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ABSTRACT

An in-time spectral, finite-element method is proposed for modeling the main astronomical and
nonlinear constituents of the tide in any oceanic or shallow-water area. The classical nonlinear hyper-
bolic problem for long waves is transformed to a set of elliptic modal problems by looking at a multi-
periodic solution with basic frequencies deduced from the tide-generating potential development. The
method is based on a perturbation technique. Because of the non-analytic formulation of the quadratic
bottom friction, a multi-periodic development of these terms is needed. This is realized under a restrictive
hypothesis that a dominant wave is present in the studied tidal spectrum. Although the damping terms of
friction deduced from this development are of second order, their influence on the real solutions is very
important. Thus, a quasi-linearization of these damping terms makes possible a computation of damped
solutions, as soon as the first order of approximation, for each wave investigated. Practically, for each
order of approximation and each significant frequency, we have to solve a second-order equation of the
Helmholrz type, which is possible to write under a variational formulation.

A finite-element method is used for the numerical integrations. First, an illustration of the method is
presented for the academic case of a wave propagating in a rectangular rotating channel together with
its first harmonic produced inside the basin by nonlinear processes. Then a practical application is
presented with the computation of some of the main constituents of the tide in the English Channel:
the dominant wave M, and its first harmonic M,, and two astronomical constituents, the semi-
diurnal S; and the diurnal K,. The possibilities offered by the finite-element procedure used appear very
attractive for practical investigations of oceanic and shallow-water tides. The computing time require-
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ments are small,

1. Introduction

During the last 20 years, in connection with the
increase of computer facilitics, numerical modeling
of tides has been intensively developed and applied
everywhere tidal motion dominantly influences cur-
rents and sea surface elevation. The number of such
numerical models presented in the literature is enor-
mous. Even restricted to a particular area, the
European shelf seas for instance, a complete list of
such investigations would be difficult to achieve. For
example, some representative models are those of
Hansen (1962), Hyacinthe and Kravtchenko (1970),
Pingree and Maddock (1978) for the English Chan-
nel; Prandle (1978) for the Strait of Dover; Nihoul
and Ronday (1975) for the Southern Bight; Ram-
ming (1976) for the German Bight; Brettschneider
(1967), Martchuk et al. (1973), Davies (1976) for the
North Sea; Heaps (1974) for the Irish Sea; Flather
(1976) for the whole continental shelf, etc.

All these models are based on finite-difference
methods (FDM). They have their own character-
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istics, but generally all of them are modeling only
a single tidal period of the real phenomenon or some
mean cycle (mean spring tides for instance) because
of computer time requirements. These limitations
result from two fundamental constraints:

e In order to be precise, these models need re-
fined spatial discretization in shallow-water areas,
where nonlinear processes significantly distort tidal
waves. As FDM generally use regular grids, this
constraint requires very large memory core require-
ments, when the domain investigated is extended far
toward the open sea.

e In order to be stable, small time steps are
needed in connection with the well-known Courant-
Friedrich-Lewy condition for explicit finite-differ-
ence schemes.

During the past decade, a significant number of
papers have proposed applying FDM to the resolu-
tion of the shallow-water equations, in order to take
advantage of the flexibility of the grid networks
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which can be employed with these techniques. By
refining the mesh in very shallow-water areas and
using coarser grids offshore, an optimal spatial
discretization can be used. The earliest finite-
element tidal models were developed by Grotkop
(1973), Connor and Wang (1974) and Taylor and
Davis (1975). Some applications have been per-
formed by Brebbia and Partridge (1976) for the
North Sea, by Wang (1978) for the Massachussets
Bay, and by Kawahara and Hasegawa (1978) for
the Hamaishi Bay and the Tokyo Bay. However,
up to now, direct time-dependent finite-element
modeling of tides has been in a phase of careful
analysis and criticism (Gray, 1980), especially be-
cause of high computer costs.

Recently, another approach to tidal modeling has
been investigated simultaneously by some authors
(Kawahara et al., 1977; Pearson and Winter, 1977,
Le Provost and Poncet, 1977; Jamart and Winter,
1978; Lynch, 1978). The basic idea is that when
periodic motions are considered, excessive com-
puter costs resulting from the succession of time-
step integration can be avoided by replacing the
time-dependent equations of motion by an equivalent
set of modal equations corresponding to the signif-
icant tidal components present in the real spectrum.
Of course, the main difficulties of such an approach
are connected with the nonlinearities of the shallow-
water equations: advective transport and bottom
friction. Different methods can be used to include
these nonlinearities in the computations. Thus, in
order to avoid analytic Fourier decompositions,
Pearson and Winter (1977), for instance, evaluate
the nonlinear terms numerically from an iterative
process. In contrast, we have developed a complete
analytic Fourier expansion of the shallow-water
equations, as a preliminary to any numerical com-
putation. But, in any case, the transposition of the
problem from the time domain into the spectral
domain transforms the hyperbolic time-dependent
problem of tidal propagation into a set of elliptic
modal problems of the Helmholtz type, with suitable
boundary conditions. A secondary interest of such a
transformation is that a variational formulation can
be derived for each of these modal problems. Thus,
FEM appear to be the natural way of numerical
integration in realistic complex areas.

