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Introduction

The scattering intensity from a statisti-
cally isotropic, monodisperse and dilute
collection of equally shaped and homo-
geneous particles is proportional to the
angular average of the square modulus of
the Fourier transform (FT) of the func-
tion pp(r) that defines the particle’s shape
(and size). In fact, pp(r) is defined as be-
ing equal to unity if the top of r lies in-
side the particle, and equal to zero else-
where. The full expression of the scat-
tering intensity is found in Guinier &
Fournet (1955) and Feigin & Svergun
(1987)] presents euation (1), where N and
(n,- n,)* denote the total number of the
particles present inside the sample and the
sample’s contrast respectively, q= (4m/
A)sin(6/2) is the modulus of the scatter-
ing vector g, and @ is a unit vector that
ranges over all possible directions. The
quantity inside the curly brackets is
known as the isotropic form factor of the
particle, and it will be denoted as Ip(q) in
the following. 1 (q) can also be written as
euation (2), where v, is the particle vol-
ume and yp(r) is the correlation function
(CF) of the particle, defined as depen-
dency (3).

This latter expression makes it evident
that v,(r) only depends on the geometri-
cal shape as well as on the size D of the
particle. In fact, the dependence on D is
understood in the definition of p,(r). Con-
sider now a collection of particles that
have the same shape but different sizes,
denoted by D, ..., D,,. Then, the func-
tion defining the geometry of the particle
size D, will be denoted by p,(r,D), which
corresponds to

p,(r,D))=p,(r/D,D, (4

Le. a scaling of r by 1/D; converts the
function defining the shape of the particle
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The correlation function of a regular tetrahedron, with edge lengths equal to L, is algebra-
ically evaluated within the distance range [0, /3L/2]. In the remaining range [v/3L/2, L]
it must be evaluated numerically, and turns out to be negligible. The scattering intensity is
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braically known as q* q° and q*°. The results indicate that polydisperse analyses in
terms of tetrahedral particles could easily be made.

Key words: tetrahedron, tetrahedral particles, polydisperse analysis, SAXS.

with unit size into the function defining
the shape of the particle with size D, Af-
ter substituting (4) for (3), one finds that
Y, (r, DJ.) = yp(r/Dj, 1) and, from Equation
(2), that I (q, Dj)=D"jIp(qu,1). Under the
same assumption used to get Equation (1),
namely that interference effects between
different particles are negligible, and the
scattering intensity of a polydisperse and
isotropic collection of particles with a
given shape is

1(@)=(n =n)" Y N, DL (@D,.D). ()

This result shows that it is possible to
determine the particle size distribution
(i.e. the set of pair values (Dj, Nj) for
j=1,...,M) by best fitting the observed
scattering intensity to Equation 5. To this
end, it is important that the isotropic form
factor of the particle with unit size be ac-
curately known over a wide and very den-
se grid of g-values. This condition is cer-
tainly fulfilled if 1(aD;, 1) is algebraical-
ly known. Unfortunately this happens
only in the case of the spherical shape
(Guinier & Fournet, 1955). This fact ex-
plains why so many analyses in terms of
polydisperse spherical particles can be
found in the scientific literature, even
though in some cases, approximating the
particles’ shape to a sphere is rather du-

Equation 1, 2, 3 and 6.

bious. These considerations show that
efforts aimed at evaluating the form fac-
tors for other particle shapes in a closed
algebraic form might be practically very
useful. According to Equation (2), this
goal can be achieved if one is able to
evaluate the corresponding CFs algebra-
ically. From these expressions, in fact, it
should not be very hard to obtain accu-
rate algebraic approximations which in
turn allow us to evaluate their FTs in a
closed algebraic form. At this point, it is
important to note that particle shapes can
be separated into two classes depending
on whether a considered shape involves
one or more than one size, respectively.
Clearly, the first class contains the sphere
and the five Platonic solids, i.e.: the tet-
rahedron, the cube, the octahedron, the
dodecahedron and icosahedron. The sec-
ond contains the other shapes, such as the
cylinder, the ellipsoid and so on. For this
reason, it is advisable first to perform a
polydisperse analysis in terms of the Pla-
tonic shape which is more appropriate for
the sample under analysis. Since the
dodecahedral and the icosahedral shapes
are already very similar to that of the
sphere, and the octahedral shape is some-
what similar to the cubic one, it is impor-
tant to have an accurate algebraic approxi-
mation of the CFs relevant to the cubic
and the tetrahedral shape. We recall that

