directions of the grid. The reason is

that for ∆t = 1 d, the amount of mass that is taken away

from the injection cell within ∆t/2 is precisely equal to the

mass available within the cell. Applying the operator L�
y

has exactly the same consequence as applying Ly with a

time step half the size and the slot that could be seen in

Figure 3b can be found again in Figure 4b. If the unsplit

fluxes are used without divergence correction, the concen-

tration in the injection cell is multiplied by − 3 after each

time step because the dependence domains overlap four

times. The numerical solution is unstable and exhibits

strong oscillations (viz. Figure 4c). The values for C/C0

shown in Figure 4c are truncated between − 10 − 2 and

10 − 2 for the figure to be readable but in reality, the value

in the injection cell after 40 d is higher than 1019. As

shown in Figure 4d, the divergence correction eliminates

the spurious oscillations and instabilities. Comparison

between Figures 3d and 4d shows no major difference

between ∆t = 0.5 d and ∆t = 1.0 d.

It is worth noticing that, for ∆t = 1 d, the divergence

correction allows instabilities to be eliminated, although

the Courant stability condition (Toro 1997, p. 556):

is violated. This is due to the fact that the velocity field is

not uniform over space. Therefore, the conclusions of the

classical stability analysis (that is valid for linear equations

with constant coefficients [in space and time]) do not

apply here.

The expression for the analytical solution is given for

further comparison. A flow particle located at a given

distance r from the injection points travels at the velocity:
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The radial velocity Vr is a function of the distance r to the

injection point:

Substituting equation (26) into equation (25) and solving

the differential equation yields:

where r0 is the value of the distance at time t = 0. A

circular spot of initial radius r0 will then grow into an

annular region, with the following inner and outer radii r1
and r2:

r1 = √Qit/ph (29a)

r2 = √r2
0+Qit/ph (29b)

which, in the present case, gives r1 = 713 m and

r2 = 715 m. The analytical solution is shown in Figure 5. It

can be seen that the numerical results, although introduc-

ing numerical diffusion due to the low accuracy of the

scheme, indicate the correct location of the contaminant.

Some authors (Cunge et al. 1980) have commented on

instabilities arising from the linearisation of the

equations and the use of too large time steps, although

these were still in the range of stability of the linear

analysis. The problem observed here, although due to

large time steps, is not related to that described by Cunge

et al. (1980) because it appears without the equations

being linearised.

The present paper should not be thought of as being

based on theoretical considerations alone and to have no

Figure 4 | Computed concentrations after 40 d for a time step ∆t=1.0 d, using first-order (a) and second-order (b) time splitting and using unsplit fluxes without (c) and with (d)

divergence correction. z-values have been truncated between −10−2 and +10−2 for the sake of clarity of (c). The maximum of the truncated peaks is equal to more than 1019.
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practical interest. The test above was performed using a

market-available code for a maximum value of the Cour-

ant number equal to unity (i.e. ∆t = 1 d). Owing to lack of

documentation, it cannot be guaranteed that the pre-

scribed time step was not reduced due to additional stab-

ility constraints. However, it can be seen from Figure 6,

which shows the concentration field obtained after 6 d,

that oscillations and negative concentrations are still

present in the solution. The amplitude of the oscillations

decay very quickly with time, though they will not be

completely eliminated from the solution. This example

shows that, however good the performance of a given code

may be under uniform or steady conditions, it may be

strongly degraded when fluctuations in space (not even to

talk about time) appear in the flow field. Such degradation

can in general not be detected by the classical linear

stability analysis, for the reasons mentioned above. There-

fore verification tests should also be carried out on

non-uniform and unsteady conditions.

CONCLUSION

The existence of strongly divergent flows is a factor of

instability in the numerical solution of scalar advection

problems. In dealing with divergent flows, the unsplit

technique for flux computation exhibits a less stable,

but more isotropic behaviour than time-splitting algor-

ithms. The stability problems can be eliminated

using a simple correction of the fluxes. This correction

consists of redefining the velocities at the edges of the

computational cells so as to avoid an overlap between

the dependence domains associated with the cell

interfaces. This method introduces a limitation on

the computational time step. Testing the proposed

method on a typical case was shown to introduce a

significant improvement in the computational results as

compared to both time-splitting techniques and unsplit

flux without divergence correction. The appearance of

instability and its elimination by the proposed solution

cannot be predicted using the standard linear stability

analysis. The reason for this is that the classical stability

analysis is formulated for equations with constant coef-

ficients, under uniform flow fields. A classical market-

available software package is shown to exhibit poor

performances on the same test, pointing to the need

for more extensive verification practices in modelling

software development.

NOTATION
C computed concentration (kg m − 3)
C0 initial concentration (kg m − 3)
F flux in the x-direction (kg m − 2 s − 1)
G flux in the y-direction (kg m − 2 s − 1)
H height of the domain of dependence of a cell

interface (m)
h aquifer thickness (m)

Figure 5 | Analytical (circular ring) and numerical (contour lines) solutions. The x- and

y-graduations indicate the cell number.

Figure 6 | Computational results obtained using a market-available software package.
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L differential operator
Qi injection rate (m3 s − 1)
r distance to the injection point (m)
r0 initial size of the contaminant spot (m)
r1 inner radius of the contaminated ring (m)
r2 outer radius of the contaminated ring (m)
t time coordinate (s)
U velocity in the x-direction (m s − 1)
U* modified x-velocity accounting for flow

divergence (m s − 1)
V velocity in the y-direction (m s − 1)
V* modified y-velocity accounting for flow

divergence (m s − 1)
Vr radial velocity (m s − 1)
x, y space coordinates (m)
∆t computational time step (s)
∆x cell size in the x-direction (m)
∆y cell size in the y-direction (m)
F average value of the dependent variable over

a computational cell
t1, t2 terms in the calculation of the permissible

time step (s)

) quantity is to be approximated at a given

point

Subscripts
i, j coordinates of the cell in the x- and

y-directions

i+�, j interface between cells i, j and i+1, j
i, j+� interface between cells i, j and i, j+1
x, y directions in which the differential operators

act
max maximum permissible value of a quantity

Superscripts
n time level
n+� averaged quantity between time levels n and

n+1
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