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ABSTRACT

Present day instrumentation networks already provide immense quantities of data, very little of

which provides any insights into the basic physical processes that are occurring in the measured

medium. This is to say that the data by itself contributes little to the knowledge of such processes.

Data mining and knowledge discovery aim to change this situation by providing technologies that

will greatly facilitate the mining of data for knowledge. In this new setting the role of a human expert

is to provide domain knowledge, interpret models suggested by the computer and devise further

experiments that will provide even better data coverage. Clearly, there is an enormous amount of

knowledge and understanding of physical processes that should not be just thrown away.

Consequently, we strongly believe that the most appropriate way forward is to combine the best of

the two approaches: theory-driven, understanding-rich with data-driven discovery process.

This paper describes a particular knowledge discovery algorithm—Genetic Programming (GP).

Additionally, an augmented version of GP—dimensionally aware GP—which is arguably more useful

in the process of scientific discovery is described in great detail. Finally, the paper concludes with an

application of dimensionally aware GP to a problem of induction of an empirical relationship

describing the additional resistance to flow induced by flexible vegetation.
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INTRODUCTION

In making the most of a set of experimental data it is

generally desirable to express the relation between the

variables in the form of an equation. In view of the

necessarily approximate nature of the functional relation,

such an equation is described as ‘empirical’. No particular

stigma should be attached to the name since many

ultimately recognised chemical, physical and biological

laws have started out as empirical equations.

Sciences devote particular attention to the develop-

ment of a physical symbol system, such as a scheme of

notation in mathematics, together with the evolution of

more refined representations of physical and conceptual

processes in the form of equations in the corresponding

symbols. It is a common experience that one and the same

physical symbol system may serve for the expression of a

great number of different equations. Since each equation

can be regarded as a collection of signs that serves as a sign

for a particular physical object, process or event, so it

constitutes a model of that object, process or event

(Abbott 1993). Data, on the other hand, remain as ‘mere’

data just to the extent that they remain a collection of signs

that does not serve as a sign. From this point of view, the

evolution of an equation within a physical symbol system

as a means of better conveying the ‘meaning’ or ‘semantic

content’ that is encapsulated in the data, corresponds to

the evolution of another kind of sign and thereby consti-

tutes a model. Evidently the ‘information content’ is very

little changed, or even unchanged, but the ‘meaning value’

is commonly increased immensely. Since it is just this

increase in ‘meaning value’ that justifies the activity of

substituting equations for data, there is a natural

interest in processes for further promoting such means.

The formation of modern sciences occurred approxi-

mately in the period between the late fifteenth century and

the late eighteenth century. The new foundations were

based on the utilisation of the concept of a physical
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experiment and the applications of a mathematical

apparatus in order to describe these experiments. The

works of Brahe, Kepler, Newton, Leibniz, Euler and

Lagrange clearly exemplify such an approach. Before

these developments, scientific work primarily consisted

only of collecting the observables, or recording the

‘readings of the book of nature itself’.

This novel scientific approach was principally charac-

terised by two stages: a first one in which a set of obser-

vations of the physical system are collected, and a second

one in which an inductive assertion about the behaviour

of the system – a hypothesis – is generated. Observations

represent specific knowledge, whereas a hypothesis repre-

sents a generalisation of these data that implies and

describes observations. One may argue that through this

process of hypothesis generation one fundamentally

economises thought, as more compact ways of describing

observations are proposed.

Today, in the late 20th century, we are experiencing

yet another change in the scientific process as just out-

lined. This latest scientific approach is one in which infor-

mation technology is employed to assist the human

analyst in the process of hypothesis generation. This

computer-assisted analysis of large, multidimensional data

sets is sometimes referred to as a process of ‘data mining

and knowledge discovery’ (Fayyad et al. 1996). Data

mining and knowledge discovery aims at providing tools

to facilitate the conversion of data into a number of forms

that convey a better understanding of the processes that

generated or produced these data. These new models,

combined with the already available understanding of the

physical processes—the theory, can result in an improved

understanding and novel formulations of physical laws

and an improved predictive capability.

As we enter the true digital information era, one of the

greatest challenges facing organisations and individuals is

how to turn their rapidly expanding data stores into acces-

sible, and actionable, knowledge (Fayyad et al. 1996).

Means for data collection and distribution have never

been so advanced as they are today. While advances in

data storage and retrieval continue at an extraordinary

rate, the same cannot be asserted about advances in infor-

mation and knowledge extraction from data. Without such

developments, however, we risk missing most of what the

data have to offer. Only a very small percentage of the

captured data is ever converted to actionable knowledge.

Owing to the data – and information – overflow, the tra-

ditional approach of a human analyst, intimately familiar

with a data set, serving as a conduit between raw data and

synthesised knowledge by producing useful analyses and

reports, is breaking down.

What to do with all this data? Ignoring whatever we

cannot analyse would be wasteful and unwise. This is

particularly pronounced in scientific endeavours, where

data represent carefully collected observations about

particular phenomena that are under study.

However, mining the data alone is not the entire

story. At least not in scientific domains! Scientific

theories encourage the acquisition of new data and these

data in turn lead to the generation of new theories.

Traditionally, the emphasis is on a theory, which

demands that appropriate data be obtained through

observation or experiment. In such an approach, the

discovery process is what we may refer to as theory-

driven. Especially when a theory is expressed in

mathematical form, theory-driven discovery may make

extensive use of strong methods associated with

mathematics and with the subject matter of the theory

itself. The converse view takes a body of data as its starting

point and searches for a set of generalisations, or a theory,

to describe the data parsimoniously or even to explain

it. Usually such a theory takes the form of a precise

mathematical statement of the relations existing among

the data. This is the data-driven discovery process.

Most of the applications of data mining technology are

currently in the financial sector. There is a very strong

economic incentive to apply state-of-the-art technology

for commercial benefits. Additionally, this domain is,

relatively speaking, theory-poor, and the generation of

new ‘black-box’ tools based solely on observations is

accepted with little scepticism. In scientific applications,

the situation is quite different. Clearly, there is an

enormous amount of knowledge and understanding of

physical processes that should not just be thrown away.

We strongly believe that the most appropriate way for-

ward is to combine the best of the two approaches: theory-

driven, understanding-rich with data-driven discovery

processes.
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SYMBOLIC REGRESSION

Regression – linear or nonlinear – plays a central role in

the process of finding empirical equations. In its most

general form, regression techniques proceed by selecting a

particular model structure and then estimating the

accompanied coefficients based on the available data. The

model structure can be linear, polynomial, hyperbolic,

logarithmic, etc. The only requirement in such an

approach is that the coefficients in the model can be

estimated using an optimisation technique. In generalised

linear regression for instance, the only requirement is that

the model is linear in the coefficients. The model itself can

consist of any functional form. Another technique may be

a nonlinear regression where the only requirement is that

the model is differentiable both in the inputs and the

coefficients. Supervised artificial neural networks belong

to this class of regression techniques.

In this paper a relatively novel regression technique,

symbolic regression (Koza 1992) is described. The specific

model structure is not chosen in advance, but is part of the

search process. In this algorithm, both model structure

and coefficients are simultaneously being searched for.

The user has to define some basic building blocks

(function and variables to be used); the algorithm tries to

build a model using only those specified blocks. As the

space of model structures is in general not smooth, not

differentiable nor linear in any useful sense (it is in fact

highly discontinuous), standard optimisation techniques

fail when trying to find both the model structure and the

coefficients.

The only information available for the symbolic

regression problem is the error that a particular model

makes. No auxiliary information about gradients is avail-

able. The class of evolutionary algorithms, therefore,

seems to be one of the few methods able to perform an

effective search in this domain.

The evolutionary paradigm

The paradigm of evolutionary processes, as established

by Darwin and Weismann in the 19th century, and pro-

vided with its information-theoretic interpretation by

Crick, Watson and others in the 1950s, distinguishes

between an organism’s genotype, which is constructed of

genetic material that is inherited from its parent or

parents, and the organism’s phenotype, which is the com-

ing to full physical presence of the organism in a certain

given environment and is represented by a body and its

associated collection of characteristics or phenotypic

traits. Within this paradigm, there are three main criteria

for an evolutionary process to occur (Maynard Smith

1975):

• Criterion of Heredity: Offspring are similar to

their parents: the genotype copying process

maintains a high fidelity.

• Criterion of Variability: Offspring are not exactly

the same as their parents: the genotype copying

process is not perfect.

• Criterion of Fecundity: Variants leave different

numbers of offspring: specific variations have an

effect on behaviour and behaviour has an effect on

reproductive success.

It can be shown that these three requirements provide

necessary and sufficient conditions for an evolutionary

process to occur, so that they define the grammar of the

corresponding ‘language’, whether this be written in

strings of nucleotides, or amino acid molecules, or in

strings of binary digits, or in strings of symbols, or what-

ever. The criterion of heredity ensures that the offspring

inherits information from its parents, assuring similarity.

Variability is guaranteed in any entropy-producing system,

whereas the criterion of fecundity provides, on average,

more fit individuals with the possibility to reproduce

more often and thus generate more and better-surviving

offspring.