l ~ iqr-®
1(q)=N(n1—n2)2{4njdoojeq pp(r)dvz} (1)
4TV, o
1,(q)= jo rsin(gryy , (r)dr )
1 ~ ~
i = [da[p,()p, 0+ r@)ay, (3)
C.(r) =~ [dis| dS,[ dS,@,-@)C ) (1 +rid - (©)
() = nSj @ [ dS,[ dS,(@, @), (r; + 1 ~1)
41
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some time ago Goodisman (1980) ob-
tained the CF of a cubic particle in a
closed form, while only very recently,
Ciccariello (2005) obtained a closed-form
expression of the intersect distribution of
the tetrahedral particle. In this paper, as
part of a more general work aimed at per-
forming a polydisperse analysis with par-
ticles of cubic or tetrahedral shape, we
shall restrict our attention to the last
shape. Hence, in the chapter ‘The SF of
regular tetrahedron’ we report the expres-
sion of the CF as well as its expansions
around the points where the CF’s deriva-
tives behave discontinuously. The values
of these discontinuities determine the as-
ymptotic expansion of the isotropic form

lated to y” (r), the second derivative of
the particle CF, as Cp(r):4V Y”(r)/S, where
V and S denote the volume and surface
area of the particle. For a convex particle
[i.e. a particle with a boundary such that
any segment shares all of its points with
the particle if its two ends lie on the
boundary], Cp(r) has a well-defined proba-
bilistic meaning (Ciccariello, 2003), and
the integral expression of Cp(r) is (Cicca-
riello et al., 1981) given by (6).

Here the first integral is performed over
all the possible directions of @ and the
remaining two integrals over the particle
surface. Moreover, the Dirac function §(?)
requires that the two infinitesimal surface

labelled by I,..,V. The corresponding
Y, (r) expressions will be denoted as
Y,”(®), ..., v, (r) omitting subscript T.
Within the three inner intervals, the func-
tional dependence on r of ¥ ”(r), with a=
1,2,3 is

v, ()=A4,+S,r+B,[r,

with a =1, II, 11,

(7a)

where the involved numerical coefficients
are different and dependent on the rel-
evant r-interval as specified below
4, =1242[ 1+ (z —arcos (113)) 22 |,
§,=-3(6+5Van )/ 22n