In a previous paper (Le Provost and Poncet, 1978),
an application to the computation of the dominant
component of the tides in the English Channel (the
semidiurnal M, constituent) was presented as a first
and simplified illustration of the method. The pur-
pose of this paper is to give a complete descrip-
tion of this in-time spectral method applied to the
resolution of the complete nonlinear problem of tide
propagation in oceanic and coastal areas: analytical
formulation of the equations, general Fourier expan-
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sion of the non-analytical friction terms, modal
decomposition of the primitive equations and limit
conditions, variational formulation of the typical
complex second-order Helmholtz equation defining
each component of the spectrum. As an illustration,
the method is first applied to the computation of
a sinusoidal tidal wave (such as M;) and its first
harmonic (M,), propagating in a rectangular rotating
channel. As an example of practical application, the
determination of the main components of the tides
in the English Channel are then presented: M,, S,,
N,, M,, K,. In the conclusion, some indications of
computer costs are given, for comparison with
classical FDM, showing a factor of 10 between the
two methods. However, it must be noted that such
a method cannot be extended too far in very shallow
estuaries where nonlinear effects are too-large, and
the method is not able to compute non-periodic
phenomena, such as storm surges.

2. Basic equations and boundary conditions

The analytical and numerical methods presented
in this paper are developed in order to compute
either oceanic or coastal tides. Consequently, the
nonlinear, depth-integrated shallow-water equations
are formulated in a spherical coordinate system:

-

ﬂ + _L_‘_Pl + __a_u — u—taan) — 2Q) singv
ot p OA a d¢ a
oP
+ ﬂ(uz + vz)llz + _{3__65 =§___ , (la)
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_‘;: - (D ) + ——— (Dv cosg) = 0, (Ic)
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where
A longitude
b latitude
a earth radius
p radius of latitude circle [=a cosd¢]
t time
4 sea surface elevation
u, v eastward and northwanrd mean depth velocity

components
undisturbed depth of water
total depth of water [=H + (]
angular velocity of the earth rotation
bottom friction coefficient
gravity
generating tidal potential.
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In a domain & limited by coastal boundaries I', and
open boundaries T, tidal computations consist in
integrating (1) with limit conditions

Vn=20 [V:(u, U)],
[C()\a ¢9 t) given along r2a

along T, (2a)

(2b)

where n is the unity vector normal to I';. In (2a)
the coast is assumed impermeable, and no flow
perpendicular to the coast is therefore permitted; in
(2b), the seaward boundary condition is supposed to
be available from tide gage data.

3. In-time spectral decompeosition of the problem

a. Development of the solution

Darwin (1883) and Doodson (1921), have shown
that the spectral structure of the generating tidal
potential can be written as

N, :
P =3 P;cos(wt + k). Q)
i=1

It contains N, constituents of precisely defined
frequencies w;. Although Doodson’s development
leads to an important number N, of components,
only some of them are practically significant.
Table 1 (p. 1135) gives the name, symbol and period
of the main classical constituents, with the ratio of
their amplitude to that of the major component of
each group (semidiurnal and diurnal). It can be no-
ticed that, except for the second S,, the third N, and
the fourth K,, all the others correspond to only some
small percentage of the M, constituent in the semi-
diurnal group. Consequently, in areas where the
diurnal components are of small amplitude, and this
is the case for the European shelf seas for instance,
arather good approximation of the real phenomenon
can be described by taking only these four main
astronomical constituents (M., S,, N, and K,). In the
following, N, is thus supposed to be reduced to a
rather small integer.

Since oceanic tides are linear, it can be assumed
that in the ocean, the vector solution S(u, v, {)
can be developed in the form

NP
§=23 ASy=

i=1

S Ausuh, ¢) cos[ant + gih, )], (4)

i=1

where A, is a characteristic amplitude of the wave
of index i.

In coastal areas, nonlinear phenomena introduce
new frequencies in the tidal spectrum. These proc-
esses can be formulated analytically by using a per-
turbation method in which the complete solution
in a coastal basin is assumed to be of the form
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N, a
S =3 (ASu+ 2 APSy)
i=1 p=1
N, N,
+ > AA S+ o,

=1 l=1

4

i+, (5)

with solutions §;,, and S;;;; expressed as
Sip = Sip cos[(aw, + bw)t + gil)]’
Siny = Sum cos[(aw;, + bw; + co)t + guul,

with a, b, and c integers. They correspond to
nonlinear harmonic constituents of the astronomical
waves coming from the ocean and to nonlinear wave-
wave interactions between these N, components.
Theoretically, development (5) includes an infinite
number of terms, but practically, it can be limited,
especially if the domain @ does not include very
shallow estuarine areas (Le Provost, 1974).

As a consequence from developments (4) and (5),
the limit conditions (2) are expressed under the form
(4) if the open boundary T, is situated in the ocean,
or the form (5) if T, is in a coastal area.

b. Development of quadratic friction term

The classical perturbation method consists of
introducing expansion (5) in Eq. (1), and identifying
the same orders of magnitude in A? and A;A,. Given
the non-analytical formulation of the quadratic bot-
tom friction, it is necessary to expand it beforehand
under a form similar to (5). This development has
been presented by Le Provost (1973). It assumes that
the velocity field is expressed as

2

y Akuk COS((Ukt + l’lk)
! (6)

Akvk COS(wkt + xk).
1

=
L]

<
Il
M=

Ed
L]

with N, being the number of constituents of fre-
quency w; and of order of magnitude A, present
in the velocity spectrum. It is valid only in areas
where a dominant wave can be found of amplitude
much larger than the others, such that

u2 +v2#+90

NC
A(u? + v) > Y (et + o),
k=2

)

with 1 being the index of the dominant wave.