The application of these evolutionary principles

results in an adaptation of a population to an environ-

ment. Adaptation can in turn be conceived as a process of

accumulation of knowledge (see, for example, Margalef

1968). Since Darwinism is a theory of processes of cumu-

lative adaptation, it can best be conceived within the

present perspective as a theory of accumulation of

knowledge about an environment.

The first proposal to apply the creative power of the

evolutionary process in more general terms than the
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biological can be traced back at least as far as the work

of Cannon (1932: see Harvey 1993). The first working

computer algorithm that realised this approach – that of

Evolutionary Operation (EVOP) – is attributed to Box

(1957). Works of Friedberg (1958) and Bremermann (1958)

provided some inspiring results but were not well accepted

by the contemporary scientific community (e.g. Minsky

1963).

In time, however, research in evolutionary algorithms

overcame most of the problems that both Friedberg and

Bremermann had encountered. More than three decades

of research have resulted in differentiation into four main

streams of Evolutionary Algorithm (EA) development:

namely those of Evolution Strategies (ES) (Schwefel 1981);

Evolutionary Programming (EP) (Fogel et al. 1966);

Genetic Algorithms (GA) (Holland 1975); and Genetic

Programming (GP) (Koza 1992). However, all evolutionary

algorithms share the common property of applying evol-

utionary processes in the form of selection, mutation

and reproduction on a population of individual structures

that undergo evolution. The general process is illustrated

in the form of a pseudo-code in Table 1. The criterion of

heredity is assured through the application of a crossover

operator, whereas the criterion of variability is maintained

through the application of a mutation operator. A selec-

tion mechanism then ‘favours’ the more fit entities so that

they reproduce more often, providing the fecundity

requirement necessary for an evolutionary process to

proceed.

The structures undergoing adaptation

Owing to the many different types of evolutionary algor-

ithm defined, it is difficult to develop a formal framework

for describing evolving genotypes. For linear genotypes

such as those used in most genetic algorithms and evol-

ution strategies, Radcliffe & Surry (1994) showed that an

individual’s genotype v can be coded as a string of l genes.

Each of these genes can take on values from some

(typically, but theoretically necessarily not finite) set Ai.

Accordingly, the genotypic representation space V takes

the form:

V = A1 × A2 × A3 . . . × Al . (1)

In classical Genetic Algorithms (GAs), as introduced by

Holland (1975), the elements aki of the sets Ai typically

take on binary values:

∀ aki ∈ Ai, aki ∈ {0,1} . (2)

In Evolution Strategies (ES), on the other hand, the

elements aki are real-valued numbers, i.e.

∀ aki ∈ Ai, aki ∈ R . (3)

In these cases we can regard the set of distinct elements aki
as an alphabet. In Evolutionary Programming (EP) the

sets Ai are more broadly defined and can be adapted to any

problem at hand, ranging from numerical optimisation

(Fogel 1992), through finite-state automation evolution

(Fogel 1993) to connectionist network induction (Fogel

et al. 1990).

The phenotype x of an evolving entity is an interpret-

ation of a genotype v in a problem domain. In the case of

GAs, a typical genotype v composed of l ‘letters’ or ‘words’

may appear in a more general form as v (a1 × . . . × a1) ∈V.

For example, when a particular ai takes values of 0 or 1, then

the genotype simply takes the form of a binary string, such

as:

v = 1 0 0 1 1 0 1 1. (4)

To extract any useful meaning, this code has to be

interpreted in some way, and indeed in this case the

Table 1 | Pseudo-code for evolutionary algorithm.
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interpretation is the individual’s phenotype x. The mapping

between genotypes and phenotypes then depends only on

the admitted physical symbol system—and the developers’

ingenuity. For example, if a binary string is to be interpreted

as a phenotype that is characterised by two traits that have

numerical measures x1 and x2 only, defined on domains [x̌1,

x̂1] and [x̌2, x̂2] respectively, a simple mapping can always be

found that will provide this interpretation. For example, in

the case of Equation (4), where l = 8, we can subdivide the

genotype into, say, two equinumerous intervals of length

Lx = l/2 = 4, and apply the following general mapping:

where aj is the value of the numeral in the binary string and

b is the base number. In this way a genotype v is interpreted

as a phenotype x with just two traits, in this case of the form

x1 [0, 10] and x2 [0, 10], according to the scheme exempli-

fied in Equation (5) as follows:

Thus the genotype of Equation (4) generates a phenotype

with two traits (6.0, 8.67), each of which is characterised by

one real number.

Evolution Strategies (ES), on the other hand,

represent evolving entities using real-valued numbers

and not binary strings. In this way the mapping between

genotype and phenotype is avoided. This provides

certain advantages and accelerates the algorithms, but it

naturally restricts the field of application to numerical

domains only. One of the main advantages of the GA

is its rudimentary alphabet, consisting only of 0s and

1s or other such sign pairs. Moreover, in the case of a GA

there is in principle nothing preventing the application

of a mapping in which, for example, 100 would stand

for x1, 11 for + and 011 for x2, so that the binary

representation of the genotype as exemplified in Equation

(4) above would become a phenotype with an interpret-

ation (x1 + x2).

Clearly, phenotypes generated applying this last

mapping and a mapping of the kind exemplified in

Equation (5) are meant for different purposes. The latter

are typically used for optimisation and constraint satisfac-

tion applications. For a general overview see Goldberg

(1989) and, for applications in a water-related domain,

Babovic (1993, 1996).

A third route of genotype to phenotype mapping is

present in genetic programming (GP) (Koza 1992). Instead

of using the identity mapping as in evolution strategies or

keeping it completely open such as in genetic algorithms,

genetic programming restricts the mapping from genotype

to phenotype such that the phenotype is executable in the

same sense as a computer program is executable. Problems

tackled by genetic programming are then problems of

program induction. Although this limits the scope of

genetic programming, it remains broad enough to

encompass seemingly remote problems such as: model

induction, symbolic regression, optimal control, planning,

sequence induction, discovering game-playing strategies,

empirical discovery and forecasting, symbolic integration

and differentiation, inverse problems and induction of

decision trees. In his monograph, Koza (1992) argues

(chapter 2, p. 9):

A wide variety of terms are used in various fields to describe
this basic idea of program induction. Depending on the
terminology of the particular field involved, the computer
program may be called a formula, a plan, a control strategy, a
computational procedure, a model, a decision tree, a
game-playing strategy, a robotic action plan, a transfer
function, a mathematical expression, a sequence of operations,
or perhaps merely a composition of functions.
Similarly, the inputs to the computer program may be called

sensor values, state variables, independent variables,
attributes, information to be processed, input signals, input
values, known variables, or perhaps merely arguments to a
function.
The output from the computer program may be called a

dependent variable, a control variable, a category, a decision,
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an action, a move, an effector, a result, an output signal, an
output value, a class, an unknown variable, or perhaps merely
the value returned by a function.
Regardless of the differences in terminology, the problem of

discovering a computer program that produces some desired
output when presented with particular inputs is the problem of

program induction.

The alphabet used in the GP code comprises a physical

symbol system, so that it consists of symbolic operators,

the choice of which depends only on the nature of the

problem to be solved. One may, for example, choose an

alphabet consisting solely of logical operators, such as

AND, OR, NOT and IF THEN ELSE and evolve rule-based-like

structures. One may restrict the alphabet to arithmetic–

algebraic operators such as + , − , *, /, etc. so as to evolve

arithmetic–algebraic formulae. On the other side of the

symbolic spectrum, the alphabet can be chosen from

operators containing side effects, memory addressing and

loops such as READ, WRITE, WHILE which, together with

arithmetic and logical functions, embodies a complete

computer language.

As computer programs (and less generally mathemati-

cal formulae) have a well defined grammar and are of

variable size and shape, in genetic programming the struc-

tures undergoing adaptation are often taken from the class

of parse trees. Parse trees are general constructs in com-

puter science and are used, among other things, as inter-

mediate structures in compiling computer languages such

as C( + + ), Pascal and Fortran. A parse tree is inductively

defined in Table 2: In this definition the subscripts 0, 1,

. . . , n of the sets F in L denote the arity of the functions i.e.

the number of arguments they need. The set of functions of

arity zero is often called the terminal set or T. When we

restrict the function and terminal sets to mathematical

operations, the parse trees that can be generated, and

subsequently the search-space for genetic programming,

will consist of all possible mathematical expressions,

regardless of their shape and size.

The great advantage of this change in representation

will become clear when we represent these structures in

tree form rather than bracketed strings. The distinction

between the terminals and functions (non-terminals) will

then become clear. Terminals are represented by the ex-

tremities or ‘leaves’ of the tree, like p, v or z. In addition to

these, terminals may be constants that are inserted in the

formulae. Functions are elements of a tree that act upon

terminals and in Figure 1 these are exemplified by + and *.

It follows straightforwardly from the definition in

Table 2 that replacing a child node of a well-defined

parse tree by an arbitrary well-defined parse tree yields a

well-defined parse tree. It follows that:

1. Every grammatically correct equation (and, in

general, every well-formed formula, or wff) can be

represented as a parse tree.

2. Every planar graph with grammatically correct

terminals and functions represents a grammatically

correct equation (or, generally, a wff).

3. Depth and size of a wff are easily defined as the

longest non-backtracking path from a leaf to the

root of the tree, and the number of nodes in the tree,

respectively.

Table 2 | Definition of parse tree.

