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Introduction

Particle sizing based on the data of mea-
surements of intercept lengths on a ran-
dom line through many homogeneous
particles embedded in a matrix (isotropic
two-phase sample) is a basic stereologi-
cal problem [1]. Important applications
of'this concept are in material science and
biology, beginning at a length scale of
several nanometers. The determination of
particle size distributions of selected par-
ticle shapes from experimental data has
already been discussed for a large class
of geometric shapes [2,3]. Two basic
principles of the measurement exist: on
the one hand, particle size distributions
of a sequence of well-defined particle
shapes can be obtained via pure image
analysis [4]. On the other hand, scatter-
ing experiments with electromagnetic
waves lead to scattering curves, which
also include information about the par-
ticle sizes [5,6,7].

Basic approaches for a large spectrum of
three-dimensional particle shapes (includ-
ing two-dimensional and one-dimensional
limiting cases) are known. Several par-
ticle shapes can be handled by use of the
so-called Titchmarsh transformation (see
[7] and Appendix), which allows the re-
searcher to determine the size distribution
density of a characteristic diameter of the
particle analytically, if the small-angle
scattering intensity of a single prototype
of particle is proportional to the square
of the Bessel function of the first kind of
index v. Unfortunately, analytic solutions
based on such special integral transfor-
mations are rare and exceptional cases [§].
The tetrahedron case is a very special one,
and therefore not included in [8].
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Abstract

An isotropic polydisperse arrangement of homogeneous tetrahedral particles, indepen-
dently arranged in space and possessing a random edge length a, has been considered.
Models for determining the size distribution density f(a) (via random intersections of the
particles and via their set covariance) have been explained. The starting point is the ap-
plication of the averaged isotropised set covariance of a single tetrahedron C(r). A robust
and reliable procedure for handling the resulting equations numerically is presented. As
C(r) is closely connected with the so-called small-angle scattering correlation function
Y(r), the results can also be applied for particle sizing via scattering methods of tetrahe-
dral micro-objects in biology or material science. Indeed, the application of scattering
methods does not require image material. However, the particle shape must be known a
priori.
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This paper considers an isotropic arrange-
ment of tetrahedrons, possessing a ran-
dom edge length a (Figure 1). Let the
smallest distance between any two tetra-
hedrons be greater than the longest edge
a_ =L of the greatest tetrahedron. This
assumption of a quasi-diluted particle ar-
rangement is useful for the interpretative
small-angle scattering (SAS) experi-
ments. Then, the whole scattering inten-
sity is simply the sum of the scattering
intensities of all particles. For SAS inves-

tigations of samples such as Figure 1, the
particle shape must be known. Then, no
image material is required to determine
the distribution density f{a).

After briefly explaining structure func-
tions and theory, the single tetrahedron
for a constant edge length a is the start-
ing point. Then, the averaging procedure
is explained for the realistic case of dif-
ferent edge lengths a, (Figure 1). Three
integral equations result, which connect

2 Random Tetrahedrons

Figure 1. Simulation of tetrahedrons, isotropically uniformly randomly distributed in space,
partly contained (N=23) inside the cubic test volume. There is a certain distribution in
size, a. The goal is to quantify f(a) based on stereological data. An assumption for the
applicability of SAS is: The smallest chord length between any two tetrahedrons is greater
than a,_(the so-called quasi-diluted particle arrangement).
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the averaged functions with the density
fla) and the specific tetrahedron struc-
ture functions. Numerical methods allow
fla) to be determined in terms of experi-
mental data sets. Therefore, approxima-
tions of the specific structure functions
are elaborated. A simulation of a noised
data set (where f{a) is the Rayleigh-dis-
tribution density) has been included.

Connection between f{a)
and stereological data

The basic structure function in this field
is the isotropised covariance C(r) [9]. The
function C(7,a) of a single tetrahedron is
connected with the SAS correlation func-
tion (CF) y(7,@) of a single tetrahedron [5]
via C(r,a) =V - y(r,a) [9]. Here, V is the
tetrahedron volume. For a convex par-
ticle, the second derivative y”’(r) is con-
nected with the chord length distribution
density (CLD) for isotropic uniform ran-
dom (IUR) chords via 4, (r) = 7-y”(r).
The mean IUR chord length is /= 4V/S,
where S is the surface area of the figure.
As to so-called v-chords, there is the con-
nection 4 (v) = r -y’ (), see [5, 10].

Lety(ra), 4, (ra) and 4, (1.a) be the cor-
responding characteristic functions of the
single tetrahedron. Then, the existence of
any size distribution f{a) of the random
edge length a leads to the mean functions
v, (M, 4, @), Aum (r) (Equations 1-3).

