含菌介质中 MDOPD 对 SRB 菌 及生物膜腐蚀的抑制作用

黄金营^{1,2} 只金芳¹ 陈振宇³ 郑家燊³ 刘宏芳³

(1. 中国科学院理化技术研究所博士后流动站 北京 100080;

2. 中国石化中原油田博士后科研工作站 濮阳 457001; 3. 华中科技大学化学系 武汉 430074)

摘要:用动电位扫描极化曲线、原子力显微镜和电子探针等方法研究了 SRB 生物膜在培养基介质中对于含咪唑杂环的双季铵盐化合物 MDOPD 的敏感性.结果表明:含菌介质中,MDOPD 吸附在电极表面,形成完整致密的有机保护膜,对电极的腐蚀反应具有良好的抑制作用,SRB 的代谢及腐蚀产物也难以在电极表面直接吸附和沉积,从而降低了 SRB 生长代谢的次生过程(包括酸浸蚀等)对腐蚀的促进作用;同时也降低了介质中的 SRB 参与碳钢腐蚀的机会.

关键词:硫酸盐还原菌 双季铵盐 原子力显微镜 生物膜 中图分类号: Q939.98;TG172.7 文献标识码: A 文章编号:1005-4537(2007)03-0167-05

1 前言

硫酸盐还原菌的生命活动改变了基体材料的表面状况,形成生物膜,并在膜内形成 pH、SO²⁻₄、O₂、Cl⁻等浓度梯度^[1,2]. SRB 生物膜的存在常导致点 蚀、缝隙腐蚀、选择性溶解、应力腐蚀或垢下腐蚀等. 目前,硫酸盐还原菌生物膜引起的微生物腐蚀越来 越受到人们的关注^[3-5].

双季铵盐化合物是一种具有广阔应用前景的表面活性剂,属于阳离子型表面活性剂,虽然在整个表面活性剂中所占比例不高,但却具有其它类型活性剂所没有的特性而难以被取代.双季铵盐阳离子表面活性剂一般都具有抑菌的作用,目前已成为 SRB 杀菌剂开发的重要方向.另一突出的特性是容易吸附于一般固体表面,使固体表面改性.

原子力显微镜(AFM)由于具有原子/分子级的 分辨率,并且可以得到样品表面真实的三维图像,已 经被广泛应用于材料领域;同时由于它对样品无导 电性等要求,非常适合对生物样品表面的微观结构 进行研究.

MDOPD 是一种新型的双季铵盐化合物,它的合成及表征在前期工作中有详细的叙述^[6].本文利用动电位扫描极化曲线、原子力显微镜(AFM)和电子

作者简介:黄金营,1972年生,男,博士,主要从事金属材料的腐蚀与 防护研究,缓蚀剂、杀菌剂合成与评价 探针(EPMA)等方法研究了 Q235 钢表面的 SRB 生物膜对含咪唑杂环的双季铵化合物 MDOPD 的敏感性.

2 实验方法

2.1 SRB 菌种及培养基

以分离提纯获得的硫酸盐还原菌(SRB)作为菌种,经鉴定为普通脱硫孤菌.采用 API RP - 38 所推荐的培养基,其组成为:乳酸钠 4.0 mL,酵母浸汁液 1.0 g,维生素 C 0.1 g,MgSO₄ · 7H₂O 0.2 g,K₂HPO₄ 0.01 g,NaCl 10.0 g,蒸馏水 1.0 L.

将上述部分配料先分别配成高浓度溶液(即乳酸钠 4.0 mL/10 mL,维生素 C 0.1 g/10 mL,MgSO₄ ·7H₂O 0.2 g/10 mL,无水 K₂HPO₄ 0.01 g/10 mL, 酵母浸汁 1.0 g/10 mL),然后各取 10 mL 及 10 g NaCl,用蒸馏水稀释至 1.0 L.用 NaOH 调节 pH 至 7.0~7.2,在 1.2×10⁴ Pa 的高压蒸汽下,灭菌 20 min,快速冷却至 37℃左右.

取 0.2 g (NH₄)₂SO₄FeSO₄ · 6H₂O 于滤纸上, 在紫外灯下灭菌 15 min,然后溶于上述培养基中, 37℃恒温保存备用.