Figure 1 | A parse tree representing the expression (p+v)*z.
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When applying genetic programming using mathematical

functions and variables only, we have entered the field

Koza termed symbolic regression. Symbolic regression, in

contrast with (non-)linear regression tries to find both the

functional form as well as the coefficients of a formula.

Just like linear regression it works on a spreadsheet of

data, and tries to fit a model to this data. There are two

unique features in symbolic regression on data. First,

the form of the model does not need to be specified

beforehand. A specification of the more elementary build-

ing blocks (the language L above) will do. Second, the

optimisation criterion is not restricted to a class of, for

example, squared error measures. As will be shown below,

the optimisation does not even need to be restricted to a

single objective: a multi-objective optimisation is quite

straightforward to implement.

The equations so represented may be grammatically

correct, but they may not necessarily be logically correct,

or ‘logical’, and then in the special but immediate sense

that they may not necessarily be dimensionally consistent.

Symbolic regression on Bernoulli’s law

In the remainder of this section an introduction to genetic

programming specifically used in symbolic regression

will be offered. For pedagogic purposes, an artificial

dataset with a known solution is chosen as a running

example. The target is to find Bernoulli’s law of energy

conservation:

or in a regression context, to find:

where:

z denotes distance above a certain energy datum,

p denotes pressure,

v denotes velocity,

g denotes the Earth’s gravitational acceleration

[g = 9.81 m2/s], and

g denotes the specific gravity of a fluid [for water

g = 9810 N/m3].

Formula (6) is a simplified formulation that ignores

energy losses due to friction and local losses induced by

sudden changes in a cross-section of the conduit. In

accordance with tradition in hydraulics, energy in formu-

lation (6) is expressed in implicit potential energy

terms, as metres of a water column, rather than in more

conventional energy units.

For the purpose of induction of Bernoulli’s law a

specific genetic programming system will be developed in

this text. This system differs in almost all aspects from a

more ‘standard’ implementation of a genetic programming

system. In particular, it is almost entirely different from the

system as described by Koza (1992). There is a great degree

of freedom in implementing genetic programming systems

and there are no known optimal choices for the various

details of the system. However, the overall design of a

genetic programming system needs to address a number of

issues and these are condensed in this paper.

The data and the terminal set

First a dataset is created on the basis of the desired

relation E = z + p/g + v2/2g in numeric form using

reasonable numeric values. See Table 3 for an example.

In real-world problems a similar dataset would be all

that is available. The object of the search is now a formula

that takes z, v, and p as input and produces E as output.

The constants g and g may also be included, but in the

present example only randomly generated constants will

be used.

Table 3 | Dataset for the induction of Bernoulli’s law.

z v P E

1 7.945 3.91 14121.67 10.94294

2 18.585 5.287 14506.06 22.91308

. . . . . . . . . . . .

1000 15.884 12.7 10770.01 33.42325
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The function set: sufficiency and closure

The next step is to define a function set for the problem. A

function and terminal set are called sufficient if they are

able to represent a solution to the problem. As in this case

the optimal solution is known, the optimal function set

can be determined easily. In the general case, when all that

is known is the raw data, an informed guess must be made

as to what functions and terminals to use for genetic

programming. For this problem we choose:

Function Set { + , *, − , /, power, sin, ln}

There is one point that needs to be explicitly taken care of.

As the crossover mechanism (as defined below) can swap

any sub-tree to any location in the tree, it needs to be

ensured that all values have the same type, and that all

functions can accept all possible inputs from terminals and

functions and will return a well-defined value. This property

is called closure. In the function set above there are three

functions that might violate this closure property. The div-

ision function is undefined when its second argument is

zero, the power function is undefined when a negative value

is raised to a non-integer power, and the natural logarithm

is undefined for values smaller and equal to zero. Other

potential pitfalls are underflows and overflows in the

floating-point implementation of these functions.

One possible approach to satisfying closure is to

protect the operators so that they return well-defined

values when confronted with illegal inputs (Koza 1992). A

protection for division might be to return the value 1 when

confronted with a division by zero. For the power function

a solution could be to use complex numbers instead.

Similarly, one can also define protections for the square

root and logarithm functions. Another approach (which is

adopted here) is to use a special undefined value NaN that

is returned by functions with illegal inputs. All functions

that receive NaN in any of their inputs will also return

NaN. Finally, the objective function will return the worst

possible value when one of the inputs is NaN.

Initialisation of genetic programming

Evolutionary algorithms are typically initialised by

creating an initial population randomly. This is in fact a

purposeful action, in that a randomly created collection

of entities can provide a satisfactory initial coverage of

the search space. At the same time, computationally

speaking, this is an inexpensive process that calls for no

initial or preconceived knowledge from the side of the

problem-solver.

The process of random initialisation of a parse tree is

depicted in Figure 2. First, a function is randomly selected

from a function set, e.g. *. This function has an arity of

2 and thus requires two arguments. In the next step,

arguments are randomly selected from the function sets.

Figure 2a,b illustrates the situation in which the left

branch of a tree is fed with a function + and the right with

a terminal z. Since the left branch is non-terminal the

process is repeated recursively until all the leaves of the

tree are terminals. This is illustrated in Figure 2c, where

the randomly selected terminals for + are p and v.

This process is repeated for every individual in a GP

population of size N. It should be noted that such a

creation of parse trees results in the generation of geno-

types of variable length. To restrict the size of the initial

population, a maximum depth parameter D may often be

supplied. Several different initialisation procedures exist

for GP; some of them are described below.

Full method

Assign zero probability to the terminal set T and uniform

probability to the remaining functions from L. Generate a

tree consisting of non-terminals only until the depth D is

reached. Then assign uniform probability to the members

of T and zero to the remaining functions from L, thus

completing the tree with terminals.

Grow method

Assign uniform probability to all functions from L. If the

Figure 2 | Example of the systematic specialisation of an expression.
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depth of the tree reaches D generate terminals only. This

will result in variable shaped and sized trees.

Ramped half-and-half

A combination of the full and grow methods. Generate for

each of the depths from 2 to D an equal number of trees

using grow and full methods in equal proportions. This

method is preferred by Koza (1992) as it generates parse

trees of various shapes and sizes and consequently pro-

vides a good coverage of the search space. This initialis-

ation procedure is less sensitive to the ratio of functions

over terminals than the grow method by itself.

Exact uniform initialisation

None of the methods above succeeds in generating parse

trees distributed uniformly over the space of all possible

parse trees up to depth D. As there are exponentially more

parse trees of depth D than of depth D − 1, the ramped

half-and-half method is biased towards generating trees of

smaller depths. (The exact relation between the number of

possible parse trees over increasing depth is given by

n(D + 1) = ∑zLzi=1zFiz∑D
j=1n(j)i − ∑D

j=2n(j), where n(D) is

the number of parse trees at a certain depth and n(1) is the

size of the terminal set F0 or T. The recursion can be

verified by considering that a tree of depth D + 1 has

children that are maximally D deep, given by the first

summation. As the first summation calculates the number

of parse trees up to depth D + 1 including all trees from

depth 2 to D, subtracting the second summation will give

the exact result of all trees of a specific depth.) Bohm &

Geyer-Schultz (1996) suggest using the recursion above to

generate trees uniformly over all depths and shapes, such

that every parse tree up to depth D has an equal

probability of being generated.

Initialisation on size

Instead of using a maximum initial depth parameter D,

use an initial size parameter S, and initialise using the

pseudo-code from Table 4.

This implements a full method on size, as every tree

will be of exact size S. To create a grow variant of this

algorithm it is only necessary to include the terminal set in

the sets of functions in line 4 (marked with *) of the

pseudo-code above. This implementation method gives

better control of the size of the initial parse trees.

In our running example of induction of Bernoulli’s

law, a variant of the grow initialisation on size is employed

with S = 15, N = 4 and D = 4, and provides, for example,

the following kinds of expressions:

When a constant is created its value is set to the ratio of

two independent uniform random variables.

Objective functions, selection and fitness

Although it is often claimed that evolutionary algorithms

embody a computer-based version of natural selection

(Koza 1992), this is not the case when they are used in

an optimisation context. In contrast with optimisation,

evolution is not goal-oriented in an optimisation sense.

The only goal orientation that might be distinguished is

that organisms are optimised in their ability to create

offspring. All traits in all their wonderful complexity are

mere side-effects of this all-encompassing goal.

To continue drawing analogies with biology,

evolutionary algorithms as used for optimisation purposes

Table 4 | Pseudo-code for initialization on size.
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are more akin to breeding. If one wants to optimise some

trait in, for example, pea plants, one will proceed by

breeding with those plants that exhibit most of the specific

trait to breed. These plants will be crossbred and grown

again. By applying this procedure for a number of gener-

ations, the average quality of a trait of interest in the

pea plants will increase. Contemporary agriculture is

extensively optimised using this technique.

Evolutionary algorithms in optimisation proceed in a

similar fashion. First an objective function is defined that

usually takes the form of a scalar value that is applied to

every population member:

o:Fx→R (8)

mapping the outputs of the formula Fx to a real-valued

scalar. When using genetic programming to find equations

that approximate data (i.e. symbolic regression), the objec-

tive functions used are often error measures of some form.