factor at large q-valuF:s, as vxfill bedetailed  ¢lements dS, and dS,, located at r, and ,, B, =0, (7a.1)
in the chapter ‘The isotropic form faQtOT be separated by the vector r @. Finally, o,
of aregular tetrahedron‘.. The last section  gpd o, are two unit vectors perpendicular A=A 12
draws our final conclusions. to dS, and dS, and pointing outwardly to " B ' /3 )
the particle. Specifying Equation 6 to a Sy =8, +N2, (7a.2)
The CF of regular tetrahedron regular tetrahedron with an edge length B, 53/2\/5,
equal to unity, the integral can be explic-
As already mentioned, Ciccariello (2005) itly evaluated. One finds that the algebraic ~ and
showed that C(r), the intersect function expression of C(r) depends on .value L.
of a regular tetrahedron, can be obtained ~ In fact, Fhe. allowed range of distances Ay =4, -12,
in a closed algebraic form. According to  [0,1] splits into the five intervals: S, =S, +932,
Porod (1967), the intersect function C (r) [0, 1/¥2], [1A2,4/2/3], B, =B, +2/73 (7a.3)
of a homogeneous particle is simply re- [V2/3./3/2], [3/2,\7/3] and [\7/3, 1] = 2 :
Equation 7b, 7c, 9a, 9b and 9c.
Y(r) = ﬁ{n (9v2-16V6)-r? [18\/5 (3 +5A, )]+ 72 [J§ — 47 —arccos (1/3)] /8 [—27 +1087 + 67\/§n] + (7.b)
V27(1-1%)A — D44 7-9A,9r% (A, ~1 -
+2 [32«5 arccos # —9arccos {W}+ 24+/3arccos # + 5432 | 4arccos {m} +
24, A, 4A, 24,
2 4 _ 2 n4 5,2
+ arccos w +1447* | arccos \/EAS +arccos % + 63214 243 elrcco{3 er }9x/§arcc()s[A3} +
A, VAA? 2- T 467 2r 2r
_ V3(A,+217 -3 7-9A, +9r (A, -1
-72arccos 1-A, — 16\/§arccos (372) —9\/§arccos st r} ( 3 )
24, 4r 4A,
o’ =17
" (r)= ! S 86 —90«/5r2A3 +727° | \J8 —arccos 1 —18V2r* (3—7: (12 —\/5)) +]16v/6 arccos| — — | (7.0
12nr 3 24,

4
1

—7+12¢7 —4#* 3A, -
+942 arcco{HA}ﬂr} 246 arcco{ 43A

V2[[ <2415 +13r" =36, + A, (2497 ~9r*) |

2

— arccos

AAJ1+6r7 - A, (1467 +A,)

1 31746 + A, (1-977 +6r*)
~1447* | arccos +
BAAN1+67 - A,

v, "(r)= 820 _gz,l(rz _r)+g2,z,R (rz _r)z +85sr (rz _”)3 +O((r2 _7)4)
Y "(r)=g2’0—g2’1(r—r2)+g2qm (V_r2)2+g2,3,1e (r—r2)3+0((r—r2)4)

820 = —3(19\/§—44+8(\/372—\/§+2arcsin3)/7t )/8, 2, =3 (24+ (2043 Zl)n)/&@t,
8221 581\/3/ 8, &o3.1 5405/8‘/5’ &ao.r =27+ 81\/3/8’ 823, =-45 (9+8\/§)/8\/§‘

42

A (9-36/7 +461°-18 #° _
+ 54* [x/garccos[ ’ ( )] —8\/§arccos{12AA 3 ﬂ

2r5A§

(9.2)
(9.b)

(9.c)
(9.d)
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Figure 1. The continuous and the dash-dotted
curves plot the CFs of a regular tetrahedron
with unit edge and of a sphere with unit diam-
eter respectively. The sharper decrease of the
first, compared to that of the second, should be

noted. The black triangles have the following

coordinates: I/ﬂ, V2/3, \/3—/2, and ﬁ/S’.
The dotted and the broken curves respectively
plot the tetrahedron CE, multiplied by 100 and
1000, within the intervals [1/v/2, 1] and [/3/

2, 1] (both scaled to the interval [0, 1]).

In the outer two r-intervals, one finds (Eq.
7.b) and respectively, (Eq. 7c) where

(7.d)

Expressions (7.a) - (7.c) can easily be ex-
panded around the end points of the rel-
evant r-intervals. Putting 7, = 1/ x/—2,..,r5 =1,
one can find in the left neighbourhood of
r, that

v, "r)=g,t&, (71 —r) (8.2)

and in the right neighbourhood that

V') =8,0—8,(r—r)+ g (r_rl)2+
+g1’34R(r—r1)3+O((r—rl)4) (8.5)

with &= AI+SI/\/E’ &= -Sp &iar™ 36
and g ;.= - 60+/2. These coefficients
show that y”’(r) and y®)(r) are continuous
at r=r , while the subsequent derivatives
y@(r) and y®(r) present finite discon-
tinuities respectively equal to 2g, , . and
6 g, Similarly, in the left and right
neighbourhoods of r,, one finds (Eq. 9a)
and respectively, (Eq. 9b) with (Eq. 9c¢).