2.2 动电位扫描极化曲线的测定

动电位扫描极化曲线测试采用传统的三电极体 系. 工作电极为 Q235 碳钢电极, 辅助电极为 Pt 电极, 饱和甘汞(SCE)电极为参比电极.

取两组带塞的250 mL 三口烧瓶,每组烧瓶中的 介质分别为空白培养基、培养基+0.1 g/L MDOPD. 将已经过表面处理和紫外灯消毒的 Q235 钢电极分

定稿日期:2006-08-15

基金项目:湖北省自然科学基金资助项目(2000J013)

别插入烧瓶,并使培养基完全浸没电极,然后将烧瓶 各口密闭后放入培养箱.在40℃±1℃的条件下接 种经过活化的 SRB 菌种,分别培养不同时间(1 d、3 d、5 d 和 7 d)后取出烧瓶.含菌烧瓶中的介质已变 为黑色,表明 SRB 菌存活.用已灭菌注射器吸取 1 mL含菌培养液进行菌量的测定,然后接上已经紫外 灯消毒的参比电极和辅助电极.在40℃±1℃水浴 条件下,稳定 2 h 后进行动电位扫描极化曲线的测 试.电位扫描速度 0.5 mV/s,相对于开路电位-500 mV 扫描至 600 mV.

2.3 生物膜形貌观察

将经过表面处理和紫外灯消毒的 Q235 钢试片 (15 mm×15 mm×2 mm)分别浸入含菌培养基和加 有 0.1 g/L MDOPD 的含菌培养基介质中(初始菌量 为 3.5×10⁶ cells/mL),40℃±1℃下密闭培养 5d 后 取出试片,移入厌氧操作箱中,在 1.0 L 含 2% 戊二 醛的灭菌培养基中固化 8 h 后,取出样品.用不同浓 度的酒精脱水(50%、70%、80%、85%、90%、95% 酒 精脱水各 10 min,100% 酒精脱水 30 min),待试片干 燥后利用原子力显微镜(SPI3800)对碳钢表面生物 膜形貌进行微观分析测试.实验采用接触模式,探针 型号为 SN - AF01.用电子探针分析仪(JXA -8800R)分析生物膜元素的构成,束流 2×10⁻⁸ mA, 加速电压 20 kV.

3 结果与讨论

3.1 SRB 生长周期对 MDOPD 吸附性能的影响

不同生长阶段的 SRB,其生长代谢活性和所生 成生物膜的组成、结构等都存在差异.图 1 是 Q235 碳钢在空白及含有 0.1 g/L MDOPD 的含菌培养基 介质中的动电位扫描极化曲线.

在空白含菌培养基介质中浸没1d的Q235钢 电极的极化行为呈现二次钝化曲线的特征(图1a).

可见, ab 段对应的电位区间是金属 Fe 的活化溶解 区,b点是 Q235 钢的第一个"致钝点",bc 段对应的 电位区间是 Fe 的"过渡钝化区"和"一次钝化区". 在此区间内,钢的表面生成一层疏松的生物膜,该钝 化区较窄,说明生物膜在电极表面的覆盖不够完整 致密,易随着电位的正移而发生破裂;c点对应生物 膜的破裂电位,cd 段对应的电位区间是"过钝化 区" 电极表面的 SRB 牛物膜随着电位的正移而被 击穿或发生自身的溶解,其对碳钢电极的保护作用 减弱,从而使腐蚀电流进一步上升;d 点为第二个 "致钝点",可能是因溶液中组分参加电极反应所 致,d点以上的电位区间内,碳钢电极表面生物膜局 部点会随着电位继续正移而再次出现破裂,阳极电 流在 e 点后继续增大. 图 1a 还表明, 随着浸泡时间 延长,超过2d后,de段钝化区消失,这主要是由于 浸泡初始时期 SRB 的代谢产物 S^{2-} 参与电极反应, 生成了疏松的产物膜;在阳极电流作用下,使产物膜 更为致密,起到了钝化作用,随着浸泡时间的延长, 产物膜因大部分溶解而变得疏松,无法起到钝化作 用,故对应的钝化区消失.

