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ABSTRACT

For oceanic internal waves with vertical scales larger than 1 m the evolution of the spectrum is adequately
described by weak-interaction theory. Based on simple physical arguments, a model for internal-wave
energy dissipation predicts dissipation as weak over the same scales, for reasonable values of t!le total dis-
sipation. Assuming dissipation at small scales, such as in our proposed model, and generation at large
scales, a consistent dynamic balance with a constant downscale energy flux under nonlocal nonlinear
interactions reproduces the observed spectral dependencies. A small-scale break point at which the total
shear reaches a given value, and beyond which dissipation is important, is determined by the level and

bandwidth of the energy-containing waves.

1. Introduction

When Garrett and Munk (19723, 1975), henceforth
GM, were able to distill diverse observations into
a consistent and highly reliable model of the internal
wave spectrum, the search for the mechanism(s)
controlling the spectral levels and dependencies
began. The first efforts centered on numerical evalu-
ations of weak nonlinear resonant interactions
(Olbers, 1976; McComas and Bretherton, 1977,
hereafter MB). Olbers showed that energy could
be transferred from large vertical scales to fill out
the rest of the spectrum, and he determined the basic
time scales for that process. MB looked at the
dynamics of the smaller scale waves and discovered
three mechanisms dominating the transfers. The
first, termed elastic scattering, brought the upgoing
and downgoing waves to equal intensities at the
higher frequencies, having no effect at near inertial
waves. This “‘vertical symmetry”’ is an established
feature of the deep-ocean spectrum (e.g., Leaman
and Sanford, 1975; Miiller et al., 1978). The second
mechanism, called parametric subharmonic instabil-
ity, transferred energy to smaller scale waves with
half the frequency of the unstable wave. This proc-
ess was most effective at low frequencies, trans-
ferring energy into the small-scale inertial band. The
third mechanism, induced diffusion, acted as wave-
action diffusion in wavenumber space. Most of the
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supra-inertial spectrum was dominated by this
mechanism, and the GM models were close to equi-
librium for this interaction.

To demonstrate the nature and dominance of the
elastic-scattering and induced-diffusion mechanisms,
McComas (1977) calculated transfers in various
perturbed spectra. Although a coding error led to an
overestimate of the efficiency of the elastic-scatter-
ing process (recalculated by McComas and Miiller,
1981, hereafter MM), both mechanisms gave short
relaxation times at the smallest scales. In particular,
for a 10% spike, the induced-diffusion mechanism
produced time scales that were shorter than a period
over most of the spectrum, violating the basic as-
sumption of weak interaction.

Such difficulties, discussed by Holloway (1980),
have initiated attempts to describe strong off-
resonant interactions. However, these -efforts,
which are much more involved than the already
complicated weak theory, have yet to yield results.
Further, MM have argued that as long as dissipa-
tion is weak, the weak theory adequately describes
the transfers in the resulting smooth spectra down
to scales of about 1 m.

Hopes to verify observationally the dominating
mechanisms using bispectral techniques were dashed
when McComas and Briscoe (1980) computed some
theoretical bispectra and found the technique statis-
tically inconclusive for any reasonable experiment.

The study of weak nonlinear interactions has been
accompanied by various attempts to combine the
nonlinear results with ideas about generation and
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dissipation into a complete dynamic balance of
the internal-wave field (e.g., Miiller and Olbers,
1975; Bell, 1975). The present view of the dynamic
balance is either that presented by McComas (1977)
or Orlanski and Cerasoli (1980). The latter scenario
is based on a plausible dissipation mechanism (us-
ing a local overturning criterion) and a numerical
evaluation of the equations of motion. This yields
one-dimensional spectra with liberally interpreted
dependencies near those of observed spectra. It is
claimed that the spectrum has reached a saturation
level such that no more energy can be added to the
small-scale waves without immediate loss to over-
turning. Our major objection to this scenario is not
over the dissipation mechanism or the result of the
numerical experiment, but rather the complete lack
of explanation of how the dissipation mechanism
acts on the spectrum and how the waves transfer
energy among themselves.?

The McComas scenario, although identifying the
transfer mechanisms, was primarily based on
prejudice for a high-wavenumber sink and was in-
ferred from the characteristics of the dominating
nonlinear mechanisms. Although intuitively appeal-
ing, the proposed balance was qualitative and not
rigorously supported. This paper will provide both
analytic and numerical support for his scenario of
generation at low wavenumbers, uniform nonlinear
transfer to high wavenumbers, and dissipation there.

After discussing the basic characteristics of the
observed internal-wave field in Section 2, some very
minimal physical assumptions lead to a spectral
model of dissipation in Section 3. From this base and
the assumption of constant downscale energy flux,
the wavenumber dependency of the low-frequency,
near-inertial spectrum is determined in Section 4.
Knowing the wavenumber dependency of inertial
waves allows determination of the vertical-wave-
number and frequency dependence of the high-
frequency spectrum in Section 5. Sections 4 and §
comprise the dynamic balance of the deep-ocean
internal-wave field. 4

In order to concentrate on the important physics
and assumptions of this dynamic balance, it is pre-
sumed throughout the paper that the reader is famil-
iar with the dominating nonlinear transfer mecha-
nisms and their associated time scales. The validity
of the weak-interaction theory will also be assumed.
These topics are discussed by MB, McComas (1977)
and MM.

The development of the balance is completely
based on analytic approximations of the dominating
mechanisms. To provide additional support, some

3 Unlike surface waves, there is no observational evidence of
saturation. Although the total energy is relatively constant,
Orlanski and Cerasoli's “saturation’ occurs at waves containing
little of the energy, while the energetic waves are not saturated.
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major results are compared to a time-stepping nu-
merical model of a weakly interacting internal-wave
spectrum in Section 6. This model includes all of
the possible interacting triads, not just the dominat-
ing ones. Details on the model are relegated to the
Appendix. Some problems with the balance and
summaries of the entire scenario are discussed in
Section 7.

2. Basic characteristics of the oceanic internal wave
spectrum

The dynamic balance which will be detailed in
the following sections consists of a nonlinear energy
transfer from a source at the energetic large scales
to a dissipation range at small scales. This scenario
requires certain characteristics of the internal wave
spectrum which, however, fall well within the range
of all observational evidence. Hence, the foundation
for this balance is solid.

The general form of the one-dimensional frequency
and vertical-wavenumber energy-content spectra
E(w) and E(B) is shown in Fig. 1. Note that these
spectra and all other spectra in this paper are dis-
played on log-log axes in the form of content spectra,
such that if E(B) is the usual verticgl-wavenumber
energy-density spectrum, E(8) = BE(f) is the verti-
cal-wavenumber energy-content spectrum. This
content spectrum is sometimes referred to as area-
preserving since E(B)d(InB) is the energy in the
logarithmic interval d(InB). But, because these
spectra are presented on log-log axes, the area under
the curve is not representative of the energy dis-
tribution as in a linear-log representation. The
representations in Fig. 1 are somewhat simplified,
even from the GM models, but they encompass the
salient features. The level of the spectrum is E,
which for the pictured spectra is essentially the total
energy in the spectrum. For the frequency spectrum,
the energy is mostly at f, the inertial frequency,*
and for the wavenumber spectrum mostly at scale
B+- The frequency spectrum falls off with slope p to
the buoyancy frequency N. The wavenumber spec-
trum falls off with slope ¢. Fig. 2 shows the shear
content spectrum S(B8) = BZE(B), which increases
with slope 2-t to a high wavenumber cutoff 8, such
that the total shear is constrained to be S. Values
for the various parameters are given in Table 1 for
the main thermocline at 30°N.