The two components of the friction vector are
expanded as follows:



1126

Q
&

F,=—Vu®+ v?
D
= £ AiA; Y FX§P cos[Qfpt + OX]
H k.l n (8)
CU 2 2
Fy = —D— Vu + v
=\£ AxA; > FY§ cos[Qt + OY i)
~ H kl n
where QfF = SN, p.u(k, l, n)w,, pn.e integer = 0,

and FX{®, FY{®, ®X®, ®Y{® are functions of u,,
Uk, Y, Xk These functions have been determined
analytically for the orders of approximations A,?,
AAy, and A2 (k= 2,3,...N;). Some of these
analytical expressions will be presented later.

The identification of the frequencies Uy cor-
responding in (8) to these different orders of ap-
proximation gives

(9a)

(i) at order A% pulsations 2n + 1w, ]
(9b)

(ii) at order A,A;: pulsations 2nw; + €wy

withn =0,1,2...x,and e = *1.
Eq. (9) can be interpreted as follows:

1) For n = 0, we find the pulsations constituting
the velocity spectrum: w, at the order A,2, w, at the
order A,A,. The corresponding terms of (8) repre-
sent the damping effect of friction. ‘

2) For n # 0 in (9), all the pulsations appearing
are representative of harmonics or wave-wave inter-
actions induced by quadratic bottom friction.

c. Linearization of the damping terms of bottom
friction

Since bottom friction is formulated following the
quadratic Chezy law, its effects can be taken into
account only at the second order of approximation
in the classical perturbation method, the first-order
solution corresponding to the linear system deduced
from (1) by omitting advective and frictional terms.
But this first-order approximation appears to be very
far from the real solution, because of the im-
portance of bottom friction damping: this point has
been shown recently by Kabbaj and Le Provost
(1980). In their paper, it was proposed to adapt the
perturbation method in order to take into account
the damping terms of bottom friction of order A,2
as soon as the first-order A, for the dominant wave,
and of order A;A, at the order A, for the other
components of A, magnitude. Such a method corre-
sponds to a quasilinearization of the damping part
of bottom friction. Its application for a practical
case, a channel of constant depth 50 m, leads to
satisfying approximate solutions at the second-order
of approximation.
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We shall follow the same procedure in the present
method. Let us consider the damping terms of (8)
and deduce their quasi-linearized formulation.

THE DOMINANT WAVE

In the developments of (8) presented by Le Provost
(1973), the terms of order A,? corresponding to the
frequency w, are

[ FXQ cos[w,t + ¢X %]

= % Vu: + 02[Goo cos(imt + )

) . + %Goz cos(w,t .+ 26 — i)l (10)
FY® cos[wt + oY Q]

= % Vu,* + DJTZ[Goo cos(wy? + x1)
L + 1/2G02 COS(a)lt + 26 — Xl.)],
with
1 Coftm
Gy = 5 [ [1+J,cosQuw,t + 20)}*2d(w,t + 6),
T )
1 +7
Go, = —I [1 + J, cosQu. + 26)*
(L
X cos[n(wt + 0)]d(w,t + 6),
o 4uv2 .
Ji=1- sin?(y; — ,
: e S )
tan2 = u,? sin2¢, + 0,2 sin?y,

u,? cos2y, + v,? cosy;

Eqgs. (10) can be written in a slightly different form
which corresponds to a quasi-linearization:

[APFXQ coslogt + ¢X3] = R,A 1, cos(@yt + ).
R, @
+ = — [A,v; cos(wyt + x1)]
w;, Ot
1 (1
APFY(Y cos[wyt + ¢YP] = R1A v, cos(wyt + X1)
_Ro [Au, cos(wyt + Y],
w, Ot
with
A, i , Go )
R = — 174 2 + v 2 G + ’
1 \/i 1 ! ( 00 2.’1
A —— G 3
R,/ = 721_ Vi + 2 2_,012 (1 - J,
e=+1 if 0<(,’111—X1<7T’
€=_1 if 7T<ll/1_X1<27T‘

The same formula has been obtained by Dronkers
(1962) in his linearization of the quadratic resistance
term of a purely sinusoidal tide.
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2) THE OTHER WAVES IN THE SPECTRUM

For any frequency wyg, kK # 1, at the order of ap-
proximation A,A,, it is possible to deduce, from
the development (8) presented in Le Provost (1973),
quasi-linearized damping relations which- take
the form

[ A,ARFXQ cos[wpt + ¢XQ]
= (R + Ry)A u; cos(w,t + )
+ Ry"Axvy cos(wit + Xi)
A A FY® cos[apt + YR

= Rk"Akuk COS(wkt + l!,lk)

(12)

L + (Rk - Rk')AkUk COS(wkt + Xk),
with
Ri = 2 20 VaT T o760
2 V2 ’
3A, - 5 Goo U2 — v®
R, ==——Vu?+v?——r—,
3A, 5 Gox Uy,
R/ = —-— u2+02———COS - .
k 2 \/i 1 1 2, 0 + op e ¥

Thus, it appears that the damping terms corre-
sponding to any component of index i in the spec-
trum can be written in the general linearized form

ru; + r'v;
1 ' 1 (13)
r"ui + r"v,-.
(i) For the dominant wave, limited at the approxi-
mation A %

These coefficients depend on the dominant solution
itself, but it must be noticed that, at this order of
approximation, they are independent of the solution
of the other waves in the spectrum.

(ii) For the other waves of index k limited to the
order A A,:

r=—(Ry+R)); r=r"-=

C

H
m C !
r- = E(Rk - Ry').

