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ABSTRACT

Long waves are affected by bottom topography and under certain conditions may be trapped along
topographical contours which then act as wave guides transmitting wave energy for great distances
with little loss. This study examines waves trapped along a submerged ridge described by straight parallel
bottom contours which in cross section are composed of constant-slope segments bounded on either side
by constant-depth segments. Solutions are found for time harmonic waves periodic in the along-ridge
direction and of exponential decay behavior normal to the ridge over the constant-depth segments. Over
the linearly varying topography describing the ridge, the solution is in terms of two Kummer (or Whittaker)
functions. For a given geometry, a dispersion equation is obtained relating the wave frequency to the
along-ridge wavenumber for trapped waves. A constant Coriolis parameter is included, but primary
interest is on class I (high-frequency) waves. A comparison of cutoff frequencies predicted for this
piecewise continuous ridge and those for a segmented constant-depth ridge is made, and the appropriate
scaling factors between the two results are discussed. Comparisons of the phase and group velocities
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are also made for these cases.

1. Imtroduction

The study of topographically trapped waves ap-
pears to have begun with Stokes’ (1846) description
of edge waves on a linear topography of straight
paraliel bottom contours. While this solution was
originally felt to be of only theoretical interest, ob-
servations during the last few decades have given
new physical significance to these forms of waves.
This study shall examine the influence of one-dimen-
sional (parallel contours) bottom topography on the
trapping and guiding of ocean wave energy. In par-
ticular, linearized long-wave theory, for a homo-
geneous perfect fluid, with rotation is used over
topographies which consist of constant and linear
depth cross-sectional variations. Before further de-
tail on this study, a review of some background
material is in order. LeBlond and Mysak (1978) pro-
vide an important overview of the area of ocean
waves; more specific results are given below. Eckart
(1951) showed that, for shallow-water theory, the
Stokes solution was just the lowest mode of an in-
finity of modes and Ursell (1952) obtained these re-
sults generalized to three-dimensional linearized
water-wave theory leading to a mixed spectrum of
discrete and continuous eigenfrequencies. Reid
(1958) showed that the earth’s rotation would have a
modifying effect on these class I or inertio-gravi-
tational waves (which can propagate in both direc-
tions along a north-south coast albeit with differing
phase speeds for nonzero rotation) and would also
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allow for a class II or quasi-geostrophic wave which
can propagate in only one direction and can not
exist in the absence of rotation.

The differences between class 1 (high-frequency)
and class II (low-frequency) shallow-water waves
has lead to two roughly distinct classes of litera-
ture—those primarily concerned with relatively
nearshore phenomena, e.g., tsunami periods and
shorter (under 1 h), see Munk et al. (1956), and
those concerned with oceanographic-scale phe-
nomena, e.g., periods of the order of days. Clearly,
these interests overlap but a distinction can be made
on the basis of the wave frequency o versus the
Coriolis frequency f. If w > f, it is the edge wave
or class I wave which is usually of primary interest
while if o < f, it is the quasi-geostrophic or class
II wave. This study is directed at the former; the
second class of waves will be discussed in a later
paper.

It is clear from the various formulations of these
problems that waves may be trapped over com-
pletely submerged topography, as shown by Hidaka
(1976)—see Meyer (1971) for a review of resonance
of unbounded water bodies, Shen et al. (1968) for a
geometrical optics approach and Buchwald (1968)
for a solution of the piecewise constant-depth case
and a discussion of the general nature of such prob-
lems as solutions to Sturm-Liouville equations. One
aim of the present study is to see how well the piece-
wise constant-depth solution represents solutions
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for gently sloping bottom topographies by compari-
son to another analytical solution for piecewise
linear depths. The solution to this linear topography
was noted by Shaw (1974) and Guza and Davis (1974)
in terms of Kummer functions, but no numerical
results were given until Shaw (1977), due to an ap-
parent lack of tables and/or subroutines for these
functions.

While the question of resonances is difficult
enough for the trapped-wave problem, the prior
question of how energy arrives to be trapped also
must be considered. For trapped waves, the energy
may be supplied by nonlinear effects, local at-
mospherlc forcing or even local seismic disturbances
since a linearized, unforced theory only provides for
the persistence of such trapped motions once begun.
However, it must be pointed out that total wave
trapping is exceptional; Longuet-Higgins (1969) has
shown that curved topographies lead to ‘‘leaky”
trapped modes. Rather than negating the importance
of trapped-wave studies, these results enhance
them, since this provides a simple mechanism for
these cases by which incident wave energy can be
fed into the resonating system. Alternatively, for a
ridge of finite length, wave energy may enter the
system at the ends, exciting a resonance along the
ridge as well as across the ridge. This mechanism
may be particularly appropriate at locations where a
long ridge terminates at a coastline, e.g., the
Chatham rise off of the east coast of New Zealand
(Heath, 1979).