The spectra have been presented with these re-
quired characteristics:

1) Most of the energy is in the largest vertical
scales. This, of course, is an observation. Indica-
tions are that sources generate internal wave energy
at large vertical scales (e.g., Miiller, 1977; Bell,

* For simplicity the inertial peak has been eliminated. Its pres-
ence only strengthens the assumptions of the balance.
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F1G. 1. Log-log representation of the one-dimensional energy-
content spectra as a function of (a) frequency and (b) vertical
wavenumber.
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1978; Kise, 1979). Having the source at large scales,
dissipation at small scales, yet most of the energy at
small scales, seems unlikely. At any rate, we shall
require the energy to be at large scales, i.e.,t > 0.0.

2) Most of the shear is in the smallest vertical
scales. The rate of energy-dissipation for the mecha-
nism proposed in this paper is proportional to the
shear and dissipation is assumed to be predominantly
at small scales. Hence the shear must be concen-
trated at small scales, i.e., t < 2.0.

3) Most of the energy is in the lowest frequencies.
For the induced-diffusion mechanism to dominate
the nonlinear transfers of the higher frequency
waves, the wave action E/w must be concentrated
at low frequencies. Specifically, S(8, w)/Bw must
decrease along lines of B/w = constant. This re-
quiresp +t > 0.

S 1 -
| s(ﬁ)=<s-(§‘1)2 ‘

n S(B)

Sy 7

;: Blc nB

Fi1G. 2. Log-log representation of shear-content spectrum
as a function of vertical wavenumber.

JOURNAL OF PHYSICAL OCEANOGRAPHY

'

VOLUME 11

Thus, a consistent basis for the proposed balance
requires 0 <t <2 and p + ¢t > 0, or in the worst
case for ¢, p > 0. Any internal-wave spectrum,
oceanic, atmospheric or stellar, with these general
characteristics and of sufficiently small amplitude is
subject to this balance.

Oceanic observations and the GM models yield
t € [1.0, 1.5] and p € [0.67-1.0], ali within the re-
quired limits. Later sections will demonstrate that
the vertical-wavenumber spectrum is stationary and
has a uniform downscale energy flux, ift ~ p ~ 1.0,
the GM 76 (Cairns and Williams, 1976) model values.

3. Dissipation

The observed spectrum is not in equilibrium with-
out dissipation.® Unfortunately, little is known about
how internal waves dissipate their energy. Shear
instability (Garrett and Munk, 1972b) and gravita-
tional instability (Orlanski and Bryan, 1969) are
possible mechanisms, among others. However,
there is no spectral model that specifies the scales
at which dissipation occurs.

Since the information about spectral dissipation
is minimal, prejudices and assumptions also should
be kept at a minimum. Here we make only two basic
assumptions:

e The dissipation event is localized in space and
time (dimensions much smaller than the scales of the
waves themselves).

e The actively mixing turbulence within each
breaking event is described by a vertical eddy dif-
fusion coefficient.

Which particular mechanism causes the dissipa-
tion events is irrelevant as long as these two con-
ditions are met.

These assumptions mean that the mixing terms
in the equation of motion for the wave field are of
the form

%‘f' + - = 03Ba5, 3.1

5 The statistical equilibrium solutions to the Boltzmann integral
governing weak interactions without dissipation are of the form
A(k) = (aw + b-k)™!, which is far from the observed spectrum.

TABLE 1. Basic environmental and internal wave
parameters in the thermocline at 30°N.

f=7x105g? Coriolis frequency
N=5x10"3g1 buoyancy frequency
E=3X%X10%m?s? total energy

S =25x%x10"3s"2 total shear
By =102 m™! vertical wavenumber bandwidth -
S,=3x107s2 shear of energy-containing waves
By =(S/E)"? =10t m! inverse microscale

Ri = N%S = 1.0 rms Richardson number
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where

B = g: b8(t - tn)a(x - X,,)

n=1

3.2)

and Y = (u, p). Here x, and ¢, denote the locations
and times of the breaking events. The coefficients
for momentum and mass diffusion are the same. The
coefficient b determines the strength of the turbulent
diffusion within each breaking event.

Fourier transformation of (3.1) in space leads to

1 +Lj2 —ikox
E I_le d3x63363dle ¢

d'p.*.......
dtk

N
———b S B 3 explitk’ - W%, (.3)

TL® k' n=1
where the quasi-stationarity of the wave field has
been invoked to introduce a time-average over a
time-interval T large compared to the duration of
the breaking event but small compared to the wave
period. For breaking events which are not correlated
with one another we can approximate (stationary-

phase approximation)

N
2 expli(k’ — K)'X,] = Ny

n=1

(3.4)

and find

d
— Yy = —nbBHy, 3.5)
dt

where n = N/L3T is the number of breaking events
per unit time and volume. In the stationary-phase
approximation the wave field does not distinguish
between diffusion in a large number of small uncor-
related events and uniform diffusion. Corrections
to the stationary-phase approximation involve in-
tricate mathematics and reasoning (Hasselmann,
1974).

From (3.5) we find the spectral dissipation function

d

— EKk) = —vBR%E(Kk) = ~vS(Kk), (3.6)

dt
where

v = nb 3.7

is an equivalent viscosity. The spectral dissipation
function is proportional to the shear spectrum. Dis-
sipation hence occurs at the scales of the shear.
The coefficient b, in principle, can be estimated
from laboratory experiments. The number n of
breaking events per unit time and volume can be
estimated from the statistics of the wave field. How-
ever, estimates of n (Garrett and Munk, 1972b) are
extremely sensitive to the rms shear of the wave
field. Hence the equivalent viscosity coefficient v
cannot reliably be estimated from definition (3.7).
Integration of (3.6) yields the overall time scale of
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FiG. 3. Contour plot of the slow induced-diffusion time scale
for the GM 76 spectral model as a function of vertical wave-
number B and normalized frequency w/f (or aspect ratio o/f3)
(from MM). In the shaded area the diffusion time is smaller than
the wave time scale (ot < 1).

dissipation
E

Tpiss = — .
Diss v S
An independent estimate of this time scale can be
inferred from the frequency and intensity of micro-
structure, assuming it is caused by wavebreaking.
The observations suggest the value (Garrett, 1979)

(3.8)

Toiss ~ 100 days

and hence v = (.14 cm? s~ for the valuesin Table 1.

Using this value of the overall time scale (or
viscosity coefficient) we can determine the scales at
which dissipation may be considered weak in the
mean. From (3.6), we find the dissipation time scale
at wavenumber Kk, i.e.,

1 1 pe

—_— =R = . 3.9
w P T om SIE 69
The ratio S/E defines a scale 8 ~ 0.1 m~* such that
) 2
1 _ 1 (f_) , (3.10)
7(K) Tpiss \ Bp

Thus, 7(k) is larger than one day, the longest wave
period, for wavenumbers 8 < 108, ~ 1 m~*. For
scales larger than 1 m the dissipation is weak for
inertial waves, and even weaker for higher fre-
quency waves.