Hence, the discontinuity of y*(r) at r=r,
is 2(gz,z,R_ gz,z.L) = 54 and that 'Y(S)(I') is
6(g2,3,R - g2,3,L) :'270\/ 3/2

Around 1,, the left and right expressions
read

Y "(1) =850 =&, (n—1)+ &3, (1’3 _V)z +
&5 ("3 _")3 +0 ((rz - r)4) (102)

and
FIBRES & TEXTILES in Eastern Europe

Vi ()= 80— 8ay =)+ gx (=7 ) +
G (=1) g5 (=) +0 (5 - V)S/z)(wb)
with

€0 = (—1296+ 20942 +372/6 —

54(36 1632 +8arc cos (1/3) ) v ) 72

g, =—(5v2-101/6v6 -9/N/2r ),
832 :16\/5(8*'\/5)/9 and

Qosop = 10243/2/3" 5.

Hence, at r=r?, y”, y®and y* are continu-
ous. But y®)(r) approaches a finite value
as r—r, from the left, and shows an alge-
braic singularity as r—r," from the right,
since

O ()~ 15g2,5/z,R/(8(r —”3)1/2) (10.¢)

as r—orn.

Around t,, the left and right expansions
of y”’(r) were evaluated up to the tenth
term, and they turn out to be equal. This
strongly indicates that y,(r) and v, (x),
despite their analytically different forms,
are the same function.

Finally, around r, one finds that

Yy "(r) =855, (5 -r) +O((r5 —r)4), (11)

with g, | =24\2/m. Since ¥'(r) = 0 if r>1,
one concludes that y"y® and y* are con-
tinuous at r=r, while y®(r) has a finite
discontinuity equal to 6y, at r,. These
results will be used in the following sec-
tion in order to obtain the leading terms
of the asymptotic expansion of L. (q).

¥'(r)

=

Now we will discuss how the CF of a
regular tetrahedron can be obtained from
equations 7a-7e. Recalling the normali-
sation condition y(0)=1 and Porod’s
(1951) relation y’(0) =-S/4V, the CF func-
tion is given by

v () =1=(S/4V Yr+ [ ax[ 'y ")y =
=1-(S/4V )r+ J.(; (r =y "»)dy.
Simple calculation yields

7o (1) =y, () =1 (S/4V )r+ 4,7 [2+5,1° /6

if0<r<r, (13.2)
V() =y, () =y, () +y () =1)+
+ Ay (r=1) 248,01  (r+V2) 6+
+ 2Bll(r_’7)2/" (13.b)

ifr <r<r,

Yr(r) :7111(:) =y, (1) +y, (1) =1) +

+4,, (r—rz) /2+S,,,(r—rz)2(r+2r2)/6+

+3B,, ("_’"2)2/4” a
ifr,<r<r,

Ve =y (1) =y () +y 5 (5)(r = 1) +

+ J (r=y)yw "(Vdy (134

ifr3 <r<r,
and
V() =y, (1) =y, (r)+y 5 () =)+
+ =y, )y

ifr, <r<r,

(13.¢)

Therefore, the CF is algebraically known
within the three inner ranges of distances
and it must be numerically evaluated by
(13d) and (13e) within the two outer
ranges. Figures 1, 2a, 2b, 3a and 3b re-