2. Formulation

The problems considered here are concerned with
wave-energy trapping by a topography with either
a one-dimensional piecewise discontinuous cross
section composed of constant-depth segments or a
piecewise continuous cross section composed of
linear-depth segments. Although rotation of an f
plane will be included, emphasis will be on first class
surface gravity waves on a homogeneous fluid where
Coriolis effects are a modifying rather than a funda-
mental influence.

The vertically integrated equations of motion in a
coordinate system with contours parallel to the y
axis are

ou/dt — fvo = —gdl/ox, (1a)
ov/dt + fu = —gdl/dy, (1b)
O(Hu)/ox + 8(Hv)/dy = —d/ot, (1c)

with water depth H and Coriolis parameter f.
Assuming time harmonic behavior exp(—iwt) and
periodic along-contour behavior exp(iky) allows
these equations to be solved separately for the hori-
zontal velocities u, v and free-surface elevation .

RICHARD PAUL SHAW AND WAYNE NEU

1335
u = (—iwgdllox + ifkgNw? — f?), (2a)
= (wgk{ — fgdl/ox)(w® — f?), (2b)
d?  dH(x) d¢
Hix )—— dx  dx
N it A L YL AP (=0, (2)
g w dx

These equations may be nondimensionalized with
respect to some reference depth H, and length L,
i.e., using

l=UHg h=HH,;
(%,5) = (x,y)L, k =kL
(@1, 8) = (u, v)(wL/gHp)
f=flo, ®= wL(gHg)"?
Eqgs. (2) become

3

i(fkg — 8L/ox)I(1 — f?),
b = (kT - fag/ox)/(1 - [,
dh(x) d{
dx  dx

N}
||

- d¥
h(x) e +

wlata g - G- weli-0 @
dx

which will have different solutions for different

topographies 4(x). The simplest case arises for con-

stant depth, for example, H, (not necessarily the

reference depth) such that h, = H,/Hp,

d?

ho— + [@%1 — f?) — hok?®]L = 0, &)
dx?
leading to
{ = c, exp(+A%) + ¢, exp(—A%), ©)

where X is defined by the indicial equation A* = k2
~ @*1 — f?/h,. For values of h, and f such that
k> @1 —fl)/ho, A is real and the solution for g
is exponentlal in ¥ while for k2 < @*(1 —fl)/ho,
is imaginary and the solution is sinusoidal in x.

If a linear depth is considered, A (x) = [6 + yx],
this equation reduces to

d? d
6+ sy Ly o - - iy
- @+ YR =0. (D
Introduce z = § + vy&; this equation is then
2 b — Ff2y _ kFf
Lo A [“’2(1 - My & ]; 0, (§
dz*  dz v? v?

which is reducible to the confluent hypergeometric
equation as seen in Erdelyi e al. (1953, Chap. 6,
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Section 2). Two distinct cases must be considered.
If k£ = 0 (the wave is traveling parallel to the x axis),
Eq. (8) corresponds to (8) of this reference and the
solutions are Cy[2a(1 — f*)'2zV2/y], where C, repre-
sents any two independent solutions to the zero-
order Bessel equation. If X # 0, we have the form
of Eq. (6) of this reference with solutions exp(—&/2)

x F(a, c, £), where
(1 -hH @ -1

a= + _ ,
2 2yk

c=1,

C 2kz

£=-

Y

F represents any two independent solutions to the
confluent hypergeometric equation. Since ¢ = 1,
one of the solutions will be of logarithmic form.

This form is appropriate for &£ > 0. For ¢ < 0, the
Kummer transformation leads to the form exp(+£/2)
x F(a', 1, —¢), where a' =1 —-a =1+ f)2
— " @&¥1 — f2)/2yk.