With dissipation weak at nearly all scales of inter-
est and proportional to the spectrum (hence as smooth
as the spectrum itself), the two conditions required
for the validity of the slow induced-diffusion time
scale (MM) are met, so the induced-diffusion
mechanism is weak for wavenumbers smalier than
1 m~? (see Fig. 3). The parametric subharmonic
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instability mechanism is also weak if Ri> 1 or
B < B.if Ri = 1 (see Fig. 8 of MM).

We have constructed the simplest dissipation
model we could. Assuming localized events whose
mixing is described by vertical eddy diffusion coef-
ficients, we have derived a simple model of smooth,
weak energy dissipation. The effective viscosity is
proportional to the total energy and inversely pro-
portional to the total shear times the overall dis-
sipation time scale. Microstructure observations
suggest 100 days as a reasonable overall dissipa-
tion time. Such dissipation is consistent with weak
nonlinear transfers for wavenumbers < 1 m™1,

Since we insist that the shear is concentrated at
small scales, dissipation is concentrated at small

scales, requiring a transfer from the energetic large

scales. This transfer is the subject of the next sec-
tions. However, the balances we will present do not
depend on our particular dissipation model. The only
requirements are that dissipation is weak and at
small scales, which our model supports as reason-
able assumptions.

4. The PSI balance

This section presents the balance for the low-
frequency (f-4f) portion of the spectrum under
the parametric subharmonic instability (PSI) mecha-
nism. The assumptions are: (i) validity of weak-inter-
action theory; (ii) dissipation confined to small
scales, and (iii) generation confined to large scales.
We seek a constant-flux steady-state solution for the
vertical-wavenumber dependence of the low-fre-
quency spectrum.

The PSI mechanism is an instability wherein a
low-wavenumber wave decays into two high-wave-
number waves of half the frequency. Because the
dispersion relation has a different character near f,
this mechanism is most effective at the lowest fre-
quencies. The frequency resonance condition re-
quires that the triad frequencies sum to zero, i.e.,
w, + w, = w;, and since w,, w, = f the unstable
wave, w;, must have a frequency > 2f. The PSI
mechanism results in a downscale transfer out of the
2f-4f range into the f~2f range. This section seeks
to determine the scale dependence of the f—4 frange.

The time scale for the PSI mechanism was derived
by MM and is

27 .. S(B/x, 2w)
~1 = = Ri™! ,
74k) T3 nf Ri S

(4.1)
where x = [1.5f/(w — f)]'%. The time scale for the
growth of near inertial waves depends on the shear
content of the double-frequency wave with a wave-
number x-times smaller. The factor x arises because
near-inertial waves (k,, w,) can only be generated by
double-frequency waves (kj, w;) with vertical wave-
numbers B8; < B,/x, because of the resonance con-
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straints. In the following we will use x = V10 (the
average value of x for the GM spectral models), since
the precise value of x is not crucial for our arguments.

We now assume that there is a single wavenumber
dependency of the low frequency spectrum, i.e., a
separable solution

El
E@B, ) = —%"—) E®) 42)
and similarly
EQ2
S8, 2w) = (E“’) BE(). 4.3)

This assumption vastly simplifies the following de-
rivations. Numerical calculations, presented later,
show that while a separable solution is not com-
pletely valid the characteristics and results of the
vertical-wavenumber balance are properly repre-
sented. With this assumption the energy gain at in-
ertial waves is

EB.f) = EB. /) (B, f)
- vE(f)E(B)E(Zf)( B )E(-f—) . (4.4)

x
where
_ 21 =nf

YT NE
The energy loss at 2 f, but at the same scale 8, is
~-EB, 2f) = E(xB, f) = EGB, 7' (xB, f)
= yE()EBEQSBE(B). (4.5

This is the loss of energy to inertial waves with wave-
numbers x times larger (see Fig. 4).

If we require a steady state solution at any 8, then
the loss from the double-frequency wave at 8 must
balance the gain of the half-frequency wave, also
at 8,i.e.,

EQB )+ E@RB2f)=0. (4.6)
Substituting (4.4) and (4.5) into (4.6) we then find

x‘ZE(g—) — E(xB).

4.7
For any value of x this functional relationship has
as the only nontrivial solution a power law with
slopet = 1.0, i.e.,

E(B) < B71. 4.8)

This demonstration used the PSI mechanism for f
and 2 f waves, but it is obviously extendible to waves
of any frequencies w and 2w where the PSI mecha-
nism dominates. We therefore have shown that the
low-frequency (f-4f) wavenumber content spec-
trum is in equilibrium under the PSI mechanism if
E(B) <« B8~ 'as in GM 76.
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Because the transfers under the PSI mechanism
are contained exclusively in the f-4f region, a one-
dimensional wavenumber energy flux may be de-
fined by

%E(B) + 2o =0, .9)

aB
where E(B) = B7'E(B) is the vertical-wavenumber
energy density spectrum. Since 0/0tE(B) = 0, 8/0tE(B)
= 0, and the energy flux Q(B) is constant.

The flux Q(B) is determined at either the low-
wavenumber end, near B,, or at the high-wave-
number end, near 3.. For wavenumbers 8 < 8, the
shear drops off quickly, so that for near-inertial
waves with 8 < 8, the PSI mechanism is ineffec-
tive. Hence a good estimate of the flux across 8

= By is

Bx
0B = - j dB —(%E(B, 2f) = —E(By, 2f)

= YENEQExB)S(B:)- (4.10)

For B > B., again the shear drops off rapidly, so
that the loss from the region 2f-4f for waves with
B > B is ineffective. A good estimate of the flux
across 8 = S, is then

o0

OB, = f dB %E‘(B,f) = E(xBor f)

xB,
= YE(f)E(xB)EQRS)S(B:). (4.11)

If the flux is constant between 8, and 8., as (4.9)
indicates, then

0(B.) = 0(B) (4.12)
or
E(xB:) _ S(Bx) (@.13)
E(xBy)  S(B.)
or, liberally,
EB) _ Ss , 4.14)
E S

where S, = 5(B.) = B.2E is the shear of the energy-
containing waves, E = E(f,) the total energy, and
S = S(B.) the total shear. Eq. (4.14) is a condition
on the energy level at 8,,% given E, S and S, or
equivalently, a determination of the width of the
constant-energy-flux range, if the spectral slope ¢
and 8,2 = S/E are known, i.e.,

£ (2

This is a kinematic constraint determining the scale

(4.15)

SIf E(B) = E-(B/B,)~" and hence S(B) = S, (B/B,)*" then
(4.14) requires ¢+ = 1.0. This is an equivalent proof of t = 1.0 as
the constant-flux solution under the PSI mechanism.
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Fic. 4. The PSI mechanism. (a) At the energy scale 8,,
energy is transferred from region I" into I* creating a flux across
B, There is no compensating gain beneath I~ because the shear
spectrum falls off rapidly for g < B,. At arbitrary 8 where
B, < B < B, II" transfers energy to I, INI~ to III*, and so on.
Since III" + II* = 0 the spectrum is in equilibrium. For
B > B. the shear and energy spectrum falls off so that [V*
is not balanced, resulting in a flux across f.. (b) Schematic
representation of the rate of change of energy as a function of
vertical wavenumber under the PSI mechanism.