在 SRB 菌的培养基介质中,随着 SRB 的生长繁 殖,碳钢表面生成生物膜,生物膜的存在阻碍了溶液 介质与电极的接触. SRB 菌的新陈代谢和腐蚀产物 促进了腐蚀反应的去极化过程,生物膜结构的变化 对电极反应过程也产生了一定的影响,进而导致了 碳钢基体表面的电化学性质的不均匀性^[7],促进了 碳钢腐蚀的形成和发展.由于发生了不同的成膜过 程,导致所形成膜层的致密性、均匀性和空隙率的变 化,受 SRB 附着和新陈代谢的影响,碳钢表面在不 同生长周期的 SRB 培养基介质中所形成生物膜的 组成和结构不同;对介质中溶解氧以及 Cl⁻和 Na⁺ 等也就具有不同的通透性,从而影响碳钢基体的腐 蚀过程.

Fig. 1 Potentiodynamic polarization curves of carbon steel in culture medium inoculated SRB with immersion time (T = 40°C ± 1°C) (a) blank, (b) 0.1 g/L MDOPD

Table 1 Variation of SRB number in culture medium with cultured time ($T = 40^{\circ} \pm 1^{\circ}$)

culture time/d	1	3	5	7
SRB number in culture media/cells \cdot mL ⁻¹	3.5×10^{5}	2.6×10^{7}	3.2×10^{6}	2. 3 $\times 10^{6}$
SRB number in culture media +0. 1 g \cdot L $^{-1}$ MDOPD / cells $\cdot~$ mL $^{-1}$	3.2×10^2	1.5×10^{2}	2. 5 × 10	1.2×10

Fig. 2 pH vs. immersion time of carbon steel immersed in culture medium inoculated SRB

随着浸泡时间的延长,碳钢在含菌培养基中的 阳极极化曲线的"二次钝化"特征逐渐减弱,趋向于 呈现为"一次钝化",自腐蚀电位逐渐正移且趋于稳 定,极化曲线向低电流方向移动,碳钢的腐蚀倾向减 缓.可以判断,生长繁殖初期的 SRB 菌具有较强的 生物活性,其生长繁殖和新陈代谢速度较快,产生的 代谢产物和腐蚀产物能够快速地在电极表面沉积并 形成生物膜.SRB 菌较强的生长繁殖能力使生物膜 的结构和表面状态的变化较快,随着 SRB 菌进入稳 定生长期,其生长繁殖趋于稳定,碳钢电极表面的 SRB 生物膜趋于完整致密,对碳钢电极具有一定程 度的保护作用.

与空白培养基介质相比, MDOPD 的加入使体 系的自腐蚀电位正移,腐蚀电流密度迅速减小,腐蚀 过程的阳极反应受到抑制. 阳极极化曲线明显出现 3 段特征不同的区域:(1)电位 – 电流曲线表观为钝 化区域,在该区域 MDOPD 比较好地吸附在电极表 面,使得腐蚀产物无法迅速地扩散,因而出现了类似 于阴极扩散导致的极限电流区,表明 MDOPD 的吸 附对腐蚀有很好的抑制效果;(2)腐蚀电流密度随 电位正移而迅速增大的"平台"区,代表着电极表面 的 MDOPD 发生了阳极脱附;(3)随着极化电位继续 正移,出现类似无 MDOPD 时的无缓蚀区. 为了跟踪 上述过程中菌量的变化,利用绝迹稀释法测定了不 同生长周期含菌培养基介质中的 SRB 菌量,结果见 表1.可知,在空白含菌培养基介质中,菌量变化较 为微弱,此时菌量的变化仅与其自身的新陈代谢有 关;而在加有双季铵盐化合物 MDOPD 的含菌介质 中,随着培养时间延长,菌量有明显的下降趋势,这 与 MDOPD 对液相中的浮游 SRB 的杀菌作用有关, 使得 SRB 菌难以在碳钢表面成膜.