This measure can simply be a root mean squared error, but

also the number of points correctly predicted within some

accuracy interval of tolerance (the number of correctly

predicted data points is often called the number of hits of

the population member). Since a population member

within a genetic programming computes some function f

using the input vectors x, the error in producing the

desired outputs y can be computed with any cost or error

function. To compare objective function values, it is often

enough to supply information a to whether this function

should be minimised or maximised. Again, it is not neces-

sary that the objective function is continuous nor is it

necessary for it to be differentiable, as an evolutionary

algorithm does not use this information.

The objective function chosen in the running example

of Bernoulli’s law induction is the root mean squared error

(RMS), given by:

After calculating the objective function values for all

population members, the following step is to create the

next generation. Similarly, as in breeding, the better

solutions will have a larger expected number of offspring.

This step is referred to as selection.

Selection is the optimisation force within the

evolutionary algorithm, keeping it focused on the

worthwhile regions of the search-space by mapping

the objective function values to the number of offspring

produced. Selection generally reduces the population to

its observed best members; the population is subsequently

enlarged by the mutation and crossover operations on the

selected members. Several selection mechanisms have

been proposed for evolutionary algorithms. Three of the

most popular mechanisms are described here.

1. Truncation Selection simply keeps the best

proportion of t of the population and discards the

rest. The parameter t then governs the selection

intensity of the mechanism. Evolution strategies

(Schwefel 1981) use only this mechanism.

2. k-Tournament Selection proceeds by holding

tournaments of k randomly selected individuals and

selects the best as the winner. In a steady-state

algorithm a subsequent tournament is held for

finding a partner and an inverse

tournament – selecting the worst individual – can be

held to find a slot to fit in one of the offspring. The

tournament size parameter k governs the selection

intensity here.

3. Fitness Proportional Selection assigns every

individual in the population a probability

proportional to its objective function value.

Selection is then governed by these probabilities.

To obtain these probabilities the objective function

needs first to be scaled to a non-negative quantity.

This transformation from raw objective scores to a

non-negative quantity is called the fitness function

(Grefenstette 1997).

Although fitness proportional selection is one of the most

frequently used selection mechanisms in genetic algor-

ithms (and in fact the schema theorem (Holland 1975)

depends on it), it is also one of the most cumbersome to

use. The objective function values need to be transformed

and scaled. To vary the selection intensity, several scaling

mechanisms have been devised, often utilising some prop-

erties of the particular objective function used. In effect,

such scaling mechanisms implement the entire selection

mechanism, as fitness proportional selection by its very
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nature is a method that ‘merely’ translates values into

probabilities. Likewise all other selection mechanisms

can be translated as scaling mechanisms for fitness pro-

portional selection through a straightforward, although

tedious, calculation of probabilities. (A cautionary remark

should be issued that owing to the relatively small sizes of

evolutionary algorithm populations, the effect of sampling

error is non-negligible.)

In his first treatise on GP, Koza (1992) used only

fitness proportional selection, and subsequently inter-

mediate scaling methods such as standardised, adjusted

and finally normalised ‘fitness’. The subsequent volume

(Koza 1994) and most of the current implementations of

genetic programming use tournament selection on a

steady-state population. This selection mechanism has the

advantage (together with truncation selection) that the

objective function values are only compared and the map-

ping from objective function values to expected number of

offspring is then implicitly (albeit with sampling error)

performed by the selection mechanism.

In our Bernoulli example truncation selection with a

truncation percentage of 15% has been chosen. This is

applied on a population size of 500. Truncation selection

has been chosen for its ease in implementation. The popu-

lation is sorted using the RMS error, the worst 85% of the

population are deleted, and the remaining part of the

population is filled with variants of those 15% survivors.

This implements rather high selection intensity.

In this section symbolic regression was treated using a

single objective (an error measure). Evolutionary algor-

ithms are, by virtue of their population-based search, well

suited for a multi-objective approach. With a number of

objectives to optimise on, evolutionary algorithms can

develop the entire Pareto-front of non-dominated

solutions by employing fairly simple mechanisms of

dominance. This is particularly useful when no a priori

preference or weighting scheme on the objectives is

possible. The generalised objective function in multi-

objective optimisation takes the form:

o:Fx→Rn, (10)

where n is the number of objectives. One way of imple-

menting a multi-objective mechanism is by a means of a

so-called Pareto ranking, where the concept of dominance

plays an important role. When working with more than

one objective, a solution is said to be dominant over

another solution of the problem when it is better on at

least one objective and not worse on any of the others. The

Pareto ranking method assigns each population member a

rank based on the number of members that it dominates

(Foseca & Fleming 1995). In this fashion the solutions at

the front of non-dominated solutions will get the best

rank, zero. Goldberg (1989) proposed an alternative

Pareto ranking method. The first non-dominated solutions

are assigned rank zero and are subseqently removed from

consideration. The remaining non-dominated solutions in

the population receive a rank of one and the process is

repeated. Both Pareto ranking methods succeed in achiev-

ing the goal of multi-objective optimisation: no preference

is given to either objective and all non-dominated

solutions are assigned the same rank.

For the problems of symbolic regression a very natural

second objective, in addition to the error measures, is the

complexity, or size, of the solution. Instead of using

weighting schemes such as regularisation or minimum

description length, Pareto ranking methods as described

above serve equally well. The only disadvantage may be

that at the end of the run, the user is confronted with a

front of solutions instead of a single solution.

Population models

There are several population models in addition to the

existence of the already described steady-state population,

where the population size remains unaltered during a run

(or is decreased and increased by one, in another view-

point). Another frequent population structure is a

so-called generational model, where an intermediate

mating pool is produced where the selected individuals

reside in order to form the next generation of offspring.

The mating pool is populated by applying truncation,

tournament or fitness-proportional selection. Whether

some members of the mating pool are simply copied

(reproduced) to the next generation or not defines

whether the population model is elitist or not. Elitism

ensures that the best population member(s) survive the
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generation gap in order to keep the best-so-far solution(s)

in the evolving population. Tournament selection within a

steady-state model is naturally elitist in that the best

member is maintained in the population when the inverse

tournament is held through picking members without

replacement.

Another distinction in population structure can be

made through panmictic and distributed populations. A

panmictic population is thoroughly mixed. Selection oper-

ates on a global scale, taking the fitnesses of the entire

population into account. A distributed population is dis-

tributed in a certain spatial sense, and selection operates

locally. Examples of such distributed population models

are: the island model in which there are independently

evolving sub-populations, with the occasional migration

of individuals between islands to exchange genetic

material; and the diffusion model where the population is

distributed within a one-, two- or multi-dimensional grid

in which local mixing and selection occur. By distributing

the population some parallel evolution can occur, making

the algorithm less susceptible to convergence to a local

optimum.

In the Bernoulli equation problem, again for

simplicity, a panmictic, generational model is adopted.

The algorithm used is strongly elitist as the 15% best

solutions are always kept in the population.

The crossover operator

The principal inspiration for the formulation of cross-

over in GP arises from the biological practice of

sexual reproduction. Similarly to what occurs in dip-

loidal reproduction, the action of crossover affects

two parental entities’ genotypes and recombines them

in to produce offspring genotypes. Thus the cross-

over operator O affects two evolving entities in such a

way that O: V × V→V. Effectively, the crossover operator

represents a higher-order transformation of parental

entities.

In principle, crossover requires that two ‘parent’

expressions are divided and recombined into two offspring

expressions. The representations of the expressions that

are undergoing recombination must be such that the

resulting offspring are grammatically (and, specifically,

syntactically) correct. The first efforts of the GA com-

munity to evolve symbolic expressions (Cramer 1985) were

based on the interpretation of a binary string in symbolic

form. Despite some limited successes of this approach, it

was found that it still necessitated an extensive checking

of the grammatical correctness of the resulting formulae,

and in cases when the resulting expressions were not

correct it necessitated patching and other methods of

rehabilitation. In certain cases, the algorithm was

even found to spend most of its time carrying out these

rehabilitation measures.

In view of these difficulties, Koza (1992) followed a

somewhat different path, in which parse trees were

manipulated directly in an evolutionary process. The

consequence of this approach is that the syntax of the

formulae necessarily remains correct (well-defined)

regardless of the crossover site. There is then no need for

additional corrections and patching. As remarked earlier,

this means that the grammatical correctness of statements

is not violated under the operation of crossover when

these statements are expressed as a parse tree; and this is

the principal benefit conferred by using this form of sign

vehicle.

The principle of the crossover operator is schematised

in Figure 3 using the expression already introduced.

The crossover O: V × V→V, between two parse trees,

x1, x2 ∈ V, can be defined through the following pro-

cedure:

• select a node, n1, randomly in the tree x1;

• select a node, n2, randomly in the tree x2;

• interchange the two sub-trees.

Mutation

Mutation, m, is a unary-type transformation that alters the

individual v ∈ V such that m: V→V. Each evolutionary-

algorithmic technique defines mutation in a sense that

best suits its own purpose. Biologically speaking, mutation

denotes a haploid, asexual manipulation of the genome.

Traditionally, in genetic algorithms, mutation is referred

to as ‘bit-flipping’, or a segment-inverting operation

(Babovic 1993, 1996). In evolutionary programming, a
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mutation is understood as any manipulation of a structure

(Fogel 1992). Evolutionary strategies use the term to

describe a variety of different operators (Schwefel 1981).