B. at which the constant-flux solution reaches total
shear S. For ¢t = 1.0, 8, and B, as in Table 1, we
find B./8, ~ 100.

A simplification of (4.1) for E(w) = E-(w/f)!
shows that the constant flux is

(4.16)

proportional to the energy times the shear content
of the source region. The bandwidth of the source
region is just as important as the level in determining
the energy flux. Both dependencies are quadratic,
so that a factor-10 change in either results in a 100-
fold change in the energy flux.

This flux should be of the proper magnitude to
balance dissipation at scales smaller than 8,71, i.e.,

OB, = j

8

oo

dBEpis(B). 4.17)

If dissipation is confined to scales smaller than 8,71,

then the integral is equal to E/mp. Since Q(B*)
= E/r4, the flux always matches the dissipation if

(4.18)

i.e., if the overall dissipation time scale equals the
time scale for the PSI mechanism to move energy
out of the energetic scales. This resuit is independent
of the dissipation distribution.

From (4.1) we find

Tpiss = Tx
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27 _f B
By | ek )
T ( i )
27
ST B R 4
32 N? x
if E(w) = E-(w/f)* which for values in Table 1 gives

« ~ 50 days. This is comparable to the estimate
mpiss = 100 days of Garrett (1979).
Conversely, if 7pi and E are regarded as known,
condition (4.17) specifies the absolute location of
the constant-flux region, i.e.,

27 —1/2
Wf ETpiss ] .

B [32 XN?
For values in Table 1 and 7p; = 100 days we find
Bsx = 4 x 1073 m™!, also satisfying within our over-
all accuracy.

At some scale j3, the transfer by the PSI mecha-
nism just balances the dissipation. For 8 < B, trans-
fer easily exceeds dissipation; for 8 > B, the dis-
51pat10n in a constant-flux spectrum exceeds the
maximuin transfer. Clearly, for 8 > S3;, the constant-
flux inertial range cannot survive and the spectrum
must fall off. The point at which this occurs is where
Tpiss = Tps1 OF

(4.20)

Bc Thiss , S
B A .

If 7piss = 74 as (4.17) implies it must, then 8, = B,
= B.S5/Ss and the dissipation forces the constant-
‘flux spectrum to cut off at 8, with total shear §, con-
sistent with (4.15) for ¢+ = 1.0. For values in Table 1
we find 8, = 1 m™!, which is just the wavenumber
around which observed temperature (e.g., Gregg,
1977) and velocity (e.g., Gargett et al., 1981) spectra
show an elbow or change in slope.

Clearly, 8, is determined by features of the source
region, i.e., B, and E. As the source region grows,
the flux increases, the dissipation increases (the
equivalent viscosity increases) and the separation
between energetic and dissipative scales decreases
(as long as the total shear remains constant). If we
know the overall dissipation time scale, 7pis and the
total energy, E, then Eqs. (4.20) and (4.21) deter-
mine the scales of the constant-flux inertial range
B € [Bx« Bc.

To recapitulate the essentials of this PSI balance:
we have assumed the energy and sources to be at
large scales 8 < By. The dlssmanon occurs at small
scales 8 > S, such that the total shear is S. Between
these two regions we have presumed an inertial cas-
cade. We found the following:

4.21)

Ty

1) The wavenumber spectrum has the form
E(B) = E-(BIB)™"

2) The constant flux @ is a quadratic functlon of
E and B,
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3) Thecutoff scale 8. is determined byE,B.andS
4) The dissipation time must equal the time scale
to move energy out of the energetic scales, Tpjss = Ty.

The above four points imply that if one knows E and
Bs, then one also knows E(B), Q(B), B. and 7p,!
Conversely, if one knows E and rp;, then one also
knows the others. The internal-wave model we pre-
sent here has only three parameters, E, 8, and S.
Presumably, S is constant, while E and 8, have time
scales of the order of 100 days. Thus the gross fea-
tures of the internal-wave field evolve slowly.
Knowing two rough measures of the energetic scales,
E and B,, specifiés the rest of the internal-wave
spectrum. (The high-frequency dependence is deter-
mined in the next section.)

Eqgs. (4.16) and (4.21) should be verifiable by
experiment, at least qualitatively. The quantities E
and B, are available from vertically separated cur-
rent meters and B3, from small-scale profiles. Changes
in E and B, should then correspond to changes in
the occurrence and intensity of microstructure and
to changes in B, assuming § = N. Since E and S,
evolve on time scales of the order of 100 days these
correspondences should be most apparent in long
records and in the geographical distribution of these
quantities.

5. The ID balance

This section presents the balance for the high-
frequency spectrum, 4f < o < N, which interacts
with the low-frequency inertial band under the in-
duced diffusion (ID) mechanism. The assumptions
are the same as in the previous section. The ap-
proach is also the same. We seck a steady-state
solution for the vertical-wavenumber spectrum.

The ID mechanism is the scattering of a high-
frequency high-wavenumber wave by a low-fre-
quency low-wavenumber wave. It acts as a diffusion
of wave action in wavenumber space, primarily in
vertical wavenumber. The diffusion coefficient is
proportional to the shear content of the low-fre-
quency wave. Wave action is conserved in the high
frequency region and its rate of change at any wave-
number Kk is given by (MM)

0 0
- J— .__.._A _1
AK) GBDBB k), 5.1
where

D = Ymf-latS (-f- B) G.2)
(6]

is the diffusion coefficient, and A(k) is the three-
dimensional action-density spectrum. The diffusion
coefficient is generally a function of 8 through the
shear content of the low-frequency waves.

Eq. (5.1) implies an action flux in vertical wave-
number along a line of constant horizontal wave-
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number « given by

A 0 .
= -D — A(k), 5.3
Q4k) D o8 (k) (5.3

with a corresponding energy flux
Qulk) = w0 (k). (5.4)

From (5.1), the rate of change of the energy density
in the high-frequency spectrum can be related to
the energy flux by

0 . 0 1 .
-a—tE(a, B +-5§ Qrla, B) +73-QE(01, B) =90, (5.5)

since dw/dB ~ —w/Q at high frequencies. Clearly, if
Q £ is uniform,” the time rate of change of the energy
in the high-frequency region is not zero. If Oula, B
= 0, then 8/8tE(a, B) = 0 and energy is lost from
the high-frequency region. For a similar discussion
of a uniform action flux see Fig. 5. The energy in
the high-frequency region alone is not conserved or,
in general, constant (if O, # uniform).

The ‘‘lost’’ energy, of course, is gained by the low-
frequency waves (see Fig. 6). Previous attempts to
find equilibrium solutions under the ID mechanisms
(MM; McComas, 1978; McComas and Bretherton,
1977) ignored this energy transfer and sought solu-
tions only for the high-frequency region. Here, we
include both regions and look for equilibrium solu-
tions for the combination of these two regions.