These coefficients depend only on the dominant
solution.

d. Modal equations defining any tidal constituent

It is useful to simplify the presentation and the
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computations, by using complex notation. The tidal
potential (3) and the vector solution (5) are written as
( Pi COS((I)it + kl) = ‘n'iej“"‘ »

+ complex conjugate (c.c.)
Cil cos(wi,t + ‘Pil) = a,vle""“‘ + c.c. (14)
Ui COS(O)ilt + d}il) = ;Li,ejw'i‘ + c.C.

vy cos(wyt + Xu) = vyelen

(= -D.

Introducing the development (5) in Eqs. (1), using
the expansion (8) for the non-analytical friction
terms, and taking into account the quasi-linearized
expressions (13) of the damping part of these terms,
it is possible to deduce, for each frequency and each
order of approximation of the perturbation method,
a system of complex variables defining any tidal
component:

L + c.c.

( (wy + Nuy + (r' = v
r 8 B _p (150
a cos¢ OA !
r" + g + Gog +r")vy
B0 _p o (15b)
] a 0 ‘
jwyoy + ————
Jead a coso
o 9 _
\ x N (Hy) + a_d) [Hvy cosp)] = Fy,, (15¢)

with f = 2Q sin¢. The right members F, , F, , F,,
can be considered as forcing terms; they include
for astronomical constituents the tide generating po-
tential and for the nonlinear constituents the cor-
responding advective and frictional terms which pro-
duce harmonics and wave-wave interactions. For
each system, the set of limit conditions is

(16a)

[Vu'n = 0 on Fl
(16b)

oy = [ag)e given along T,.
Several points must be noticed concerning (15):

1) For the dominant wave, the system (15) is
limited to the first-order solution, but by including
the damping terms (11), it is nonlinear because of
the friction coefficients R, and R,’, which depend
on the solution of the dominant wave itself. This
problem will be solved through an iterative process,
but independently of all the other constituents in-
cluded in the real spectrum.

2) For any other component in the spectrum, of
order A,, the system (15), limited to the order A, A,
and including the damping terms (12), is purely
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linear, because the friction coefficients R, R;' and
R,"” depend on the solution of the dominant wave
only.

3) The complete resolution of problem (1) with
limit conditions (2) will thus be solved as follows:

e First, the damped dominant wave solution,
limited to the first-order A,, is computed (through
an iterative process).

e Second, any other astronomical constituent &
is computed, at the order of approximation A, with

a linearized bottom friction defined by the first-order .

approximation of the dominant wave, obtained
previously.

e Third, a knowledge of all the astronomical
components allows the computation of the nonlinear
forcing terms F,, F,, F,. Taking into account a
linearized bottom friction as defined in (12), it is thus
possible to determine any nonlinear shallow-water
constituents: the second-order harmonics of the
dominant wave as well as the second-order wave-
wave interaction constituents.

4. General variational formulation and finite-element
resolution

From (15a) and (15b), w; and »; can be solved

as functions of the forcing terms and o,
[ 1 dq
M = il: ( - ‘iFﬁw)
H cos¢p O g
- D(% - iFU,,)] (17a)
J . b g
a oa; a
S
H 9 g
1 Oy
- ( G _ iF#,l)] (17b)
cos¢p O\ g

with the notation
A = oy +r)E™';, B = (joy +r")E™!
C=("+NHEY D= -fE"
E=aol +f2+f(r' —r")+rr"
— 1" = jour + r"))(gH) ™.

Substituting (17a) and (17b) in (15c¢), it is then pos-
sible to eliminate w; and v; and reduce the problem
to the resolution of the equation

9/ B . .
joy cosday + —( O _ D aaﬂ)
oA\ cosgp OA o
P da, da;
+ —(A cosp —L _ ¢ “‘) =F,, (@17
0 EY) ax

where
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al 0
Fy = Fo‘il cosp + ?{a (B.‘F"‘il - DFVil)
+ _6_ [(AF v, — CFyu,) cosd] .
a(b il il

Thus, for each order of magnitude and frequency,
we have to solve a second-order equation of the
Helmholtz type relative to one complex unknown
oy, under limit conditions (16).

a. Variational formulation

We look for a solution of (17¢) in a weak sense,
that is, in the space H(%) of complex-valued func-
tions «, which real part a,, imaginary part «, and
first partial derivatives are square integrable on the
domain & of resolution. To do this, we integrate
(17¢) with a testing function 8 over the domain 9
and use a Green-Riemann formula in order to take
into account the boundary conditions (16). Thus, we
formulate the following variational problem

Find « in H(ay); such that L(«a, B) = F(B) holds
for any B in H(0), where H(a,) = {a € HY(D);
o = oy along T} and

B da 0B
cos¢p ON OA
.. e 8
+ A cosd 22& -C —,au—'B-]d@,
0 ad O\ 0¢

F(B) = J [—Fa cospB + f—[(BFV — DF,)
’ 7} 8

L(a, B) = j

D
_plxdk
0¢ O\

{-jw cospaf +

B
N
0B
a¢
Index il has been omitted in these notations; d %
denotes an element of area in 9. If we assume that
the coefficients A, B, C, D, E are coefficients
independent of the solution (which is not the case for
the dominant wave), it is possible to prove the exist-
ence and the uniqueness of the solution, under some
conditions of smoothness and orders of magnitude
for the coefficients depending of friction, depth, and
forcing terms F,, F;, F, (Le Provost and Poncet,
1978; Poncet, 1979). Moreover, it can be shown that

landward boundary conditions (16a) are automati-
cally satisfied on I'; by this solution.

v+ (AF, — CF,) cos¢ ]]d@. (18)

b. Finite-element resolution

The variational problem (18) can be solved by a
finite element method. Given a regular triangulation
of 9, it is possible to use the classical results of
Lagrange interpolation on triangles, in order to ob-
tain an approximate solution to problem (18).