The solution in regions of nonzero, constant-slope
bottom topography, for k # 0, therefore (using
the notation of Abramowitz and Stegun, 1964)

{ = exp(—€&/)[csM(a, 1, &+ c,Ula, 1, 8] € >0,
exp(+&2)[csM(a’, 1, —§)
+ C4U(ala 1’ _6)] ‘f < 0» (9)

where ¢; and c, are arbitrary constants. M and U
represent the two independent Kummer functions.
These solutions also may be expressed in terms of
Whittaker functions. ‘

Il

Il

3. Step ridge topography —discontinuous, constant-
depth cross section

This problem was discussed by Buchwald (1968)
and forms a test case against which the later con-
tinuous depth case may be examined. Since con-
stant-depth, discontinuous (piecewise continuous)
topographies are much simpler to use than any other
topography, it is of great practical interest to know,
analytically, how well they may represent a gradu-
ally varying topography. The basic comparison will
be done for the dispersion equation, in particular
for the low-frequency cutoff frequencies and the
phase and group velocities.

Consider a cross section defined by three regions
of constant depth:

Region I:

, —o<x<-B; H(x)=H,
Region II: !

-B <x < +B; H(x) = H,,
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Region III:

+B < x < +w; H(x) = Hj,

where coordinates are chosen such that H; = H,.
Using B and H, as reference lengths for horizontal
and vertical distances respectively, the solution in
region I is i
G = A, exp(AX), (10)

where A\, = [k* — @*(1 — f2)]'2 and the portion of
the solution which diverges as ¥ — —o is sur-
pressed. In region II, an oscillatory behavior is an-
ticipated, i.e.,

Ly = A, cos(AsX) + B, sin(A,0), (11)

where A, = [@X1 — f2)/h, — k?]V2. Finally, in re-
gion III we anticipate another exponentially decay-
ing solution

Zm = A exp(—A;3X), (12)

where \; = [k? — @*(1 — fA/hg]'?.

Clearly, k& is bounded by @[(1 — f2)/h,]"* from
above and by @(1 — f»"2 from below.

Continuity of surface elevation and mass flow

requires
Zx(i = -1 = Zn(f = -1
mwx = -1 = }-lzﬁu()z = -1
o . , (13)
i(x = +1) = fu(x = +1) .
hoiay(x = +1) = hgapm(x = +1) J

leading to a system of four homogeneous linear alge-
braic equations on [A,, A,, B,, A;]. The determinant
of the coefficient matrix of this system must vanish
in order to have a nontrivial solution; this defines
the dispersion equation. For simplicity, consider the
symmetric case H, = H, without rotationf = 0. The
dispersion equation then reduces to

2hshNs cOS2A = (A220% — A2 sin2),.  (14)

Along the line @ = k which forms a lower bound
on the allowable values of &k for trapped waves, A,
= 0 and the dispersion equation reduces to

sin2\, =0, Npy=na/2; n=0,1,2,3.... (15
These are the cutoff points, corresponding to
@n = (nm/2)|ho/(1 — hy)|*2, (16)
ky = (nm/2) | /(1 = hy) |12, (17)

The shape of the free surface separates into sym-
metric and antisymmetric modes. For even n, B, is
zeroand A, = A; = cos(nn/2)A,, i.e., these are the
symmetric modes, while for odd n, A, is zero and
A, = —A; = —sin(nnw/2)A,, i.e., the antisymmetric
modes.
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4, Linear ridge topography — continuous linear cross
section

Consider a ridge composed of a piecewise con-
tinuous, linear cross section defined by
Region I
—o<x < -A; Hx)=H,
Region II:

—-A <x<0; H(x)=H2_(H1—H2)x/A,
Region III:
0<x<B; H(x)=H,+ (H; — H,)x/B,

Region IV:

B <x <, H(x)=H,

as shown in Fig. 1. A suitable reference depth is
H, = H, and reference length L = A.

Then in region 1, #; = 1 and

4 = A, exp(\E) + By exp(—=\X),  (18)

where \, = [k* — @*(1 — f?)]"2 Clearly, B, must be
set equal to zero and &% > @*(1 — f?) to have an
exponentially decaying wave as X — -,

Similarly in region IV, h = H3/H, = h3 and

by = Aq eXp(—AgX) + B, exp(+A%), (19)

where i o
A= (R = @1 = Fohg) e,

Again, we require a decaying solution as ¥ — +,
and thus B, = 0 and k* > &*(1 — f)/h;.

Next, in region II, A(x) = h, — (1 — hy)% such
that 8 = h, < land y = —(1 — hy) < 0. Then

Zu = exp(—¢&:/2)[A;M(as, 1, +&5)

+ BZU(aZ’ 15 +§2)] (20)
with & = +2k[(h./(1 — hy)) — ] and a, = Y5 — f/2
— @1 — fA2(1 = hy)k.
Finally, in region II1, 2(X) = h, + (h
such that 8 = A, < | and y = (hy —
Then

s — ho)(A/B)%
h,)(A/B) > 0.