The time rate of change of the low-frequency
energy-density spectrum is given by

0 . N
~ ) = B fQE(a, Brda,  (5.6)

where 8’ = Bw/f = BNa/fB’. This equation is de-
rived from the full Boltzmann equation using the
characteristics of the ID triad as done by MM.

Addition of (5.6) to an integration of (5.5) over
« yields the equation for the time rate of change of
the vertical-wavenumber spectrum

0 . 0
E)_I-E('B) + _BE (B

- j daB[Qsle, B) ~ Oula, B, (5.7)
where

QE(B) = JdaQE(as B),
EB) = ELB) j E(a, Bda.

If the energy flux is uniform, i.e., Ox(a, B) = F(a),

” The word uniform means here and in the following: independent
of the vertical wavenumber 8.
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Fi1G. 5. The uniform-action-flux solution. At 8, < Bz,aumform-
action flux 0, enters the reglon The energy flux is ,Q,. The
same action flux leaves the region at 3,, and action is conserved,
i.e., dA/ot = 0. The energy flux out of the region is w0y,
but since wy < @, (because Bz > B, and « is constant), the
energy flux out of the region is smaller than that entering. But
since 0A/8t = 0 the energy content in the region also must
be constant, i.e., 8£/8: = 0. Thus energy must be transferred
out of the region to balance the non-constant energy flux [the third
term in (5.5)].

both the right-hand side of (5.7) and the dlvergence
of Qb(,B) vanish; hence E(ﬁ) is stationary, i.e.,
—E(B) = 0. (5.8)
ot
Thus, the vertical-wavenumber energy-density
spectrum is in equilibrium under the ID mechanism
if the energy flux through the high-frequency region
is uniform. This is the principal result of this section.
We now determine the high-frequency spectrum
which has the uniform flux Q a, B) = F(a). A com-
plete solution of the diffusion equation (5.1) requires
two boundary conditions. The obvious boundary
conditions are that the energy spectrum and the time
rate of change of the energy spectrum are continuous
at the boundary between the PSI and ID regions.
The action-density spectrum can be determined
from an integration of (5.3), i.e.,

o F
1 B
dgl —— ——————— — ~ C(« 5.9
8 U B PSS, ()} 6

If we insist that the wavenumber dependence of
the low-frequency shear is determined by the PSI
mechanism, then

B
S(B) = Sy ,
s B

sk

(5.10)
so that
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F1G. 6. The ID mechanism. At wavenumber 8 energy is lost out of the high-
frequency region I". This energy is gained by the low-frequency region I*, con-
sisting of near inertial waves with vertical wavenumbers 8’ = (f/w)B. The energy
gain in the region II* comes from the region II- consisting of high-frequency
waves with vertical wavenumbers 8’ = (w/f)B. Stationarity of the vertical-wave-
number spectrum at B8 requires II* + I~ = 0 which implies a uniform energy

flux through the high-frequency region.

A(a, B) = ~ F(a)By [1 B

TomS o n;—— C(a)] . (5.11)

*

The functions F(a) and C(a) are integration con-

stants of the vertical-wavenumber diffusion problem

that are evaluated by the boundary conditions.
The first condition matches the rates of change of

the spectrum. From (5.5) the ID rate is

O fntar ) = — 1@
EEH)(O!, B = 8 (5.12)
or '
)
Et-Em(w’ B)
9B 9 o) = —aF@. .13

- |dw/da| ot

This rate is set equal to the time rate of change
under the PSI mechanism at the common boundary,
which is chosen at w ~ 4f. Similar to (4.5), the PSI
rate is given by (MM)

-g—tEpsw, B) ~ —yEQS)E(xB)EAF)BEP)

E4:B*2 — !
8x v

if we take E(w) = E-(w/f)"! for definiteness, and
E(B) = E-(B/B,)"!, the constant-flux solution for

= -y (5.14)

the PSI region. Thus the energy change along a line
of constant frequency is uniform.
- Setting (5.13) and (5.14) equal determines F(a)

Fla) =X~ .
o

(5.15)

Note that F(a), the vertical-wavenumber energy
flux, is positive, implying a downscale flux. Further,
since y’ can be rewritten as y' = Q7/128x)(w f/
N?ES,, this downscale energy flux is proportional
to the energy level times the shear level of the en-
ergy-containing region, just as was the PSI flux (4.16).

To determine C(a) the energy spectra are
matched. If we take the low-frequency spectrum to be

E 1
E(w, B) = — 5.16
(w B) w/fB/B* ( )
and match it to the solution
B .
Ep(w, B) = ———— Ao, B) (5.17
wlw, B |aw/aa] B8 )
along the line o = 4f, we find
64x N «a
Cla) = —+In —— . 5.18
(o) > n a7 B (5.18)

Combining (5.11) with (5.15) and (5.18) gives the
complete description of the high-frequency spec-
trum in terms of the energy level and bandwidth
of the large-scale waves:
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EID(w, ﬂ)
+ 2 —“’—] . (5.19)

B .(%)—1(%)—1[1 6ax | 4f

If one matches the energy spectra along 8 = S,
B

one finds
-1 -1
e -2 (21~ Zow ]
B f Bx

Except for the logarithmic correction, the solution
describes a power-law dependence with respect to
frequency and vertical wavenumber, both with slope
— 1. We hence see that the assumed frequency de-
pendence of the PSI mechanism, E(w) = E-(w/f)™!
is merely an extension of the frequency dependence
of the ID solution. The first term in (5.19) is the no-
flux term, the second the uniform-energy-flux term.

In deriving the high-frequency solution we did not
mention dissipation explicitly, since dissipation is
very weak at all scales of interest. The time rate
of change of energy under the ID mechanism

_iln

a A F
D e, ) = - £ (5.20)
ot
is proportional to 1/8 while the dissipation rate
0 . A .
'é—t'EDlss(a, B) = —vS(a, B) = ~vpE(a, B) (5.21)

is proportional to 8. We may define a 8.’ such that

fo,r B<B, lEIDI > lEDlSSI’ and for B> B/,
|Episs| > |E|. That B," is where |Epis| = |Ep| or
B’ 277 .
—_—= Ri™? . .22
Ba 128 1" “Tpiss® ) 22)
ForRi = land w = 4f
Ec— = 500 (5.23)

*

which makes 8.’ considerably larger than the maxi-
mum wavenumbers we considered and at which our
weak-interaction theory applies.

Although one might argue about some of the nu-
merical constants, or whether the boundary between
the PSI and ID regions should be at w = 4f or 5f,
the following points made in this section are well
founded:

1) The vertical wavenumber spectrum has sta-
tionary solutions under the ID mechanism with a
uniform downscale energy flux.

2) By matching the ID solution to the low-fre-
quency spectrum one of the stationary solutions is
selected. This particular solution has a flux propor-
tional to the energy level times the shear of the large-
scale waves, as does the PSI flux.
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3) The spectral solution, except for the small mag-
nitude, weak logarithmic dependence on w, has the
same w, 8 dependence as the observationally based
GM 76 model. ‘

4) The difference between the flux and no flux
diffusion solution is small (<30% at w = N/2) and
presumably unobservable.