由接种 SRB 菌液的 pH 值随碳钢试片浸泡时间 的变化曲线(图 2)可知,空白含菌培养基中,由于 SRB 的生长繁殖和新陈代谢使介质的 pH 值降低, 使培养基介质的腐蚀性增强,或者造成生物膜下金 属表面局部 pH 值降低进而造成生物膜下的酸浸 蚀^[8];而 MDOPD 的加入使 SRB 菌量降低,代谢活动 减弱,从而使介质的 pH 值的变化较为微弱,MDOPD 通过在碳钢表面的吸附成膜,也降低了介质的腐蚀 性和生物膜下酸浸蚀的可能性.

由上述实验结果可认为:

(1)含咪唑杂环的双季铵化合物 MDOPD 通过 对介质中的浮游 SRB 菌的有效杀灭,使液相中的菌 量极大地减少,也抑制了残余菌量的新陈代谢活动. 同时,碳钢表面附近的菌量也就难以得到补充,SRB 对金属表面状态的影响和电化学腐蚀过程的参与都 会受到有效的抑制;

(2) MDOPD 通过在电极表面的吸附而形成完整致密的有机保护膜,对电极的腐蚀反应具有良好的抑制作用;介质中 SRB 的代谢产物及腐蚀产物也 难以在电极表面直接吸附和沉积,从而降低了 SRB 生长代谢的次生过程(包括酸浸蚀等)对腐蚀的促 进作用.

3.2 碳钢表面生物膜的微观分析

对比加入 MDOPD 前后的原子力形貌图可以发现(图 3),在空白培养基中表面的高度起伏为 10 µm、粗糙度为 50 nm;而加入 MDOPD 后,表面的高度起伏为 1 µm,粗糙度为 11 nm,样品表面变得趋于平整.证实在空白培养基中,由于 SRB 的作用,样品表面形成了大块的生物膜,这些产物膜比较疏松,并且彼此孤立,形成了缝隙,这种不完整的产物膜与基体直接接触,促进了腐蚀的进行.加入 MDOPD 后,MDOPD 事先在基体表面吸附,从而阻止了 SRB 生物膜与基体的直接接触,有效地抑制了腐蚀的进行,同时由于MDOPD对产物膜有着细化、分散的作

Fig. 3 AFM micrographs of carbon steel coupon dipped in the culture medium (T = 40°C ± 1°C, dipped time: 5 d) (a) blank culture medium (b) culture medium containing SRB + 0.1 g/L MDOPD

Table 2 Percentage of elements in biofilm on carbon steel in culture medium inoculated SRB ($T = 40^{\circ} \text{C} \pm 1^{\circ} \text{C}$, dipped time: 5 d)

	EPMA test area	element mass percentage/%		
meatum		0	S	P
culture medium inoculated SRB	biofilm surface	32.15	2. 04	0
culture medium inoculated SRB + 0.1 g/L MDOPD	surface under biofilm	31.01	1.48	0
	biofilm surface	32. 50	0	4. 26
	surface under biofilm_	30. 98	0. 82	0. 37

用,使得沉积的产物膜比较完整、致密.

在含有 0.1 g/L MDOPD 的含菌培养基中,由于 MDOPD 在试片表面的优先吸附,使生物膜的沉积变 得疏松.为了对比生物膜元素成分的差异,测试分析 生物膜表面及清除生物膜后金属表面的元素成分 (表2).可知,空白含菌培养基中碳钢生物膜表面呈 现高的S含量,而P的含量为零,而MDOPD含菌培 养基介质中,则呈现高的 P 含量和较低的 S 含量. 这 种现象说明,SRB代谢产物极大地改变了碳钢表面 环境的化学组成:在空白含菌介质中,SRB 菌群在生 物膜表面大量地生长繁殖,其代谢产生的S与Fe结 合为硫化物;在加有 MDOPD 的含菌培养基中,由于 MDOPD 吸附和杀菌的双重作用而使 SRB 的代谢活 动受到有效的抑制,从而使在该环境中的碳钢沉积 膜中的 S、P 元素的含量发生变化. SRB 在碳钢表面 形成代谢产物的机会降低,生物膜的大量沉积得到 缓解,由生物膜内 SRB 直接或间接引起的局部腐蚀 就会因此而受到抑制.