— B s e
ol

- :

it

" p

™ p

—10 -

L | J

o 0.5 1

Figure 2. (a) The continuous and the dash-dotted curves plot the second derivatives of the CFs
of a unit regular tetrahedron and a unit sphere. The behaviours of the two are radically differ-
ent. The first is different from zero at r = 0 because the tetrahedron is an angular body, while
the second is equal to zero because the sphere has no edges. Moreover, the first monotonously
decreases, while the second increases. The dotted and the broken curves respectively are the
plots of v, (v), multiplied by 10 and 100, within the intervals [ IN2,1] and [/3/2, 1] (scaled to
the interval [0, 1]). The above scaling factors are smaller than those of Figure 1 by one order
of magnitude. Plots of v,”(r), and y,”(r), The second is constant everywhere, while the first is
continuous everywhere and constant only within the first range of distances.
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spectively show the plots of y (1), v, (1),
¥, (1), v,4(r) and y,®)(r). The dotted and
the broken lines in Figure 1 are the plots
of the CF, multiplied by 100 and 1000,
within the r-intervals [1/72, 1] and [V3/2,
1], scaled to the interval [0,1]. This shows
that the CF of the tetrahedron is very small
within the interval [\3/2, 1] where its ana-
lytical expressions, given by equations 7b
and 7c, are more involved. Figure 2a also
shows that the intersect function of the
tetrahedron is radically different from that
of the sphere. Moreover, its shape is simi-
lar to that found by Smarsly et al. (2002)
for some activated carbons (see, in par-
ticular, their Figure 6). This similarity
indicates that the angularity [Porod
919670, Mering & Tchoubar (1968) and
Ciccariello (1997)] of the interfaces is a
crucial structural parameter for some
samples. It is also recalled that the sec-
ond derivative of the CF of a particle,
whatever its shape, obeys the following
sum-rules (Gille, 2000)

B0 -

79(e)

L L L L 1 L L L
0 0.5 1
r

j;yp "(r)dr =y (0)=5/4V,,  (14a)
[y, @dr =1, (14b)
LI ry, ") dr =3 v,/t. (14c)

For the tetrahedron, we found that the
values of the integrals on the left hand
sides of (14a)-(14c), evaluated using a
numerical grid with 10° points, coincide
with the right hand side (rhs) values up
to the fifth digit (included). This check
make us confident that no numerical mis-
take occurred in working out Equations
7a-7d.

The isotropic form factor
of a regular tetrahedron

‘We now introduce the dimensionless isotro-
pic form factor, defined as 7, @) =1,(q )/V;.
From Equation 2 and Equations 13a-e, it
follows that (Eq. 15).

=500 = =

70(r)

—1000 — —

L i L L | L L : L
a 0.5 1
T

Figure 3. (a) Plot of the fourth derivative of the tetrahedron CF. The finite discontinuities at
r=12 and \/2/3 are evident. (b) The subsequent derivative v, (r) shows finite discontinuities

at the previous two points and at r=1, and is negatively divergent as r — (\/_/2)*

Equation 15, 16, 17, 18 and 19.

With1,=0 and y, (1) =y,(1),..., s (1) =Y,(r).
Owing to the algebraic expressions of the
CF within the three inner intervals [see
equations (13a)-(13d)], it is evident that
the integrals corresponding to j=1,2,3 in
Equation 15) can be algebraically calcu-
lated. On the contrary, the remaining two
integrals (corresponding to j=4, 5) must
be evaluated numerically since ¥y,,(r) and
Y,(r) are only known numerically. How-
ever, the knowledge of 'y, (r) and y, (1) al-
lows us to work out a convenient approxi-
mation of y,(r) within the interval r,<r<r,
and by Fourier-transforming this approxi-
mation, we can obtain an algebraic ex-
pression of the FT of the full y,(r). On one
hand, it should not be difficult to work out
apolynomial approximation of 'y, (r) within
the interval [r,, r,], because YT(T) is here
rather small. On the other hand, in work-
ing out this approximation, it is important
that the values of the first discontinuities
of the derivatives be preserved, otherwise
the first leading terms of the asymptotic
expansion of I (q) will not be reproduced.
In this paper we shall confine ourselves to
deriving the expressions of these terms.
After putting I ) =r Y; (1), the jth integral
present in Equation 15) takes the form

Flq)= j sin(gr)T", (r)dr.