In genetic programming, however, the action of the

mutation operator has frequently been described as a

random substitution of a sub-tree with another sub-tree.

There are several kinds of (computational) mutations

possible. Some examples are:

1. Branch-mutation, where a complete sub-tree is

replaced with another, and in principle, arbitrary

sub-tree that can be generated by one of the

initialisation methods described above.

2. Node-mutation, which applies a ‘random’ change to

a single node, replacing its original value by another

and, again in principle, arbitrary value. In the case

of constants, it’s value is often slightly altered by

using some white noise.

3. Constant-mutation, similar as above but now a

constant will be selected and mutated by using some

white noise.

4. Inversion-mutation, which inverts the order in

which operands are ordered in an expression in a

random way; thus f(x1, x2, x3) might become, for

example, f(x3, x1, x2).

5. Edit-mutation, which edits the parse tree based on

semantic equivalence. This mutation does not alter

the phenotype (the function computed) but just

produces an equivalent smaller formula. An example

of edit-mutation is to replace all occurrences of

(0 + x) in a parse tree with x.

Both the crossover and mutation operators try to balance

the heredity and variability components of the algorithm.

Much research has investigated the influence of specific

crossover and mutation schemes with respect to these two

criteria.

In the system that is being developed through these

pages, the following algorithm outlined in Table 5 is used.

In the present example, the algorithm is employed

with two randomly chosen ‘parents’ from the 15% of

survivors of the generation gap as described above.

Soft brood selection

It might be clear from the previous discussion that cross-

over and mutation are randomised methods that are likely

to produce rather erroneous formulae from time to time.

Figure 3 | The action of the crossover operator: the upper part of the figure illustrates

parents that are selected for reproduction, and the lower part of the figure

illustrates the offspring that are generated after crossover.

Table 5 | Pseudo-code for a mutation.
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Therefore, it might be worthwhile to detect such formulae

early before spending too much effort in evaluating them

on the entire data set. In soft brood selection (Tackett

1994), when one or two parent formulae are chosen to

produce offspring, more offspring than will actually be

inserted in the population will be generated using cross-

over and mutation. Subsequently a culling function will be

used to determine which offspring will be inserted in the

population. This culling function often takes the form of

the same objective function that is used overall, with the

difference that it will use only a tiny fraction of the data.

This culling function is then a computationally cheap

method to assess the worth of the offspring. This way early

detection of bad offspring can be enforced and less

computational effort is spent on evaluating these offspring.

Soft brood selection is not used in our running

example.

Determination of the stopping criterion

An evolutionary algorithm is in principle an infinite iter-

ation. In practice however, the run needs to be stopped at

a certain point. Two methods of stopping a run may be

used: stop after a certain number of generations, or stop

after a certain length of wall-clock time has passed. In the

Bernoulli example the latter was chosen: a run is stopped

after 2 minutes of optimisation.

Summary of the parameter settings

So far several parameters have been introduced. These

parameters define a reasonable genetic programming

system. One of the properties of most evolutionary

algorithms is that they are very robust in the precise

parameter settings. Small, or sometimes even large,

changes in the parameters have only a very small effect in

the optimisation capabilities of the system. Table 6

describes the experiment.

Results

The genetic programming system was run 30 times with

different initial random seeds. Unfortunately, in this setup,

genetic programming was not able to find the proper

formula. The best formula produced over 30 runs was (in

simplified form):

This formula had a RMS error of 1.71 metres. There are a

few reasons as to why the genetic programming system

was not able to find the optimal formula. This has mainly

to do with the magnitude of the numerical values and the

dimensions the problem is stated in. The pressure variable

for instance is stated in a numeric magnitude of 104, while

the other variables and the desired output have a magni-

tude around 10. As the generation of constants adopted is

also biased towards smaller values, it is difficult for the GP

system to scale the pressure variables to workable values.

Table 6 | Description of experiment.

Objective
Find Bernoulli’s Law of Energy
Conservation

Terminal set {z, v, p, R}

Function set { + , *, − , /, power}

Population model Panmictic, generational, elitist

Selection method Truncation selection

Truncation percentage 15%

Population size 500

Initialization method Grow method on size

Initial size of formulae 15

Crossover rate 100%

Branch mutation rate 10%

Constant mutation rate 10%

Constant mutation magnitude 5%

Maximum size of formula 71

Stopping criterion 2 minutes of processing time on
a Pentium 233 MHz computer
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A second, related, problem is that the problem is

stated using particular units of measurement. The formula

produced by GP does not take these into account and thus

renders a dimensionally incorrect formula. On the surface

it seems that by scaling the inputs and outputs the problem

would be cast in dimensionless and commensurable terms,

thus removing the problems encountered in this exper-

iment. In fact, regression techniques rely on such a scaling.

Conclusion for the Bernoulli experiment

In one sense the experiment failed: this genetic program-

ming system was unable to find the Bernoulli equation in

any of the 30 runs. As it is generally more insightful to

consider failures than successes, this presents the oppor-

tunity to learn something. First, it was identified that the

problem lies mostly in the scaling and, more generally, in

GP’s inability to handle units of measurement. Secondly,

the parameters were set at some general values, not opti-

mised for the particular problem at hand. In (symbolic)

regression one usually does not approach a problem with

such an all-or-nothing attitude, but rather one looks at the

results from one or more runs, changes some settings (by

for instance adding or removing variables or enlarging or

restricting the function set) and performs some more runs.

With this strategy very good results can be obtained with

this technique. But keep in mind that when using a ran-

domised technique such as GP, your mileage may vary.

The following sections will introduce another

approach to GP that provides better results with problems

involving units of measurement. This approach transcends

the level of symbolic regression towards the arguably

more useful goal of model induction. With this approach

the Bernoulli equation problem was successfully solved

(consult Keijzer & Babovic (1999) for details).

GENETIC PROGRAMMING FOR
SCIENTIFIC DISCOVERY

Engineering data, in most cases, cannot attain their

maximum usefulness until they are connected by a reliable

and practicable empirical equation. GP lends itself quite

naturally to the process of induction of mathematical

models based on observations: GP is an efficient search

algorithm that need not assume the functional form of the

underlying relation. Given an appropriate set of basic

functions, GP can discover a (sometimes very surprising)

mathematical model that approximates the data well. At

the same time, GP-induced models come in a symbolic

form that can be interpreted by scientists (see, for

example, Babovic 1996).

However, the application of standard GP in a process

of scientific discovery does not always guarantee satisfac-

tory results. Extensions of standard GP as described pre-

viously in this text have been an object of several studies

(see, for example, Davidson et al. 1999). In certain cases,

GP-induced relations are too complicated and provide

little new insight on the process that generated the data.

One may argue that GP, in such situations, blindly fits

parse trees to the data (in almost the same way as in Taylor

or Fourier series expansion). It can be argued that GP then

results in a model with accurate syntax, but with meaning-

less semantics. In these cases, the dimensions of the

induced formulae often do not fit, pointing at the physical

uselessness of induced relations.

UNIT TYPING IN GP

The present work is based on an augmented version of

GP – dimensionally aware GP – which is arguably more

useful in the process of scientific discovery (Keijzer &

Babovic 1999).

Nature of measurements

Throughout science, the units of measurement of observed

phenomena are used to classify, combine and manipulate

experimental data. Measurement is the practice of apply-

ing arithmetic to the study of quantitative relations. Every

measurement is made on some scale. According to Stevens

(1959), to make a measurement is simply to make ‘an

assignment of numerals to things according to a rule–any
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rule’. There is a close connection between the concept of a

scale and the concept of an application of arithmetic.

Different kinds of scales represent different kinds of appli-

cation of arithmetic. Units of measurement are the names

of these scales. Simple unit names such as ‘kilogram’,

‘second’, ‘°C’ are used for fundamental and associative

scales. Complex unit names, such as ‘kg m s − 2’ are used

for derivative scales.

Nature of derivative measurement

Derivative measurement is a measurement by means of

constants in numerical laws. Let us more precisely define

this concept through consideration of a system A1, to be

any system that meets certain specifications, and suppose

that:

k1 = f(l1, t1, m1, . . .) (12)

is a numerical law which is found to be obeyed by all

systems of the class (A). At the same time l1, t1, m1, . . . , are

the results of any simultaneous measurements made on

the system A1 on any scales of the classes of similar scales

(L), (T), (M), . . . . Let us suppose further that k1 is a

system-dependent constant and that if the systems of the

class (A) are arranged in the order of this constant they are

also arranged in the order of some quantity d which is

known to be possessed by this system. The conditions for

saying that we have a scale of measurement of d are then

clearly satisfied. Hence, we may take k1 to be the measure

of the quantity d which is possessed by the system A1 on a

derivative scale that depends on the choices of scales from

within classes (L), (T), (M), . . . . Derivative measurement

of a quantity d is possible, therefore, if and only if there

exists some numerical law relating to the system that

possesses the quantity d in which there appears a system-

dependent constant such that if these systems are

arranged in the order of this system-dependent constant,

they are also arranged in the order of d. A derivative scale

for the measurement of d is then one that is defined by

taking the value of the system-dependent constant (or

some strictly monotonic increasing function of it) for some

particular choice of independent scales as the measure of

the quantity d.