For practical applications, we used an automatic
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finite-element package called DELTA built by
Poncet (1979). Efficient in an interactive implemen-
tation, on a time-shared computer, it appears as a
short language of commands allowing one to pro-
ceed through the different steps of formulation and
resolution of a finite-element problem. This package
has been adapted to the automatic computation of
the principal harmonic constituents of the tide in a
given area:

o The land boundaries are directly extracted from
a library stored on a magnetic tape containing the
description of the coasts all over the world.

o The depths are automatically interpolated at
integration points from a bathymetric data base
previously stored on a regular grid.

e Through the ‘‘domain’’ command of the code,
it is possible to obtain an automatic triangulation
of & with a specified size of the triangles along
the boundaries.

e Through the ‘‘element’’ command of DELTA,
various interpolation processes of the solution on the
triangles are available. For practical applications we
used Lagrange interpolation of first, second and
third degrees.

e For each constituent in the spectrum, it is
necessary to specify only its name, frequency, and
complex sea surface elevation parameters along the
open boundaries. ‘

e When using a graphic display, the results are
directly visualized on the screen: maps of isobaths,
maps of triangulation of the domain, maps of equi-
potential lines for the amplitude and the phase of the
sea level of the computed component, velocity
field distribution in amplitude, and direction at the
different phases of the studied period.

§S. A numerical illustration

In order to illustrate the main characteristics of
the method let us solve an idealized problem cor-

2w 1 . 8
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responding to the propagation of a tidal wave in a
rotating channel of rectangular shape and constant
depth. The time and space scales are chosen in
reference to a schematic of a real basin which will
be investigated in detail in the last section of this
paper: the English Channel, which can be roughly
approximated by a rectangular channel extending
from 49 to 51°N, from 2°E to 5°W, with a constant
depth of 50 m (see Fig. 1). Coastal conditions are
considered at the east, north and south, and open
sea boundary on the west. The wave coming from
the ocean through the western limit is supposed to
be monochromatic, of period 12 h 25 min (the M,
component) but slightly distorted by its first har-
monic M,. However, an adequate boundary condi-
tion on the sea surface elevation is difficult to
choose a priori, along the western limit. Thus, we

“decide to double the length of the channel and

consider for this academic illustration a channel
extending from 12°W to 2°E, in order to avoid, in the
second half part of the basin, between 5°W and
2°E, most of the influence of open sea condition inco-
herences. The depth is taken constant (H = 50 m),
and the limit conditions at the western boundary are
arbitrarily chosen as constants: the amplitude {,,
and the phase ¢,; of the fundamental component,
the amplitude {,, and the phase ¢,, of its first
harmonic. For the numerical experiment here pre-
sented, {,,(12°, ¢) = 4 m, ¢,,(12°, ) = 0°, {;,(12°,
¢) = 0.15 m, ¢,(12°, ¢) = 60°; as will be seen later,
the orders of magnitude of these data are in good
agreement with in situ observations of the M, and
M, constituents in the English Channel. The bot-
tom friction coefficient is taken as 2.5 x 1073,

a. Resolution of the dominant wave limited to the
first-order approximation

This fundamental component is supposed to be
induced in the basin by the open boundary condi-

L
=
=

FiG. 1. Geographic location of the idealized channel considered (a) and triangulation used
for the finite-element computations (b).
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tions only (as usual in shallow-water areas, the
tidal potential P is neglected; in the Channel, for
instance, the maximum of amplitude of the M, tide
forced by P is only of the order of 1 or 2 cm). Thus,
the forcing terms of (15) disappear:

FalleltlleV11=0'

For this dominant component, the coefficients of
linearized friction R, and R,’ are those defined by
(11), i.e., they are dependent on the solution itself.
Consequently, we must solve a nonlinear problem,
the solution for which is obtained through a clas-
sical iterative process. Starting from a guess for the
velocity field (w,)o and (vy;)y, which fixes the values
of the friction coeffi¢ients R, and R,’, we compute
a first approximate solution of (15) through the varia-
tional problem (18), and then iterate until a satis-
factory stability of the solution is ob,tained:

Step 1.

guessf (R,) Ril(n)e, (1)o]
rom 1)1 = £ Kg1)es (Paro
(k11 (_—1—1_)> (R1)1 = Ry/'[(#11)0> (@11)0]
o . |
from solution (411)1
£18) (Mu)l
0 @i
Step n:
(@11)n-1 from ((R,), = Ry[(%1)nss F1)nsl
n = K l(1)n—15 Pi)n—1
a5 1R = Ry Wtadess (andes]
27
from solution (Casde
18 (/J«n)n
of (18) Wi

In order to accelerate the convergence of the itera-
tive process, the Aitken scheme is applied, which
consists in computing a new guess for the friction
coefficients R, and R,’ before iterations number
n = 3k + 1, following the formula:

Gn = Sn - [(Sn—l - Sn)z/(sn—z - 2Sn—l + Sn)] (19)