Five subsequent integrations by parts
yield the following: (Eq.16).

Since F“(r)—ry‘“)(r) + r\{(’“”(r) from the
above reported propemes of the y,™(r)s
[see equations (8)-(11)] one concludes
that I‘J.S(r)— is continuous within the
relevant integration domain [r, , r] if
j=1,2,3,5. In the remaining case j=4 we
know that (Eq. 17) as r — r.".

I,(q)= 47” [ rsinaryy, (rydr = %’g j rsin(gryy (r)dr (15)
Fj(q):f%(qr)l"j(r):’ +&§”)r;(r)m +%j’r)r;(r)j - %rf)mi —%fr)rf;”(r)i +$j; cos(qr)T'Y (r)dr.  (16)
(5)(r)*r7/45)(r)+n}/4)(r)~( g“/”,/z)r asr—r,' a7
8(r—1), 3
fq(q)zf&wqi(o) &Wq() (O)+‘; [rcostan[vs? (57 )7 (7 )]+ 7 costam) [0 —y1205)] | +olg™) = (18)
_ i/’;f +16;S' +4;T{72005\/(§q/ ﬁ)+54 23 cos(qu/fs)}o(qﬁ).
=L 16;? ‘;’f [72cos(q/\/—)+54 3cos(qJ_)] 768‘/—3 cos(gv3/2+7/4 Jr0(g7) (19)

44
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This power law singularity does not pre-
vent the existence of the integral

["cos @nry (3 dr,

but the determination of the asymptotic
behaviour of this integral deserves some
attention, as will become clear later. For
the moment, it is sufficient to anticipate
that this integral decreases asymptotically
as q"% For the cases j # 4, the integral

jl cos @) T (r)dr

defines a function of q that decreases as
q'at large gs, because it can still be inte-
grated by parts. Hence, on the rhs of (16),
the term involving the integral decreases
faster than the remaining ones. Conse-
quently, from (15), one concludes that the
sum of the last terms, divided by q, de-
termines the asymptotic expansion of I(q)
up to the terms O(1/q°). In evaluating the
sum, we should observe that each r, with
j#{0,5}, appears as an upper limit for Fj(q)
and as a lower limit for Fjﬂ(q). Hence,
the corresponding contributions relevant
to a derivative of order n cancel out, un-
less the derivative is discontinuous at r..
Therefore, we must consider only the
points where the derivatives are discon-
tinuous and the end points r, and r.. In
this way, we find that (Eq. 18).

For completeness we now derive the asymp-
totic behaviour of

[Teos (gn T (A r.

The integrand has a power-law singularity,
reported in Equation 17, at r =, and it is
analytic in the remaining points of the inte-
gration domain. Then, one uses Equations
4 and 5 reported on page 48 of Erdély (1956)
to obtain the following asymptotic relation:

[ cos(gr (r)dr ~
; R (1— (I/Z)Cem(1/272)/zefq:3q71/2 )

where R denotes the real part, I'(-) the Euler
gamma function and C=15r,g,,, /8. In
this way the asymptotic expansion of I(q)
up to the term O(q*"?}) is (Eq. 19).