The derivative scales D1 and D2 are similar if and only

if they are defined on the basis of the same physical law,

expressed with respect to the same classes of similar

scales. Thus for example, the ‘kg m s − 2’ and the ‘ft lb s − 2’

scales of force are similarly defined. From this follows a

straightforward theorem that similarly defined derivative

scales are similar to each other. This theorem (proved by

Ellis 1965, p. 133) is important because it implies that

classes of similarly defined derivative scales are simply

classes of similar scales and hence may serve as reference

classes for the expression of numerical laws in the

standard form of the equation as introduced in the sequel.

A second important theorem reads as follows, let:

k = f(l, t, m, . . .) (13)

be a numerical law expressed with respect to the classes of

similar scales (L), (T), (M), . . . , where k is the only system

or scale-dependent constant that appears. Let us also refer

to the law of the kind given in Equation (13) as a law

expressed in the standard form. Then the theorem states

that:

Any law expressed in the standard form must be of the

form

k = Cla tb mc . . . , (14)

where C, a, b, c, . . . , are constants which are neither

system dependent nor scale dependent (see Ellis 1965,

pp. 204–206).

The importance of this theorem is that it enables us to

explain complex unit names and dimensional formulae.

Thus Equation (14) defines a class of similar derivative

scales for the measurement of some quantity d. To

designate this class we could use a simple name, say ‘N’,

but it is obviously more informative to use the dimensional

formula (L)a (T)b (M)c, . . . . By doing so, we say something

about the form of the law (14) on which our derivative

scales are defined.

The theory of dimensional analysis cannot be devel-

oped here, but its power depends on the information we

pack into dimensional formulae. If we wish to increase

this power, we must include more information. This can be

done only if we adopt the basic convention of expressing
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our laws with respect to the classes of similar scales. Thus

instead of expressing laws, including angular displace-

ment, with respect to the radian scale and saying

(absurdly) that angular displacement is a dimensionless

quantity, we should always express laws with respect to

the class of scales similar to our radian scale and introduce

the dimension of angle into our dimensional formulae.†

As demonstrated by Ellis (1965, pp. 145–151), this would

increase the power of dimensional analysis.

Introduction of units of measurements in GP

To accommodate the additional information available

through units of measurement, the following extensions of

standard GP were proposed (Keijzer & Babovic 1999).

In the dimension-augmented setup, every node in the

tree maintains a description of the units of the measure-

ment it uses. These units (entirely in the spirit of the

standard form of Equation (14)) are stored as arrays of

real-valued exponents of the corresponding dimensions.

In the present set of experiments only the dimensions of

length, time and mass (LTM) are used, but the set up may

be trivially extended to include all other SI dimensions

(amount of substance, electric current, thermodynamic

temperature and luminous intensity). Square brackets

are used to designate units, for example [1, − 2, 0]

corresponds to a dimension of acceleration (L1T − 2M0).

Similarly, [0, 0, 0] defines a dimensionless quantity.

Definition of the terminal set

The definition of the terminal set is straightforward, in

that variables and constants are accompanied with the

exponents of their respective units of measurement. In the

running example of the Bernoulli equation, this would

read:

T = {z[1, 0, 0], v[1, − 1, 0], p[ − 1, − 2, 1],

g = 9.81[1, − 2, 0], g = 9810[ − 2, − 2, 1]}. (15)

For example, v[1, − 1, 0] designates a variable, v, with a

derived dimension of velocity. User-defined constants

can be defined along with their dimensions, such

as 9.81[1, − 2, 0] defining the Earth’s gravitational

acceleration.

Randomly generated constants are allowed only as

dimensionless quantities ([0, 0, 0]). There is a definitive

reason for allowing random numbers to be dimensionless

only. Should random constants with random dimensions

be allowed, GP would have an easy way of correcting the

dimensions by introducing transformation from one

arbitrary unit of measurement to another. Some form of

pressure should be applied to the application of unit

transformation.

Definition of the function set

Application of arithmetic functions on dimension-

augmented terminals violates the closure property for

these functions (Koza 1992). For example, adding metres

to seconds renders a dimensionally incorrect result of

the operation. Therefore, the definition of arithmetic

operators is augmented to:

(1) specify the transformation of units of measurement;

(2) accommodate units of measurement-related

constraints on the application of functions; and

(3) introduce a protection mechanism in order to satisfy

the closure property.

Table 7 summarises the effects of the application of func-

tions on units of measurement and specifies constraints on

the applications of functions. For example, exponentiation

of a value can only take place when the operand is

dimensionless, in which case the result of the operation is

also a dimensionless value. Similarly, addition and sub-

traction are constrained so that their operands must have

the same dimensions. Multiplication and division combine

the exponents by adding and subtracting the dimension

exponents respectively. The standard Power function

can be applied to dimensionless values only, whereas

PowScalar can be applied to dimensional operands, affect-

ing their dimensions correspondingly. Other functions can

be defined in similar ways.

†Using radians as a separate dimension is not the end of the controversy. For the sake of
argument let us introduce the quantity Q measured in radians. Let us also introduce two
additional quantities P and R, measured in kilograms. Let us now calculate W = Q + arcsine
(P/R). This would be syntactically perfectly correct, as the arcsine function would expect
a dimensionless quantity while returning a value in radians. However, the derivative
measurement of W is unacceptable.
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Closure and strong typing

The definition of the function and terminal set as it stands

violates the closure property (Koza 1992). The closure

property requires that each of the functions in the function

set be able to accept, as its arguments, any value and data

type that may be returned by any function, and any

value and data type that may possibly be assumed by

any terminal.

This problem was already encountered in symbolic

regression where the division function as such violates the

closure problem. One of the methods to enforce closure

was to protect such functions. In the unit augmented

version of genetic programming this path is taken.

The functions in this system are protected so that

whenever incompatible data types are encountered as

arguments to a function, the arguments are multiplied

with a constant of magnitude 1.0 whose unit of measure-

ment is such that it will transform the argument’s unit to

the desired unit. Because of the particular structure of the

dimension equations, it is possible to transform a unit of

measurement to any other unit of measurement with such

a multiplication.

For an example of this operation, consider the

addition function that receives one argument stated

in metres and another argument stated in seconds.

As such it is an undefined operation. It is however

possible to transform the first argument to seconds by

multiplying it with a constant of magnitude 1, stated in

seconds per metre, or, equivalently, multiply the second

argument with a constant of magnitude 1 stated in metres

per second. A third possibility is to render both arguments

dimensionless.

Although at first sight, it may appear that this method

eliminates all the problems related to dimensions, it is

evident that this method ‘fixes’ any dimensionality-related

problem by introducing physically meaningless transfor-

mations into evolving formulae. As such this method does

not contribute anything to standard GP.

To help the system find dimensionally correct formu-

lations, a second objective next to the common goodness-

of-fit criterion is employed. This objective takes full

advantage of the explicit representation of the dimensions

as a vector of real valued exponents. Define the distance of

an expression between a dimensionally correct formu-

lation and its dimensional ‘fix’ to be the sum of all these

arbitrary transformations as:

Goodness-of-dimension = ∑(zxiz+zyiz+zziz), (16)

where the subscript i ranges over all transformations

applied to the formula, and x, y and z are the components

of the corresponding dimension vector. This goodness-of-

dimension acts as an effective measurement of distance

from desired dimensions and is treated as an additional

measure of fitness. Goodness-of-dimension can be com-

bined with the goodness-of-fit statistic in a multi-objective

optimisation fashion.

It is however also possible, at the expense of a rather

large modification, to modify the present approach and

include dimensional constraints more strongly. One can

adopt strict admissibility and admit only those formu-

lations that are dimensionally correct. Montana (1995)

proposed a so-called strongly typed genetic programming

system (STGP) where the closure property is not enforced,

Table 7 | Effects and constraints that units of measurement impose on the function set.

Function Operand dimensionality Result

Exponentiation: [0, 0, 0] [0, 0, 0]

Logarithm: [0, 0, 0] [0, 0, 0]

Square root: [x, y, z] [x/2, y/2, z/2]

Addition: [x, y, z], [x, y, z] [x, y, z]

Subtraction: [x, y, z], [x, y, z] [x, y, z]

Multiplication: [x, y, z], [u, v, w] [x + u, y + v, z + w]

Division: [x, y, z], [u, v, w] [x − u, y − v, z − w]

Power: [0, 0, 0], [0, 0, 0] [0, 0, 0]

PowScalar (c): [x, y, z] [x*c, y*c, z*c]

If less than zero: [0, 0, 0], [x, y, z],
[x, y, z]

[x, y, z]
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but rather the system is constrained so that data types are

respected and only well-formed expressions are ever

created. This solves the problem of a naı̈ve implemen-

tation where expressions that violate the typing scheme

are destroyed. In such a naïve setting the number of

ill-formed expressions (the ones with goodness-of-

dimension larger than zero) is very likely to be large. It is

consequently very likely that the system will spend most of

its time creating, evaluating and dismissing solutions,

which is not far from a random walk.

Consequently the mechanism proposed here is not a

form of strongly typed GP as it does maintain the closure

property through a protection mechanism. A strongly

typed GP would initialise and keep all expressions dimen-

sionally correct throughout the evolutionary process. For

ill-posed and incomplete problems (for example the ones

in which one of the observations is not supplied), a

strongly typed GP would fail even at initialisation. The

adopted, weakly typed approach allows dimensionally

incorrect solutions that are repaired at run-time. At

the same time, evolutionary pressure on dimensional

incorrectness is added through a supplementary objective.