The numerical resolution of problem (18) is realized
‘by using the finite-element procedure described
previously. The triangulation is shown on Fig. 1;
second-order elements are used to compute the
o solution; the velocity field (u, v) is obtained from
the « solution, using (17a) and (17b). Notice that
second-order elements are necessary for the com-
putation of «, in order to be sure of the con-
vergence of its second-order derivatives, which
must be known for the computation of the forcing
advective terms in Egs. (15). A first guess for the
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velocity field is necessary to begin the iterative
process: one possibility is to take (u;)y = (¥1)y = 0
(see Kabbaj and Le Provost, 1980). However, in
the two-dimensional case it is better to fix a reason-
able nonzero value for the velocity field, in order to
obtain a reasonable solution as soon as the first itera-
tion. An interesting simplification of formulas (10)
and (11) arise when the hodograph of the current
is rectilinear. In this case J, = 1, and so R," = 0,
and R, is only a function of the maximum of the
velocity, i.e., :
R, = (8/37) Vyax- (20)

In rather narrow channels, like the one here con-
sidered, the velocity vectors tend to be parallel to the
lateral boundaries, except at the end of the channel.
Thus, we choose the approximate value (20) as first
guest for the iterative process, with V,y = 1 m s71,
which is the order of magnitude of the currents in
areas like the English Channel.

The convergence of the iterative process is illus-
trated in Fig. 2. The amplitudes of the sea surface
elevation and the longitudinal velocity component
computed at the center of gravity of the triangles
situated in the eastern half part of the channel are
plotted for the different iterations. Seven iterations
have been completed, with two accelerations follow-
ing the Aitken scheme applied before iterations 4 and

acceleration

o——/\‘\*—“’_-‘ﬁ — ]
S A N T T N N S
1 2 3 4 5 6 17 1 2 3 4 5 6 17

iteration iteration

Fi1G. 2. Convergence of the iterative method of integration of
(17), for the dominant wave, in the eastern half part of the
academic channel, showing amplitudes of the sea surface elevation
(a) and of the longitudinal component of the velocity (b), at the
center of the different triangles. For geographic location of points
A to L, see Fig. 1.
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7, and it can be seen that the convergence is quite
rapid. As early as the fourth iteration, just after the
first Aitken acceleration, the solution is already
quite good. It should be noticed that the limit
solution obtained after these seven iterations (com-
bined with two accelerations) is the same as the one
obtained from a simple iterative procedure, without
Aitken acceleration. In the latter case, 12 iterations
are necessary to obtain the stable solution (see
Rougier, 1979).

The cotidal lines of this solution are presented on
Fig. 3. Given the depth of the channel and the period

of the computed wave, it can be easily verified that’

the longitudinal size L of the channel corresponds
to a wavelength of the oscillation. Consequently,
the solution has two amphidromic points at the
abscissa L/4 and 3L/4. Because of friction damping,
the western amphidromic point is virtual, the west-
ward going reflected wave being much smaller than
the incident wave. As was suspected, at the
entrance of the channel the constant values of the
amplitude and the phase of the wave is not coherent
with the usual solutions in rotating systems; this is
confirmed by the computed velocity field presented
on Fig. 3c. Except at the entrance and the end of the
channel, the velocities are quite parallel to the lateral
boundaries. Near the end of the channel, the current
roses are elliptic because of the wall at the eastern
boundary. At the entrance of the channel, the
horizontality of the sea surface, imposed by the limit
condition {;; = C*, induces a velocny field curva-
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ture produced by the Coriolis force, not balanced
in this area by any sea surface slope.

b. Resolution of the first harmonic of this dominant
wave limited to the second-order approximation

Following the perturbation method presented in
Section 3, the forcing terms F,, F, and F, of this
component are deduced from the advective terms of
Egs. (1a) and (1b), and the nonlinear term of (1c):

(F - _ 1 [IJ- Opyy
Hz acosp | ON

- vua% (s cosqb)] , Qla)

1 0
Fuu = - [l"“ll al

61/(;1 cosed + pg? sind;] , (21b)

1

Fo = ——
2 a coso

[ 0 (atyaftr)

+ B;a(b (0 V11 cosq&)} . (2lo)

The associate friction terms are defined by (12),
functions of the solution of the dominant wave only
and, consequently, known from the preceding

400 130 109 219 266
{ N — J
AN \\\ 100~ Q
~
D O e 0 \ﬂo\\ °°\
L mmwmeT T SN
Lmso0 s =TT T e S
400 395 305 326 27
YL 1 R s w2 3% 0000 0»
- ~A\ep T ‘
T
) \ . //\\‘L O
1

FiG. 3. Idealized channel. Solution for the dominant wave limited to the first-order
approximation showing distribution of the (a) amplitude (cm) of the sea surface elevation
(b) cotidal lines (deg), and velocity vectors at time 2, 4, 6, 8, 10 and 12 h.
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F1G. 4. Idealized channel. Solution for the first harmonic of the dominant wave limited
to the second-order of approximation showing (a) distribution of -amplitudes (cm) and

(b) cotidal lines (deg).

computations:
Ry = Ro(p11, v11); Ry = Ry’ (s v14);
Ry" = Ry"(pa1, i) (22)

Thus, for this harmonic constituent, the problem
(15) is purely linear and can be solved easily through
the variational formulation (18) by using the finite-

element procedure already used for the dominant -

solution, but here without any iterative process. An
arbitrary set of conditions is taken as the open
boundary: £,; = 15 cm, ¢, = 60°.

The results are presented in Fig. 4. As expected,
real amphidromic points, at a distance of L/4, are
found in the eastern part of the channel. Three real
points appear, while a rather confusing pattern oc-
cupies the first quarter of the channel, near.the open
boundary. The location of the eastern amphidromic
point, just at the same distance from the two lateral
boundaries, proves that in this area the wave going
eastward has the same amplitude as the one propa-
gating westward. In contrast, the western point is

N

near the southern boundary: in this area the part of
the harmonic propagating toward the output of the
channel is larger than the one in the other direction,
which is easily understood because an important
part of the energy is given inside the channel by
nonlinear transfers from the fundamental wave,
and then propagated outside.