6. A numerical model

The most important result of the previous sec-
tions was the demonstration of a stationary vertical-
wavenumber spectrum with a constant downscale
energy flux. To obtain this result, we had to assume
that the low-frequency (f-4f) range could be
described by a single vertical-wavenumber depend-
ence and an unspecified frequency dependence,i.e.,

Ew, B = 22 £ 6.1)
E
Clearly, such a spectral description is not possible
under the PSI mechanism alone, as the f-2 f region
gains energy, and the 2 f-4 f region loses that energy
such that E{w) could not be stationary. Further, the
PSI time scale is not independent of vertical wave-
number if E(B) « 87!, so that E(w, 8) would not
long remain proportional to 8~* at every frequency.

For the ID mechanism, the constant downscale
flux idea is well founded. However, to solve for a
specific functional form in «, we had to match to the
PSI region. The specific solution we obtained de-
pends in its particulars on the presumed form of the
low-frequency spectrum.

In order to confirm our scenario and support our
assumptions about the low-frequency range we have
developed a time-stepping numerical model which
computes the evolution of the internal-wave spec-
trum from an accurate determination of all the inter-
acting triads. We have used the dissipation model
developed in Section 3 and initial spectra from the
GM 76 model. Model runs were performed on the
Cray computer at the National Center for Atmos-
pheric Research. Because of the extremely wide
separation between the characteristic time scale
of the energy-containing waves and the stability time
scale of the diffusing high-shear waves (a factor of
almost 10°), only a few, unsatisfyingly short com-
putations were performed on account of the expense.
However, these calculations do demonstrate all of
the characteristics of our constant-flux scenario, and
should ease any concerns regarding some of our as-
sumptions about the low-frequency range. In our
view, the analytic model without the numerical re-
sult is less convincing; the numerical result without
the simple framework for understanding provided
by the analytic model is nearly useless.

We relegate some details of the numerical model
to the Appendix, and mention here only those points
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TABLE 2. Basic environmental and internal-wave
parameters of numerical model.

Constant values

N 4,5 x 103 st
f 7.0 x 103 s7!
Pse 7.0 x 1072 m!
v 4.0 x 1072 cm? s~}

Nearly constant values )
28 days

0 days 14 days
Eqor (cm? s7%) 1.43 x 10* 1.41 x 10! 1.40 x 10*
E, (cm? s7?) 6.2 x 10° 6.1 x 10° 6.1 x 10°
Sy (573 3.1 x 107 3.1 x 1078 3.1 x 1078
Stor (873 3.1 x 107¢ 2.8 X 10°¢ 2.4 X 1078
B =T (my 50 x 100 4.6 x 1070

4.0 x 1073

*

needed to understand and apply the results to the
scenario of the previous sections.

The initial spectrum is a slightly modified GM 76
spectrum of the form

Ey(w, p) = E+A(w)B(p), (6.2)

where p = |k| (the wavenumber magnitude), A(w)
= (w/f)™', and B(p) = (1 + pl/p,)~t. The one-
dimensional spectra are then

Ey(w) = Epord(w), (6.3)
where Eqor = 2.3 E is the total energy and
Eo(p) = E.B(p). (6.4)

The principal modification to the GM 76 model is in
B(p). We used p instead of 8, and modified the
energy-containing scales such that the energy con-
tent, instead of increasing towards p,, is relatively
flat. This change allows a greater Eqor for the same
E,, but alters little else.

Table 2 presents the constant and nearly constant
values in the model. We have chosen v such that

E,

TOoTV

=5 x 107 s = 500 days (6.5)

Tpiss =

to match the PSI time scale out of the energy con-
taining scales [see Eq. (4.18)]

2
= Eﬁ————l———— = 500 days. (6.6)
27 wf S(Bsl/x, 2f)
We expect the spectral break point 8, at
2
Be _ (ﬁ) = 1020 (6.7)
B Bx
by Eq. (4.15).
The dissipation is given by
Episs(p, @) = —vS(p, w) = —vp’E(B, w), (6.8)
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while the transfer into the inertial band under the
PSI mechanism is given by

27 wf

EPSl(p’f) = 1—6? S(B/X, :Zf)E(P’ f)

1
= ;—E(ﬂ,f)S(B/x,2f)/S(B*/x,2f)- 6.9)

For the constant flux solution 584(B, f) < B, while
Tows(B, f) < B%. At some scale B. the dissipation
time scale equals the PSI transfer time. For 8 > 8,
dissipation dominates transfer and vice versa. That
Be is

Be _ Tbiss STOT
Bx T Sk

as we found in (4.21). The two scales 8. and 3, are
equal if mp;ss = 74, Which we have already assured.
This match is important because it is the dissipation
that assures that the spectrum cuts off at 3.. The
scale B, is only that scale where the constant-flux
spectrum reaches the total shear value Sror. The 8,
is a kinematic constraint, while 8, is a dynamic one.

In the model, the spectrum is represented on a
13 x 13 grid in log sw/f versus log,op space. The
variables range over 1 < o/f < 64 = N/f and 1073
< p < 1 m™. There are 144 “‘bins’’ in the model,
each having a logarithmic interval, e.g., bin; 5 con-
tains 2f < w < 2V2f and 1072°m~' < p < 10~175
m~*. All interactions and dissipation occur within
the variable ranges. Interactions conserve energy to
machine accuracy (~1 part in 109, The model re-
sults will be presented in terms of various one-
dimensional energy content spectra.

We begin by showing the time evolution over 28

(6.10)

. ‘0‘1

WITHOUT DISSIPATION
(Tmss“' o0)

—— 28 DAYS
—— 14 DAYS
L - O DAYS

WITH DISSIPATION .

10.3__ (Tmss ~ 500d)

103
p [m7]

Fi1G. 7. The wavenumber spectrum for p,s = © and for
Toiss = 300 days at 0, 14'and 28 days.
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days of the vertical-wavenumber energy-content
spectrum in Fig. 7. Here we show one run with no
dissipation. Note that the higher wavenumbers
have filled appreciably, increasing the shear drama-
tically. Clearly, the presence of small-scale dissipa-
tion is crucial to the maintenance of the oceanic
spectrum.

The second set of curves describes the evolution
of the spectrum with » = 0.04 cm? s™!. The initial
slope is maintained until the last bin where

p B

Px B

confirming the predictions of (6.10) and (6.7) for the
cutoff wavenumber. Fig. 8 shows the time scale for
the vertical-wavenumber spectrum in each “‘bin.”
Note that for small-scale waves, 8 = O (107! m™),
the one-dimensional spectrum has a time scale of
order 10® days. This is much longer than the char-
acteristic time scale for the PSI mechanism or the ID
mechanism found by MM, indicating the equilibrium
in the one-dimensional spectrum. )

Fig. 9 shows the time rate of change of the wave-
number spectrum, E(p), and the time rate of change
of the wavenumber spectrumofbin I,f < o < Vo,
E(p). The rate E,(p) includes both the nonlinear
transfer and the dissipation in that bin. At high wave-
numbers the rates E(p) are greater than the rates
E(p), which means that the increase in the inertial
bin 1 is offset by higher frequency bands. Also shown
is the total dissipation, which is dominated by the
low-frequency bin 1. If dissipation is subtracted from
the rate E,(p), it can easily be seen that the transfer

102.0’

-4
10 r

—— 28 DAYS
~—— 14 DAYS
1 DAY

10t L
o3 102

i
0! led

p (]

Fic. 8. Time scales of the wavenumber spectrum at 1, 14
and 28 days. The straight line represents the dissipation time
scale 75i(p) = vp*.
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F16. 9. The energy transfer rates for the wavenumber spectrum
E(p), the energy transfer rates for bin 1, f< w < £, Edp),
and the dissipation function Epng (p) = —vp?E(p) at 14 and
28 days.

into bin 1 is nearly independent of wavenumber,
as predicted by (4.4) and (5.14); it only changes by
about a factor of 2 over two decades of wavenum-
bers. This wavenumber independence is the crucial
point in the determination of F(a) under the ID
mechanism in (5.15).