Figure 4 shows the form factor (continu-
ous curve) of the tetrahedrons and, for
comparison, that of a sphere with diam-
eter equal to the tetrahedron edge. As ex-
pected on the basis of Guinier’s law, the
first decreases more slowly than the sec-
ond, and one would naively conclude that
no further differences occur. However, the
differences are hidden in the tail’s beha-

FIBRES & TEXTILES in Eastern Europe

viour. This is already evident from the
Porod plot of the tetrahedron intensity
shown in Figure 5. In contrast to the case
of the sphere, one observes mild oscilla-
tions that fade at large q’s. Moreover, the
curve mostly lies below the Porod pla-
teau. This is a consequence of the large
angularity of the tetrahedron (Ciccariello
etal., 1981). Once one has subtracted the
Porod and the (generalised) Kirste-Porod
[Kirste & Porod (1962), Ciccariello &
Sobry (1995)] term from I(q), i.e. the first
and second term reported on the rhs of
(19), the resulting quantity oscillates
around zero and decreases as q¢. This is

o) /v

Figure 4. The continuous and the dotted
curves are the plots of the isotropic form
factors (normalised to 1 at q=0) of a unit
regular tetrahedron and a unit sphere. The
sharper decrease of the second intensity
near the origin reflects the fact that the
Guinier gyration radius of the sphere is
larger than that of the tetrahedron. More-
over, the sphere intensity presents, at q =
12, a small peak which is absent in the tet-
rahedron intensity.

1600 —— ,

1000

g

{a)—P/q*~Ey/q*—..]
1
g =

_1o00 [ FI 4

9° [

~1500 — -
o

made evident in Figure 6a by the dotted
curve that is the Kirste-Porod plot of the
aforesaid quantity. After subtracting the
O(q®) oscillatory contributions from this,
the resulting quantity, multiplied by q°,
will decrease as q*°, as shown in Figure
6a by the continuous curve coinciding
with the dotted curve in Figure 6b. Once
we further subtract the term decreasing
as @, the remaining quantity will de-
crease as q” and the oscillations in the
corresponding Kirste-Porod plot will
fade as q increases. The continuous curve
of Figure 6b makes this behaviour evi-
dent.

50

o
L e LA B s B B S B B e
PSS R SR

—50
0

o
=3

Figure 5. The continuous curve is the Porod
plot of (q), and the horizontal dotted line shows
the Porod plateau [for clarity reasons, the two
curves have been vertically shifted by -50]. The
lower dotted curve is the Kirste-Porod contri-
bution, the broken curve is the Porod plot of the
intensity subtracted of the Porod O(q*) contri-
bution, and the long dash curve is the Porod
plot of the intensity subtracted of the Porod and
the (generalised) Kirste-Porod O(q) terms. This
curve clearly oscillates around the zero value.

1500 ————— :

—1000 B

—15040 C L L 1

Figure 6. The two figures show the Kirste-Porod (KP) plots ofir(q) the tetrahedron inten-
sity, subtracted from some contributions. In particular, on the lefi, the broken curve is the
KP plot of I(q) minus the Porod O(q-4) and the Kirste-Porod O(q-6) terms (i.e. the first
two terms on the rhs of (19), while the continuous curve is the KP plot obtained by sub-
tracting the two O(q-6) terms from the former quantity also. On the right, the dotted curve
is the continuous curve of the left figure, while the continuous one is the KP plot of the
residual term denoted by O(q-7) in Equation 19.
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Conclusions

The results reported in the previous two
sections show that a polydisperse analy-
sis of the intensity relevant to an isotro-
pic sample made up of homogeneous tet-
rahedral particles is feasible. In fact, the
results of §3 show that the leading asymp-
totic terms, up to the O(q®) contributions
included, accurately describe the scatter-
ing intensity in the tail region. The previ-
ous terms are only related to the tetrahe-
dron CF evaluated within the interval [0,

J3]. Here the CF is algebraically known,
and the same happens for its Fourier trans-
form. On the other hand, the broken curve
of Figure 1 shows that the CF is negli-
gible within the complementary interval

[v3, 1Jm and can be neglected without
affecting the asymptotic behaviour of
I.(q) if one neglects the terms decreasing
faster than q*3. One concludes that the

FT of y(r), restricted to [0,4/3], is quite
accurate and algebraically known. Hen-
ce, polydisperse analyses in terms of tet-
rahedral particles should be easily fea-
sible.
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