Asy, and 4 disappear if a < r, lower
integration limits ¢ = r result. In equa-
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tions (1-3), fla) is one and the same func-
tion. It can be traced back to the mean
(experimental) functions y,_ (r), 4, (r)or
A, (r). These are normalised by v, (0) =
1 and Equations 4-5.

Approximations of the terms y(ra), 4,
(,a) and 4 (r,a) involved in equations (1-
3) will be introduced in Section 2.1. This
will be the deciding prerequisite for ap-
plying equations (1-3).

The functions Y(r,4), A, (r,a) and

A (ra)

The CF y(r,a) is the basic function for de-
termining of the tetrahedron. For

0<r<al 2, y(r,a) has been determined
analytically [11,12]. There are many other

intervals, one more complicated than the
other. In order to represent y in several

other intervals belonging to a / V2<r< a,
a series of trials leads to an approximation
strategy based on three intervals i1, i2, i3,

il:0<r<al\2
2:alN2<r<a

3 g<r<w

In i3, y(r,a). The result for il and i2 is
(Equation 6).

Equation (6) is based on the power series
of y(r,a) at r = a. For details see [12] and
Appendix. Consequently, the CLD for p-
chords

A (r,a)=4V/S-y,,"(r,a),

I=a-6/9,
A, (ray~a-6/9-y, "(r.a),

can be traced back to yapp”(r). This func-
tion (Equation 7) results from equation (6).

Finally, the CLD for v-chords, to be in-
serted into equation (2), is

A(ra)=r- yapp”(r,a).
These characteristics are summarised in
Figure 2.

Numerical methods for solving
the inverse problem

For determining f{a) from equation (1),
equation (2) or equation (3), standard
methods exist (numerical and analytical
[13,14]) in the theory of integral equa-
tions. A basic approach for solving equa-
tion (1) with respect to fla) numerically
is (Equation 8).

Equation (8) represents f{a) at certain se-
lected sampling points @, a, <a, <a,...

a=10

Figure 2. Specific functions y(ra) =y

app

(ra), A (ra), A (1.a) of a single regular tetrahedron in

the case a = 10. The tangent of v in (0,1) hits the axis of abscissa at r=a-6/9. This length
is the first moment [ ofA#(r,a). The particle diameter r = a = 10 cannot be detected in an
easy way, though all these functions disappear for a <r.
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Equation 8, 9.
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by use of Dirac d-functions involving
coefficients. Thus, equation (1) (and equa-
tions (2,3) also) can be traced back to a
linear problem. Retyping equation (1), it
follows (Equation 9).

As a consequence, the coefficients N,
and the set of known functions y(7a),
see equation (6), define the mean corre-
lation function y, () at certain abscissas
7, 0<r, < L. The non-negative real num-
bers N, result from solving the approxi-
mation problem; see equation (9).

Application in a simulated case

Several simulations with assumed func-
tions f{a) have been performed in order
to demonstrate that practical application
is feasible; see the following four steps.

1. Assuming f{a): The Rayleigh-distribu-
tion density [15,16], (Equation 10) with
o = 5, has been inserted for one of the
tests; see the filled plot in Figure 3A.

2. Simulation of y (7): Operating with
equation (1), y, () (normalisationy, (0) =

1) follows; see Figure 3A, thin line. A
table {r, v, (r)}, 100 points in a typical
case, results from equation (10). Insertion
of the exact table leads back to f{a).

3. Simulation of experimental conditions:
A random number generator, set for 5%
of noise, generates the random y -values
(see the points in Figure 3A). The r={0,
0.25, 0.50, ..., 25} have been considered
as monotonously increasing exact lengths.

4. Determination of the N: By solving the
approximation-problem equations (8,9)
under the restriction of non-negative co-
efficients, certain coefficients N, result.
After correcting the normalisation of the
coefficients, a pointwise function g(a,) re-
sults. The inserted f{a) re-results. Both
densities are compared in Fig. 3B.