6. Example of practical application: The tides in the
English Channel

The English Channel is an excellent area for test-
ing our method, because Chabert d’Hiéres and Le
Provost (1979) have published an atlas of the main
components of the tide in that domain, estab-
lished from an extensive study based on in situ
observation, and data obtained from a reduced
physical model of that sea, built on a rotating plat-
form. Thus, the solutions are already well known
and give us the possibility of checking our numeri-
cal simulations. The procedure is the same as the one

FiG. 5. Triangulation used for the English Channel.
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Fi1G. 6. The English Channel. Solution of the M, tides showing coamplitude
lines (cm) after the first interation (a) and the seventh iteration (b); and cophase
lines (deg) after the seventh iteration (c). Computed values are given at some
particular nodes, to be compared with in situ observed values placed in
brackets.

followed in the preceding section. The first step is
the computation of the dominant wave M,.

a. The dominant wave M,

The domain investigated is limited by a line
Devonport-Roscoff as the western boundary and
Boulogne-Douvres as the eastern boundary. The
description of the coastal limits are obtained from
the library describing the World Ocean limits, al-
ready mentioned in Section 3b (Fig. 5). A network of
110 triangles is built automatically, with a regular
discretization of the coastal line by elements of 45
km (this triangulation is coarse and could be refined,
but we shall see that even with this limited number
of triangles, the solutions are satisfying). The depths
at integration points are interpolated from a data

base of 264 nodes distributed on a regular rec-
tangular network with %° in longitude and %° in
latitude. As limit conditions, we know exactly, from
harmonic analysis of in situ observation in Devon-
port (Dt), Roscoff (R), Boulogne (B) and Douvres
(Ds), the amplitude and the phase of M,. Thus, in a
first approach, we have carried our computations
with a definition of « along the open limits Dt — R
and B — Ds deduced by a linear interpolation be-
tween the known values at the in situ observation
points. The results presented in the following have
been obtained from an exponential interpolation be-
tween Dt and R, which is in better agreement with
the solution obtained by Chabert d’Hiéres and Le
Provost (1979). As a first estimate of the friction
coefficients, we take R,’ = 0 and R,' = (8/37) Vinax
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FiG. 7. The English Channel. Computed velocity vectors for the M, tide, at the
center of gravity of some triangles, every 2 h.

with Vipax = 1 ms™, just as for the academic
channel previously considered. C is fixed to its
classical value of 2.5 x 1072. Second-order elements
are used for the computation of « by our FEM
procedure, and seven iterations are sufficient to ob-
tain a stable solution.

Coamplitude lines are presented for the first and
seventh iterations (Figs. 6a and 6b respectively).
Compared to the solution of Chabert d’Hiéres and
Le Provost (1979) the first estimate already looks
good, but a detailed examination of the solution
shows that the amplitude of the wave is too big

in the eastern part of the basin, and that the mini-
mum of amplitude is not correctly situated (dis-
placed toward the west). After only the second
iteration (not presented -here), the results are
efficiently corrected, leading to a wave slightly too
damped, as can be expected from the iterative
process; the final solution presented in Fig. (6b) is
satisfying, within 3% of difference with the values
deduced from in situ observations along the coasts.

Fig. 6c gives the computed cophase solution, in
good agreement with the observed values (in
brackets). In Fig. 7, current vectors are presented

270

279}

1 '

i 1 1

F1G. 8. The English Channel. Cotidal lines for the harmonic M, showing
(a) amplitudes (cm) and (b) phases (deg).
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TABLE 1. Name, symbol, period and relative amplitude of the
main constituents of the tide generating potential.

Name Period

i (semidiurnal) (b/min)  P/P,

1 Principal lunar M, 12/25 1
2 Principal solar S, 12 0.4653
3 . Major elliptical lunar N, 12/39 0.1936
4  Luni-solar declinational K, 11/59 0.1267
5  Minor elliptical lunar L, 12/11 0.0422
6  Evictional major vy 12/37 0.0375
7  Variational Mo 12/52 0.0306
8  Major elliptical solar T, - 12/01 0.0273
9  Second-order elliptical lunar 2 N, 12/54 0.0259
10  Evictional minor A2 12/13 0.0073
(diurnal) PPy,

11 Luni-solar declinational K, 23/56 1
12 Principal lunar 0, 23/49 0.7110
13 Principal solar P, 24/03 0.3309
14 Major elliptical lunar Q, 26/56 0.1376

at the center of gravity of some of the triangles;
we can notice the intensification of the velocity in
the central part of the channel, especially around the
La Hague Cap. In this area, the velocity field is
quite rectilinear. In contrast, in the Bay of Mont
St. Michel and in the eastern part of the basin, the
hodographs are elliptic because of the influence of
the coastal topography and the effect of the
Coriolis force. Near the Strait of Dover, these
hodographs are rectilinear because of the narrow
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passage between England and France. All these
details are in good agreement with observed
currents.

b. The nonlinear first harmonic wave M, of the
dominant wave M,

Following the method presented in this paper and
illustrated in the Section 5, we have computed the
M, constituent produced by the M, wave on the
continental shelf. The forcing terms (21) and damp-
ing coefficients (22) are computed from the M, solu-
tion obtained previously. Some difficulties arise for
the choice of limit conditions along Dt — R and B’
— Ds, because of the lack of observed values away
from the coasts. In a first attempt, a linear interpola-
tion of {,, and ¢,, between the known values at
Dt, R, B and Ds led to an incorrect solution in the
western part of the domain. A more precise defini-
tion of {,, along the limit Dt — R has consequently
been deduced from the known solution of Chabert
d’Hieres and Le Provost (1979), following an ex-
ponential distribution from the French coast to the
English coast. The corresponding solution is pre-
sented in Fig. 8. Two amphidromic points appear,
one in the western part and the other in the eastern
basin, with phases propagating toward the west
along the western coast of England, and toward the
east along the eastern coast, just as observed in situ.
Some imprecision still remains, but this solution, ob-
tained with a rather coarse triangulation (cf. Fig. 5),
is in good agreement with the Chabert d’Hicres
and Le Provost solution.