The present version of GP is therefore based on a prefer-

ence towards dimensional consistency rather than an

enforcement of this quality.

It is believed that this version of GP may be more

appropriate in the process of scientific discovery. Let us

accept it—science is packed with ‘magical numbers’ (for

example, the Kolmogorov–Obukhkov 2/3 exponent,

which is a constant source of controversy in turbulence

modelling). Dimensions of some of these coefficients are

everything but transparent. For example, the Chezy

number, at the very centre of this study has dimensions of

m1/2 s − 1 and is still referred to as a roughness coefficient!

The fact is that the Chezy number, C, allows for a range of

phenomena not explicitly taken into account in the well-

known formula defining average flow velocity in steady

conditions:

u = C'(Ri). (17)

Since functional similarity to the natural system is sup-

posed to be comprehended by the equation itself, it is this

calibration coefficient C that then must capture the exact

correspondence between the model and the real world.

Parameters of this sort serve in effect as error compen-

sation devices that artificially adjust the model results to

compensate for the fundamental discrepancies that exist

between the real world and its representation within the

model. Chezy’s C is much more than a coefficient that can

be associated with roughness forces only, and as such is

not well-defined in nature. Instead it exists only at the

interface between nature and model. It has to accommo-

date both: a part related to physical processes, but also a

part that has to do with our schematisation of nature

within a model. One may even ask ‘What is the physical

meaning of such a parameter—how well is it grounded, and

indeed is it grounded at all?’ We may be able to read a

certain ‘physical meaning’ into such calibration par-

ameters, but they do not exist as such and are thus ‘dis-

connected’ in a fundamental way from the world that they

are supposed to model (Minns & Babovic 1996).

At the same time, it is quite obvious that the

dimensions of such calibration coefficients are chosen in a

way that the overall dimension within a model will match.

As such, they may have little physical meaning.

Strongly typed GP would only reinforce such a

position and that may not be the most appropriate one for

the process of scientific discovery. If we are to design an

algorithm that can be truly useful in a process of scientific

discovery, we have to be able to utilise all the available

information (including units of measurements) and

possibly extend upon it.

Dimension-based brood selection

An alternative brood selection is applied in this system

(Keijzer & Babovic 1999). In this case the culling function

used in dimensionally aware GP is the goodness-of-

dimension of a formula. This evaluation is very inexpen-

sive as it can be calculated independently of the training

set and it requires a single pass through the parse tree.

The present implementation reads as follows:

two parents are chosen for crossover; they produce m

offspring by repeated application of the random sub-tree

crossover operation; constraint violations are corrected

for dimensions in the manner outlined above; and, finally,
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the best among the m offspring with respect to goodness-

of-dimension are added to the intermediate population.

ADDITIONAL RESISTANCE TO FLOW INDUCED BY
FLEXIBLE VEGETATION

Based on the bitter experiences of recent floods in Europe

and the USA, many pressure groups have promoted the

restoration of natural wetlands that would act as natural

‘sponges’ capable of absorbing excess water and thus

reducing flooding risks. Various governments around the

world (The Netherlands, USA, etc.) have embarked on

major wetland protection and restoration tasks. This

accelerating movement to restore wetlands, and especially

to return flood plains to more natural conditions, has lead

to the widespread introduction and propagation of reeds

and other forms of more or less flexible vegetation. These

reeds and other plants then influence flows across wet-

lands. The need to control flooding events and intensity

using numerical models and other tools necessitates a

better understanding of the influence of this type of

vegetation on flow.

The wetland restoration projects favour the growth of

reeds and other similar vegetation within a river basin.

The presence of vegetation influences the flow conditions,

and in particular the bed resistance, to a large degree.

However, the influence of the rigid and flexible vegetation

on flow conditions is not understood well enough. The

present work is concerned with the understanding and

formulation of the underlying physical processes. Some

laboratory experiments using physical scale modelling

have been performed (Larsen et al. 1990; Tsujimoto

et al. 1993), but only over a limited range and with

variable success. Similarly, although field experiments are

continuing, the data available remains scarce.

More recently, a numerical model has been developed

with the intention of deepening the understanding of the

underlying processes (Kutija & Hong 1996). This model is

a one-dimensional vertical model based on the equations

of conservation of momentum in the horizontal direction.

This numerical model is employed here as an experimental

apparatus in the sense that this, fully deterministic (even

if highly parameterised), model is used as a source of

data that are then further processed by two apparently

different methodologies in order to induce a more com-

pact model of the additional bed resistance caused by

vegetation.

Short description of the Kutija-Hong model

As indicated earlier, the Kutija-Hong model is based on a

differential equation of the conservation of momentum in

the horizontal direction:

where:

u denotes horizontal velocity

w denotes vertical velocity

P denotes pressure

r denotes density of water

g denotes gravity acceleration

i denotes bottom slope

t denotes shear stress

and the term Fx/r�x�z represents the additional specific

drag forces.

The model is developed to address the effects of

flexible vegetation in steady flow conditions only, so the

convective momentum terms and pressure term are

neglected. The numerical model is based on a finite differ-

ence implicit approximation for the unknown velocities at

the discretisation points.

The model takes into account the effects of shear

stresses on the bed and the additional forces induced by

flow through vegetation, and it possesses a facility to adapt

initial distributions of velocities over discretisation points

on the vegetation stems. In addition to representing these

influences, the model takes into account the bending of

the reeds under the loads produced by the drag forces.

Owing to bending, the effective reed height is reduced,

which implies a lesser drag, and this in turn implies a

reduction in the drag-induced deflections of the veg-

etation. These processes are resolved through an iterative

numerical process. For a more detailed description and a

discussion of the specifics of the model see Kutija & Hong

(1996).
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MODEL INDUCTION

Data

The Kutija-Hong model, used as a generator of data, was

in effect used as a truthful representation of a physical

reality, while providing the conveniences of fast calcu-

lation and an ability to produce results with any degree of

scale refinement. In this way, the numerical model not

only replaced physical scale modelling facilities within

this exploratory environment, but also introduced several

intrinsic advantages over scale models. It is well known

that so-called roughness scaling is one of the principal

difficulties in the development of physical models. Since

the roughness is the primary phenomenon in question

here, the issue of its physical correctness remained critical.

The ‘realism’ of the complete numerical model was

reasonably well proven against experimental data in the

case of stiff (non-flexible) vegetation (Kutija & Hong

1996).

The model has been run with a wide range of input

parameters in order to create training data. As the first

attempt towards the development of a model of additional

roughness, only the effects of non-flexible reeds with high

stiffness were simulated. Altogether, some 4,800 items of

training data were generated. The training data consisted,

in the first instance, of dimensional numbers formed from:

• water depth hw,

• reed height hr,

• reed diameter d,

• number of individual reed shoots per square metre

m,

• numerical parameter p related to the eddy-viscosity

approximation and its further relation to the

vegetated layer height.

The input data varied in the ranges:

2.5 ≤ hw ≤ 4.0

0.25 ≤ hr ≤ 2.25

50 ≤ m≤ 350

0.001 ≤ d ≤ 0.004

0.4 ≤ p ≤ 1.0

Results obtained using genetic programming

Previously reported work

The following two sections are adapted from Babovic

(1996) and Babovic & Keijzer (1999). In the first instance,

a standard genetic programming environment has been set

up. The results of Kutija-Hong simulations were presented

as Cnew: the Chezy number corresponding to the flow

conditions with developed vegetation.

Dimensional values

In the first attempt, all the data were used in their original,

dimensional form. Such an approach was adopted so as to

introduce the least possible level of ‘presuppositions’

in the model evolution. From the perspective of

accuracy (goodness-of-fit), the obtained results were quite

satisfactory (see Table 8).

The shear complexity of the formulation above

almost immediately eliminates it from a knowledge induc-

tion framework. In order to improve interpretability,

Babovic & Keijzer (1999) employed an early version of

dimensionally aware GP with the best performing formula

being:

There is some dispersion for the higher values of Cnew but

otherwise the equation exhibits good accuracy (see

Table 9). The scatter plot for Equation (19) is depicted in

Figure 4.

However, it has to be emphasised that Equation (19)

is not dimensionally correct. This shortcoming can be

Table 8 | The best performing expressions for the dimensional case (Babovic 1996).

(/ (exp (−d hr))
(−(rlog (/ (rlog (/ m hw))

(sqrt (sqrt (/ d d)))))
(* (/ hr
(sqrt (sqrt (/ d

(sqrt (sqrt (exp (−d hr))))))))
(* (* (rlog (/ (rlog (/ m hr))

(exp (−d hr))))
(* (−(−d hr) hr) −0.00410)) p))))
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corrected by introducing an auxiliary constant with

dimension of length and magnitude of 1.0 that should be

multiplied with dimensionless p to correct dimensions. At

the same time, both constants 55.93 and 11.39 should be

assigned dimensions of the Chezy number [m1/2 s − 1] to

make this formula dimensionally correct.

As indicated earlier, such behaviour is not surprising

when applying standard instances of GP. Satisfactory

goodness-of-fit may be obtained, but the semantics of the

generated expressions cannot be warranted.