We next investigate our assumed PSI form (6.1)
and its attendant difficulties. Fig. 10a shows the
evolution of the wavenumber spectrum of frequency
bin 1. The spectrum is increasing in energy as the
PSI mechanism transfers energy into the inertial
band. Because the time scale is proportional to 3,
this causes the wavenumber spectrum of bin 1 to be-
come less steep. But, at the end of our computer
simulation, there is an indication that the rate of
increase at the smallest waves is decreasing, in-
dicating that the spectrum begins to flatten out again
as the inertial peak is sufficiently built up.

Fig. 10b shows the evolution of the spectrum for
bin 3, which is bin 1’s PSI partner, i.e., bin 3 loses
under the PSI mechanism what bin 1 gains. We see
that the loss from bin 3 follows the same pattern as
the gain of bin 1.

Fig. 10c shows the evolution of the sum of bins 1
to 4, i.e., f < w < 4f. The spectrum remains quite
close to the initial spectrum. The small energy gain
probably results from the ID-mechanism input to
low frequencies, which is balanced by the loss at
high frequencies such as shown in Fig. 10d for bin 7,
8f < w= 28 f. We note that the spectrum E;( p) is
steeper than —1.0, but is still a constant-energy-
flux spectrum if one considers that E,(p) ~ 877,
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Fi1G. 10. The evolution of the wavenumber dependence for (a) bin 1,f < w <
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V2£, (b) bin 3, 2f < 2¥2f. (c) bins 1-4,

f<w=<4f and (d) bin 7, 8f < w < 82f.

Again, the spectrum for the last decade is less steep
than for the larger scale waves, which have not had
time to equilibrate.

Figs. 11a and 11b show the energy transfer rate by
frequency for the wavenumber bins 6 and 8. The
figures show a strong transfer into the inertial band
f-2foutof 2f-4f. This transfer decreases with time
as an inertial peak is built up. However, the total
transfer, denoted on the right-hand side, shows that
the transfers nearly cancel out within the band. Fig.
11b shows that bin 8, with shorter time scales, is
more nearly compensated at day 28 than the slower
evolving bin 6. That is to say, the corrections to the
spectrum are working back from the small scales to
the slowly evolving large scales in this simulation.

Finally, in Fig. 12 we show the frequency depend-
ence of bin 8. Except for the creation of an inertial
peak, the frequency dependence is remarkably

‘stable at a —1.0 slope.

We have attempted to show that in spite of addi-
tional details present in the full numerical model,
the analytic model quite satisfactorily describes the
results. The inertial peak seems to be a necessary
dynamic component of the internal-wave spectrum,
being built up by the PSI transfer. [Munk and
Phillips (1968) showed that the inertial peak might be
a horizontal turning point, i.e., kinematic effect, as
well.] However, as the peak increases over the body
of the spectrum, the transfer rate decreases, sug-
gesting that an equilibrium is possible.
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As the spectrum adjusts, creating the inertial
peak, the high-frequency small-scale waves with the
short time scales equilibrate first, then the correc-
tions work back up the spectrum to the longer-time-
scale waves. This implies that changes in the basic
characteristics of the internal-wave field, such as
changes in slopes, energy levels, fluxes, dissipation
time scales, etc., are determined by the slow
energy-containing scales, not by the rapidly adjust-

4—.

\
\ & —— 28 DAYS
L\\\ o —— 14 DAYS
\ 0 ~--=-- ] DAY

Es(w)10® {emP/s3)

a
gl v o 0 1o g
0] 6 12
l0g /5 (w/f)
4_—
\
\
V\‘ A —— 28 DAYS
\ o —— 14 DAYS
\\ 1 DAY
"
4
~
~N
€ . A
= \/’——?___.%—_::/ -0
© —
°
3 o
o
-l
b
-4 F IS NN WU IV NN NS WO SO BRSO T |
(o} 6 12
109 s (w/f)

Fic. 11. The evolution of the frequency dependence of the
energy transfer rate for (a) bin 6, 107" < p < 10~*5 m~ and (b)
bin 8, 1073% < p < 10~*°* m™. The sum of the transfer rates is
shown on the right-hand side. (To convert these values to a
uniform transfer rate over the entire range, divide by 12.)
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FiG. 12. The evolution of the frequency dependence for bin 8.

ing small scales. The basic characteristics of the
internal-wave field change on the time scale of hun-
dreds of days.

7. Difficulties, deficiencies and discussion

We have proposed a model for the dynamic
balance of the internal-wave field under the dominat-
ing nonlinear transfer mechanisms, the induced
diffusion and the parametric-subharmonic-instabil-
ity mechanism. This balance consists of the fol-
lowing:

1) A stationary vertical-wavenumber spectrum
with a constant downscale energy flux under the PSI
and ID mechanisms (see Fig. 13). This inertial range
with E(B) = E-(B/B,) ! is not that obtained by the
usual dimensional arguments that would conclude
E(B) = (B/B4)"? because the dominant mechanisms
are nonlocal (in wavenumber space).

2) A downscale flux under the PSI mechanism
that is determined by the rate of energy transfer out
of the energy-containing scales; this rate determines
the overall dissipation rate and the scale at which
dissipation becomes important to keep the total
shear constant. .

3) A downscale flux under the ID mechanism that
is determined by matching with the low-frequency
region.

4) Both of these fluxes are proportional to the
energy times the shear of the large-scale energy-
containing waves (so that a 10-fold change in either
the energy level or the bandwidth results in a 100-
fold change in the energy fluxes and the equivalent
viscosity). A

5) A spectral model for dissipation, based on a
minimum of assumptions, which is smooth, weak
and consistent with all of the above points.

This balance reproduces the observed spectral



984

JOURNAL OF PHYSICAL OCEANOGRAPHY

VoLuUME 11

VERT. WAVENUMBER (m™)

-3 -2 v
10’ ' .
N
Qe
[4)
0,
° 100_\ oy !
-
2 GENERAT K
= R 1OK CONSTANT
e \ ENERGY
& FLUX 7
< 10 A N
REGION DISSIPATION {
REGION T
] \4-2
~2
10 \

Be

]
Bc

FIG. 13. Schematic representation of the dynamical balance of the internal wave

field. Energy is generated at low vertical

wavenumbers 8 < 8,. Between 8, and

B. there is an inertial range where the ID mechanism at high frequencies and the
PSI mechanism at low frequencies provide a constant (independent of vertical
wavenumber) energy flux to high wavenumbers 8 > 8. where energy is dissipated.