4 结论

(1)含咪唑杂环的双季铵化合物 MDOPD 通过 对液相中 SRB 的杀菌作用,有效地抑制了 SRB 的新 陈代谢活动并降低了 SRB 参与碳钢腐蚀的机会. (2)由于 MDOPD 在碳钢表面的吸附而形成完整致密的缓蚀保护膜,对碳钢的腐蚀反应具有良好的抑制作用,介质中 SRB 的代谢产物及腐蚀产物也 难以在电极表面直接吸附和沉积,这就降低了 SRB 生长代谢的次生过程(包括酸浸蚀等)对腐蚀的促 进作用.

参考文献:

- [1] Beer D, Stoodley P, Roe F, Lewandowski Z. Effects of biofilm structures on oxygen distribution and mass transport [J]. Biotechnol. Bioeng., 1994, (3):1131
- [2] Wang W, Wang J, Xu H B. Influence of biofilms adsorption kinetics on the open - circuit - potential changes of passive metals in seawater
 [J]. J. Chin. Soc. Corros. Prot. ,2006,26 (2):65
 (王伟,王佳,徐海波.海洋环境中微生物膜吸附动力学过程对钝态金属开路电位变化特征的影响[J].中国腐蚀与防护学报, 2006,26(2):65)
- [3]Liu J, Xu L M, Zheng J S. A study on corrosion behavior under the biofilm of sulfate reducing bacteria on Cu Zn alloy[J]. J. Chin. Soc. Corros. Prot., 2001,21(6):345
 (刘靖,许立铭,郑家燊.硫酸盐还原菌生物膜下 Cu Zn 合金的 腐蚀研究[J].中国腐蚀与防护学报,2001,21(6):345)
- [4]Liu H F, Xu L M, Zheng J S. Influence of SRB biofilm on corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot. ,2000,20 (2):41 (刘宏芳,许立铭,郑家粲. SRB 生物膜与碳钢腐蚀的关系 [J]. 中国腐蚀与防护学报,2000,20(2):41)

[5] Satoshi Okabe, Takayuki Matsuda, Hisashi Satoh, et al. Sulfate reduction and sulfide oxidation in aerobic mixed population biofilms [J].
 Water Sci. Technol., 1998, 37 (4-5):131-138

[6] Huang J Y, Zheng J S, Wei H F. Study on the corrosion inhibiting performance of MBQA in simulated oilfield water [J]. Mater. Prot., 2004,37 (2):6

(黄金营,郑家燊,魏慧芳.高矿化度盐水介质中双季铵盐的缓蚀

性能研究 [J]. 材料保护, 2004,37 (2):6)

- [7] Tanji Y, Itoh T, Nakano T, et al. Chemical analysis of an artificial biofilm that enhances or inhibits carbon steel corrosion [J]. Corrosion, 2002, (3):232
- [8] Zbigniew L, Wayne D, Whoncheel L. Electrochemical interactions of biofilms with metal surfaces [J]. Water Sci. Technol., 1997, 36 (1):295

EFFECT OF MDOPD AGAINST CORROSION INDUCED BY SULFIDE – REDUCING BACTERIA AND ITS BIOFILM IN CULTURE MEDIUM INOCULATED SRB

HUANG Jinying^{1,2}, ZHI Jinfang¹, CHEN Zhenyu³, ZHENG Jiashen³, LIU Hongfang³

(1. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100101;

2. Zhongyuan Oilfield Postdoctoral Workstation of Chinese Petrochemical Stock Corporation, Puyang 457001;

3. Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074)

Abstract: Electrochemical polarization curves, atom force spectroscopy and electronic probe measurement analysis were used to study the sensitivity of biofilm on Q235 steel to MDOPD in the culture medium inoculated sulfide – reducing bacteria (SRB). The experiment results show that surface status of Q235 steel electrode and corrosion reaction facilitated by SRB were decreased greatly owing to the adsorptive film of MDOPD. It is difficult for metabolized product of SRB in medium and corrosion production to deposit directly on carbon steel surface, then the acceleration effect of SRB metabolism course including acid soak to corrosion was reduced markedly. At the same time, it is hardly possible for SRB in medium to metabolize on carbon steel surface and this would decrease the possibility for SRB to assist corrosion in the medium.

Key words: SRB, bisquats, dynamic polarization curves, biofilm