The smaller the noise term, the better g(a,)
fits f{a). From a series of experiments with
different f{a) and varying noise terms, the
limitations of the method (Section 2.2)
have been detected: If the noise term is
smaller than 5% and the number of data
points {r,y,(r)} is at least four times the
number of sampling points a,, then fla) =
g(a,) results.

r
0.12 ted
0.1 ,f/ \,R B

g 0.08 J] “\ Figure 3. Example of a

~ 0.06 al] simulation, based on
i f \ equations (1,6,8-10)

= 0.04 ¥ A: The density f(a) has

J£ "\ been selected for the

0.02 o simulation of y, (1) (101

0 j | e I data points, 5% noise)
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B: The unknown func-
tion g(a), approximated
by 25 points {a, N &(a
—a,)}, finally re-results.
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Summary and conclusions

Aspects of determining the size distribu-
tion of tetrahedral particles — from linear
intercept measurement or from scattering
experiments via the SAS correlation func-
tion — have been developed. The approxi-
mation strategy for y and 4,  is based on
combining a series expansion of y(r) at
r = a with the exact CF y(r) in the first »-
interval. Therefore, an elaborate r-inter-
val splitting, inherent in any exact ana-
lytic representation of yand 4, , has been
avoided.

Based on equations (6,7) the particle size
distribution density f{a) of tetrahedral par-
ticles has been considered. It can be ob-
tained from data {r,v(r)}, or {r, 4 (r)}
or {r, A (r)} by numeric inversion of
equations (1-3).

An exact analytic solution of the inverse
problem, f{a) from () or f{a) fromy”’(¥),
has not yet been given for two reasons:
On the one hand, Y(r) and 4 are approxi-
mations in the interval a/ \/45 <r<a.On
the other hand, a basic numerical method
has been performed for the investigation
of equations (1-3).

However, these two facts pose no restric-
tions for practical application. The fact
that approximating formulas have been
used in order to find the numerical solu-
tion of equations (1-3) does not present
any restriction or limitation for practical
applications. The data sets available in
most cases are very rough, compared with
the precision of the approximations which
have been developed and applied.

Furthermore, the following may be sup-
posed: Someday it will be possible to es-
tablish a general connection for all con-
vex polyhedra, whose faces and vertices
are of the same type, for all the Platonic
solids.

Appendix

Series expansion of Y(r) at r =a

The averaging procedure for determining
the set covariance demands the consider-
ation of two random direction angles, 6
and ¢. These angles of orientation are de-
fined within the intervals 0 <¢ <2/3 .,
0<6 <m/2.

For determining and handling the series’
expansion, a big expenditure is deman-
ded. Even for the averaging procedure
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(r = const, r = a — €), meticulous interval
splitting is indispensable for handling the
diversity of the cases of overlapping in-
tegrals [12,16]. Operating with the four
basic overlapping volumes V,(r.a,9,0),
V 1:a,0,0),V(ra,0)and V (1,a,¢,0), eight
parametric integrals R (na), R (ra), ...,
R.(r,a) have to be analysed. Then, V' -
Y(ra) = C(ra) =R, + R, + ... + R, with
the set of equations (11) where nearly all
the integration limits depend on each
other and depend on . For questions con-
cerning the simplification of intermedi-
ate results, basic overlapping volumes V,
V.» V. V, the integration limits, the strat-
egy of integration and the overlapping
cases possible, please contact the author.
Equation (11) is the starting point for per-
forming the series expansion at » = g in
question. The first two terms of the se-
ries expansion, resulting from equation
(11), are equation (12).

Based on the form of equation (12), an
approach involving three coefficients c.,
¢, ¢ (Equation 13) has been optimised
for practical application within the inter-

Equation 11, 12, 13, 15 and 16.

vala/N2<r<a. A continuous, smooth
approximation of the correlation function
results, if the coefficients ¢, in question
fulfil three conditions at a selected tran-
sition point 7 =¢ = al2.

The solution of the resulting linear sys-
tem, see equation (13,14), yields equation
(6) and further equation (7), see Section
Connection between f{a) and stereologi-
cal data. Based on these coefficients, the
maximum deviation between y and Vapp is
smaller than 10-°. For a = 10, the differ-
ence [y”—y,,”’| is smaller than 5 - 104,

About the Titchmarsh transform

In some special cases (unfortunately the
tetrahedron is not included here), the
small-angle scattering intensity of a single
particle is proportional to the square of
the Bessel function of the first kind of
index v (for example in the case of a uni-
form sphere, or an infinitely long cylin-
der). In this case, an integral transforma-
tion is known, which allows an analytic
determination of the particle for several
particle shapes [2,7,13].
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The Titchmarsh transformation explicitly
affiliates two functions f{a) and y(%) via
the reciprocative connection (Equation
15) operating with the Bessel functions
of the first and second kind, J (z) and Y (2).
Here, y’(h) is the first derivative. An ex-
ample for equation (15) is, [13,14]: If v=
3/2, fla) =4a’e > and 0< h, then the equa-
tion 16 are obtained.
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