Dimensionless values

One standard approach in avoiding potential conflicts

with incorrect dimensionality of induced formulations

is to use dimensionless values. This is a ‘standard

scientific practice’. Units of measurements are effectively

eliminated through the introduction of dimensionless

ratios. Once the dimensionless numbers are used

instead of the original dimensional values the problem of

dimensional correctness is conveniently avoided, as all

analysed quantities are dimension-free. It is also argued

that dimensionless ratios collapse the original search

space, making it more compact, thus resulting in a

more effective behaviour of algorithms that fit models

to the data. At the same time, the information contained

in the units of measurements is ignored entirely,

effectively violating the basic premise of dimensional

analysis.

In this, dimensionless case, the results of Kutija-Hong

simulations were presented as a dimensionless ratio h of

an original Chezy number, that corresponding to an

absence of vegetation, and a new Chezy number, that

corresponding to developed vegetation. This ratio h can

be conveniently incorporated in the Chezy formula for

velocity under steady flow conditions:

u = hC'(Ri) . (20)

For example, for h = 0, the resistance to flow becomes

infinitely large, thus stopping the water flow, which is,

physically a highly unlikely situation. The smallest values

of h experienced with the Kutija-Hong numerical model

were h 0.1. For h = 1, the influence of vegetation on the

roughness is zero.

Another set of model induction experiments has been

performed, but in this case a collection of dimensionless

numbers has been used. The dimensionless ratios intro-

duced were defined as follows:

hrel = hw/hr; (21)

wd = hw/d; (22)

rd = hr/d; (23)

hhwhrd = (hw − hr)/md. (24)

In addition to these, parameters p and m were used

without any changes. The best performing expression is:

The performance statistics are presented in Table 9.

Where:

r denotes correlation coefficient,

R2 denotes Pearson’s product moment correlation

squared,

RMS denotes Root Mean Squared Error,

NRMS denotes Normalised Root Mean Squared Error

where RMS is normalised by the standard deviation of the

desired outcome (Kutija-Hong model in this case).

The first interesting observation is slightly counter-

intuitive: the accuracy of induced formulation in a

dimensionless case is not as good as the accuracy of

dimensional formulation. Even if the accuracy of h
would be acceptable, it is the behaviour of Chezy’s C

(calculated as Cnew = hCorg) that is highly undesirable

in this case (see the upper two graphs in Figure 4).

Compression of the search space through the use of

Table 9 | Statistical summary for expressions (19) and (25).

r R2 RMS NRMS

(19) 0.96 0.92 2.880 27.89%

(25) 0.94 0.89 0.076 37.47%
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dimensionless values obviously incorporates several

hidden risks that need to be handled with considerable

care.

Results based on dimensionally aware genetic

programming

By way of comparison, a dimensionally aware genetic

programming environment was set up in such a way as

to comprehend all measured data and not the corre-

sponding dimensionless parameters based on the

measurements. The purpose for conducting such an

experiment was to test whether such a dimensionally

aware GP setup is capable of creating a dimensionally

correct and still accurate formulation. Since the pre-

processing of raw observations was not employed here, it

can be argued that GP was confronted with a problem of

trying to formulate a solution from first principles. The

evolutionary processes resulted in a number of expres-

sions, of which only the most interesting one is presented

here:

Figure 4 | Scatter plots for expressions (19), (25) and (26). The upper two graphs depict the behaviour of an induced relation in the dimensionless case (denoted as FDL). The graph in the

upper left corner is a scatter plot for dimensionless h, whereas the graph in the upper right corner is a plot for the corresponding Chezy coefficient. The graph in the lower

left corner depicts performance in the dimensional case (FDM). Finally the graph in the lower right corner depicts the results for the dimensionally aware GP (FDAGP).
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The degree of accuracy of the induced expression is quite

satisfactory. A statistical measure of conformity, such as

the Pearson’s R2, gives a value of 0.97. This provides a

considerable improvement over the values of 0.92 or 0.89

based on the relations described in Equations (19) and

(25) respectively. The total error over the data set is

reduced and all other statistical measures of accuracy

disclose improvements (see Table 9 and Table 10 for

details).

At the same time the formula is dimensionally consist-

ent, it uses some of the most relevant physical properties

in the relevant context. For example, the dimensionless

term (hw − hr) p/dm describes a ratio between the effec-

tively available cross-section (hw − hr) p and a part of the

cross-section that is blocked by the plants per unit width

of the channel.

The remaining group g/hYr represents a ratio of

gravity forces and flow resistance ‘force’ expressed

through the reed height.

In the present case, evolution produced a dimension-

ally consistent, meaning-rich formulation that is very ac-

curate. It did so without employing assumptions (other

than units of measurement); the process operated only on

raw observations. Still, Equation (26) is not dimensionally

correct; it does not produce the derived units for the Chezy

coefficient. This may originate in at least two causes:

1. Incomplete data: in the present data set neither time

nor elasticity components were provided (the

authors supplied g = 9.81 m/s2). The next iteration in

this direction must resolve this deficiency in one way

or another.

2. Another possibility may be that the problem is

simply ill-posed: the authors attempted to model

Chezy’s C despite their reservation about its

grounding (however, without any reservations about

its usefulness).

The authors maintain that this particular approach is very

useful for the purposes of model induction. This dimen-

sionally aware attitude is open-ended in that it does not

strictly adhere to the dimensional analysis framework.

Such an approach provides the possibility of achieving a

superior goodness-of-fit while sacrificing goodness-of-

dimension (while obtaining good performance in both

objectives). The authors will go even further to claim that

the dimensionally aware approach is much more useful

than a strict use of dimensional analysis to create and use

only dimensionless ratios.

At the same time, the authors remind the reader that

the object of the presented exercise is to find an empirical

equation based on data. The present work cannot be

characterised as a search for a universal law (though it

might help). The rationale of this approach is to utilise

whatever information is available, yet not to bias this

search too strongly. Being able to use units of measure-

ments (either through the dimensionally aware or

through strong adherence to dimensional analysis) pro-

vides an opportunity to truly mine the knowledge from

the data, to learn more from data and other associated

information.

One open question still remains: what to do with the

proposed formulae? Fortunately, the primary purpose of

this text (in the light of the previous discussion) is not to

propose a formulation for the additional resistance to flow

induced by vegetation, but to demonstrate an alterna-

tive discovery process. The physical interpretation of

Equations (19), (25) and (26) requires a wealth of knowl-

edge in flow retardance and hydraulic resistance. The

authors feel that such a discussion would fall outside the

immediate scope of the present paper.

Thus, the final proposal of the best formula is not even

attempted here. Such a choice should be made by the

experts in the field, by the people who can competently

Table 10 | Statistical summary for expressions (19), (25) and (26).

r R2 RMS NRMS

(19) 0.96 0.92 2.880 27.89%

(25) 0.94 0.89 0.076 37.47%

(26) 0.98 0.97 1.800 17.44%
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judge the quality of the data sets used, interpret the

induced model and in the end choose the one that makes

most sense. We would rather view such results as a poten-

tial opening of a new research direction in this field (and

for that matter any other domain), so that we can talk

about knowledge–discovery-driven domain research.

Domain experts can be exposed to a completely new set of

formulations, off the beaten track, yet within the domain

of physical validity. Unfortunately, no physical exper-

imental data were available for verification of the model.

Owing to this lack of experimental data, the authors invite

other researchers to check these models using their own

data. The experts should make the ultimate step in this

process.

Although no direct evidence has been offered in this

work, a few concluding remarks need to be forwarded in

the favour of the performance of dimensionally aware GP.

The convergence rate of such an augmented version of GP

is much better than the one in standard GP. The reasons

for such a behaviour are fairly obvious: units of measure-

ment are taken into account as an additional objective

so that this information also directs the search process.

One may say that GP effectively spends more of its time on

performing physically more sensible operations in an

altered search space. At the same time, standard GP

often grows parse trees of a considerable size in order

to meet goodness-of-fit criterion only. The interested

reader is referred to Keijzer & Babovic (1999) for a direct

comparison of the two approaches.

Fundamentally, augmentation of GP with dimensional

information adds a descriptive, semantic component to

the algorithm. This is in addition to the functional

semantics that define the manipulation on numbers. While

functional semantics ground the formulae in mathematics,

the dimensional semantics ground them in the physical

domain.

CONCLUSIONS

The described work is part of a research effort aiming at

providing new (and sometimes provocative) hypotheses

built from data alone. The ultimate objective is to build

models that can be interpreted by the domain experts.

Once a model is interpreted, it can be used with confi-

dence. It is only in this way that one can take full

advantage of knowledge discovery and advance our

understanding of physical processes.

Although the results presented here are based on

preliminary experiments, one main conclusion can be

drawn. Traditionally, dimensionless numbers are used as

the dominant vehicle in interpretation and modelling of

experimental values. Such a choice is natural as this

alternative conveniently avoids the issues related to

dimensional analysis and its correctness. It is also believed

that dimensional numbers collapse the search space and

that resulting formulations are more compact. This paper

demonstrated that it can be advantageous to use data

together with its dimensions. The knowledge–discovery

software system uses this information to guide a search for

an accurate and physically sound formulation. The result

is more accurate than the one achieved when a more

conventional approach is followed.
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