The break point 8. is determined as

the wavenumber where the nonlinear

transfer can no longer keep up with dissipation.

slopes and small-scale break point. It is the most
complete and consistent model of internal-wave
dynamics today. There, however, are several re-
maining difficulties:

1) There is no explanation for the frequency
dependence in the f~4f range. The PSI balance
explains the overall vertical-wavenumber dependence,
without reliance on the frequency distribution, but
there is no information on what the distribution
might be. Further, the PSI mechanism removes
energy from the 2f~4f band and transfers it into the
f-2f band at smaller scales, building up an inertial
peak. As long as there is a downscale flux, this
mechanism will deplete the upper frequency band
and fill the lower one.

2) Under the ID mechanism the high-frequency
region loses energy, which is gained by the near
inertial waves. Only in combination is the vertical-
wavenumber spectrum stationary. Qur high-fre-
quency analytic solution is stationary because it was
matched to a stationary low-frequency spectrum.
Also, our particular ID solution was selected by
matching to the observed low-frequency spectrum.
Our balance is hence not completely self-explanatory.

To find the mechanisms which compensate for
the frequency transfers we have analyzed the results
of a time-stepping numerical model that includes
all interacting triads, not just the dominating ones.

Although no single mechanisms could be identified,
the following points can be conjectured from the
model and our analytic results.

The primary effect of the ID mechanism is to make
the spectrum smooth by rapid diffusion with the
““fast’’ time scale (MM). The secondary effect is to
adjust the spectrum to deliver a constant downscale
energy flux in a stationary wavenumber spectrum.
This creates a transfer in frequency which is a
tertiary effect. At this level, the other interactions
become equally important to achieve equilibrium.

The primary result of the PSI mechanism is to
create an inertial peak. The secondary effect is to
adjust the spectrum to deliver the constant down-
scale flux. The PSI mechanism, as it creates an
inertial peak and depletes the 2f-4f range, brings
itself into partial equilibrium. [+54 =~ S(2f-4f), which
is decreasing.] Further the ID mechanism fluxes
energy to the depleting PSI region. So partial
equilibrium could be achieved by these two mecha-
nisms. For complete equilibrium other (tertiary) not
identifiable interactions are required.

The main deficiency of our scenario is that it does
not explain the energy and shear level. Both have
been observed to be fairly constant. We have found
fifty or one hundred days to be the characteristic
time scale of the large-scale energy-containing waves.
In one hundred days large-scale .internal waves
travel of the order of 1000 km, a good fraction
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of the ocean basin. C. S. Cox and C. L. Johnson and
Garrett and Munk (1979) have suggested that this
long propagation distance could account for the
relatively constant energy level, as sources at many
different locations add energy to the internal-wave
field, which then spreads out over the basin to achieve
a universal level. The internal wave field may be
viewed as a massive rotating wheel, spinning
constantly with little friction, receiving small,
random, hardly noticeable impulses that on average
keep it turning at a nearly constant speed (McComas).
Or the internal wave field may be viewed as the
thermal energy of a nearly insulated large block of
highly conducting metal (M. Briscoe). As this block
is heated by some randomly distributed Bunsen
burners its temperature remains nearly constant.
These pictures seem to be likely explanations
to us. However, we have shown that the bandwidth
is just as important in determining energy fluxes,
and its universality is untested.

Similarly, we have offered no explanation why
the root-mean-square Richardson number Ri = N%§
is close to 1. Munk (1981) has suggested that the
number of breaking events is extremely sensitive to
the rms shear, with Ri = 1 a quasi-equilibrium
value, so that a slight increase in the shear leads
to a large increase in dissipation and a slight decrease
leads to essentially no dissipation. This again is a
likely explanation. Qur balance predicts the spectral
slope, width, location and flux of the inertial range,
given the overall energy and shear.
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APPENDIX
Details of Numerical Model

The numerical model of Section 6 is a forward-
time-stepping model with a fixed time step deter-
mined by a multiple of the ‘‘slow’’ time scale for the
high-shear waves under the induced diffusion
mechanism (MM). That time step is 20 min, or
approximately one Viiséla period. Each time step
takes 3 s to compute, so a 30-day experiment re-
quires nearly 2 h of Cray time. The 3-seconds
computation time is greatly reduced from the 5 min
time required by the model previously used by Mc-
Comas. This time reduction is made possible by the
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speed, memory, and vector capabilities of the
NCAR Cray machine.

The model computes the time rate of change of the
internal wave spectrum from the Boltzmann collision
integral and the dissipation function.

% k) = ” dk'dk"{D*8(k — k' — k")8(w — @' — @")

X [AKDAK") — AKAK') — AK)AK")]

+ 2D7°8k - k' + K")8(w — o' + &)

X [AKDNAK") + AK)AK') — AK)AK")]}
- vo 'SKk), (Al

where v is the effective viscosity.

This prescription is manipulated to use finite
elements, matrix equations, energy conservation
and machine vectorization. The spectrum is repre-
sented in terms of finite elements in logarithmic
space, i.e.,

A(w, p) = expl Xa;p;(w, p)l, (A2)

where ¢;(w, p) is a bilinear in’terpolator in logarithmic
space log sw, log,ep. This allows a simple inter-
polation routine, with only minor restrictions on the
power law dependency of A (w, p). Eq. (Al) is then
multiplied by w¢; and integrated over all k to yield

Bﬁd,- = Cy + di' (A3)

Here

B, = [E(km-(k)gb,-(k)dk (A4)

denotes the energy matrix such that Y ; By; is the
energy in ¢; and 3 ; 3, B;; the total energy. The
vector

;= ”’f dk'dk"dkD*8(k — k' — k")é(w — o' — «")

X [wdik) ~ o' di(k’) — o"di(k")]
x {AKNAK") —AEKAK) - AKAK)} (AS)

describes the energy.change in ¢;, with Y; ¢; = 0
because of energy conservation. [Since 3 ; ¢;(k) = 1
the term in brackets is zero because of the fre-
quency resonance condition.]

The energy matrix B;; and ¢; must be computed
at every time step, a time consuming task. The Bj;
are computed in terms of exponential integrals. The
c;’s are computed on a grid nested within the 13 x 13
grid defining the a’s and ¢’s (See Fig. 14). The
model steps along this interior 25 x 25 grid, com-
puting the interactions of 121 triads that interact
with the wave at that point. The energy transferred
at each triad member is summed to the appropriate
c;, the next triad is chosen, etc., the next grid point
is chosen, etc., until all 75 625 triads are computed.
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FiG. 14. Numerical grid for the spectrum (dots) and for the
interaction calculation (crosses).

The dissipation is computed as

d; = —vS,, (A6)

where

5 = f S K)dk (A7)
is the shear vector such that S; is the shear in ¢,
and Y ;S; is the total shear. The shear vector S; also
must be computed at every time step.

Finally, the a’s are computed from the banded
matrix problem (A3), and the new amplitudes found
by forward-time stepping.

(A8)

The whole process repeats for the next time step.

Auenr = Qg + dt+AtAt~
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