1 A i

F1G. 9. As in Fig. 8 except for the semidiurnal S, tide.
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Fi1G. 10. The English Channel. Comparison of the M, and S, solutions showing
S,/M, ratios (a), and (S, — M,) phase differences (b).

An important point must be noticed from this
M, computation. It appears that such a solution is
very sensitive to the definition of open-sea limit
conditions. Thus, if open sea in situ values are not
available, we must take care to locate the marine
boundaries as far as- possible from the nonlinear
shallow-water areas. We must mention that the spec-
tral finite-element method presented in this paper
could be adapted to the investigation of an op-
timized set of open-sea boundary conditions, based
on the comparison of computed and observed values
along the coasts of the studied domain.

¢. The other waves in the spectrum

Following the present method, the computation of
the main astronomical constituents (S;, N,, K,
..., K;, O)) corresponds to the resolution of linear
problems of type (18), because friction coefficients
R,, R, and R,” depend on the dominant solution
only, if limited at the order A;A, [see Eq. (12)].

As examples of results, the computed cotidal
charts of two astronomical constituents are pre-
sented: S,, which is the main solar contribution
in the semidiurnal species, and K,, which is the
principal diurnal constituent in the Channel. In
Fig. 9 it can be seen that the S, solution is
qualitatively very similar to the M, solution, because
of the proximity of their situation in the spectrum.
However, the differences between these solutions
are significant. In Fig. 10 the distribution of the

S./M, ratios and (S, — M,) phase differences are
presented. These nets are typical and have already
been interpreted by Le Provost (1974) when he com-
pared the similar solutions obtained in his intensive
study of the main components of the tides in this
area. These figures are characteristic of the differ-
ence of wavelength between the two constituents:
as these waves are partly reflected by the Picardy
coast on the east side of the domain, an estimate of
the position of their minimum of amplitude, along
the English coast, can be made through the
computation of a quarter of their wavelength, from
the eastern side of the model, toward the west. As
their wavelengths are proportional to their period,
we deduce that the amphidromic point of the M,
wave, of longer period, is situated to the west of the
S, amphidromic point. This explains the increase
of the S,/M, ratio in'the area of minimum of
M, amplitude, and the rapid decrease of this ratio
toward the east; in the same way, a rapid change
of the (S, — M,) difference of phase is observed
around this area of minimum of amplitude of the
two waves, resulting from the difference in position
of their (virtual) amphidromic points.

Fig. 11 gives the cotidal charts computed for the
K, constituent; this diurnal solution is completely
different from the M, and S, semidiurnal solution,
with an amphidromic point near the Strait of Dover.

All these results are in good agreement with
in situ observations.
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F1G. 11. As in Fig. 8 except for the diurnal-K, tide.

’

7. Conclusions

We cannot present here other results because of
lack of space, but the procedure is the same for
all the other astronomical or nonlinear constituents.
If the investigated area is not restricted to very
shallow-water areas, the present method is well
adapted to give satisfying solutions for the main
constituents of the tide, with very low computing
time requirements. For the English Channel, a
comparison of computer costs on IBM 360/65 has
been performed between our present in time-
spectral FEM, and a classical second-order FDM
solving the time-dependent hyperbolic problem (1)
and giving similar results.

The FEM has been applied with the triangulation
presented in Fig. 5, with second-order elements and
seven points of numerical integration taken on each
triangle. The FDM is based on a predictor-corrector
second-order scheme, with an elementary mesh of
10 km. In order to avoid excessive computer ex-
penses, we have limited the tidal cycle to the semi-
monthly modulation, i.e., simplified the semidiurnal
astronomical spectrum to M, and S,. Thus, we know
from previous investigations (Le Provost, 1974) that
the corresponding nonlinear spectrum in the Chan-
nel can be correctly described by looking at the
constituents

M,, S;, 2 MS,, 2 SM,, M,, MS,, 3 MS,, My, 2 MS,.

With the FEM, one iteration for the dominant wave

needs 50 s. Since seven iterations are used for the
M, computation, its cost is 350 s. The computation
of any other astronomical constituent takes 32 s.
The determination of a nonlinear constituent, such
as My, needs 50 s. Thus, the total cost is 50 X 7
+ 32+ 50%x7="732s,i.e., ~12 min.

The second-order FDM which we used needs four
semidiurnal tidal periods to reach stability, and
then must be run for half a month, i.e., 29 periods.
Since one period of simulation needs 336 s, the total
cost of such a simulation is (4 + 29) x 336 = 11 088
s, i.e., ~3 h.

The comparison of these two times shows that our
spectral FEM is 15 times faster for this particular
example. Thus, given the other interesting charac-
teristics of the model (flexibility of the size of the
triangulation, automation of the resolution, sta-
bility, . . .) this method appears to be attractive for
studying tides in oceanic or shallow-water areas.
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