In = exp(+E&/D[AM (ay', 1, —&3)

+ B;U(ay’, 1, —&3)], 21

N
with & = =2k[h,b/(h; — hy) + X1 and ay’ = (1 + f)/2
— &% — fH)b/2k(hs — hy). Continuity of free-

surface height and mass flux at x = —1, X = B/A
= b requires
&(— 1) = gu(— 1), ip(0) = i1 (0)
i (—1) = auy(—1), 5111(5) = Zlv(b-) (22)
én(o) = Zl[[(0)7 v {f-lm([;) = [llv(l;)
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X
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Ha
H,
Ha
A
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- X
FiG. 1. Linear segment ridge approximation.
or _ -
A,
A,
B
(Cs1] %] =0. (23)
Ay
B,
| 4. ]

Using u, _=_k/1 = Ry, po = hopuy, phy = khyblhy — /-12:
Wy = khyblhy — hyand @, = (ag, 1,2up); 02 = (ay, 1,
2us); By = (ay’, 1, 2uy); By = (ay’, 1, 2u,) and M’
= OM(a, 1, £)/3¢, U’ = dU(a, 1, £)/8¢, the non-
zero values of C;; are

14 92:k2
12
10
8
I3
6 (712=Rzr|2
41—
2k
1 1 1 ] 1 N J
0 2 4 6 8 0 2 14

FiG. 2. Symmetric ridge —dispersion equation #, = H; = 3km,
H, =1km,A =B = 60 km.
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F1G. 3. Symmetric ridge—first and second modes for various values of k.

C,, = —exp(—\y)

Ciz = exp(—p)M(ay)

Ciz = exp(—u1) Ulay)

Coy = — A exp(—=\y)

Co = k exp(—p)[M(ay) — 2M'(ay)]
Cas = k exp(—p)[U(ey) — 2U'(ay)]
Cy = exp(—uz) M(a)

‘ Cs3 = exp(—u2) Ulay)

Css = —exp(—u3)M(By)
Cas = —exp(—us) U(By)
Cuo = k exp(—po)[M(ay) — 2M' ()]

M(ap) — 2M'(ax)  Ulay) — 2U' ()
viM(a) — 2M'(a;) v U(ey) — 2U'(ay)

M(By) — 2M'(By) U(B) — 2U'(BY)
veM(B,) — 2M'(B) v U(B:) — 2U'(B)

where v, = 1 — A\/k and vy, = 1 — AJ/k.

" Again, it is instructive to examine the case of no
rotation, f = 0, and a symmetric topography, A = B
and H;, = H;. The nondimensionalized problem is
then described by the single parameter h,. For this
case, oy = B, = a, a; = B, = B, and v, = v, = v.
The dispersion equation reduces to the product

M@ - 2M'(a) Ulw) - 2U'(a)
vM(B) - 2M'(B) vU(B) - 2U'(B)

vaM(Bz) — 2M'(B,)

Cas = k exp(—uo)[Ule) — 2U'(0)]
Cas = k exp(—us)[M(B,) - 2M'(B))]
Cas =k exp(—us)[U(By) — 2U'(BY)]
Csq = exp(—pgd) M(B;)

Css = exp(— ) U(B:)

Css = —exp(—A\gb)

Ces =k exp(—ua)[M(B) — 2M'(B,)]
Cos = k exp(—ps)[U(B,) — 2U'(B:)]
Ces = —Ag eXp(—A\4b).

The dispersion equation is then det[C;;] = 0. With
some manipulation, this determinant reduces to

M(B,) UB)
V4U(B2) - 2U’(Bz)
M(as) Ulas) o, o
viM(a,) — 2M'(ey) v, Uley) — 2U" (1)
M(e) U@ o, 29)
vM(B) — 2M'(B) vU(B) —2U'(B)

which corresponds to symmetric modes (d ldx =0
atx = 0) and antisymmetric modes ({ = QOatx = 0),
respectively. The cutoff points along the boundary
line @ = k again may be found using A, = A\, = 0
(v = 1) in Eq. (25).

Numerical results are shown in Figs. 2-5 for the
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F1G. 4. Asymmetric ridge—dispersion equation H; = 3 km,
Hy,=1km, Hy = 485km, A = 60 km and B = 78 km.

symmetric case H, = 3km, H, = 1 km, H; = 3 km
and A = B = 60 km and a slightly asymmetric case,
H,=3km, H, = 1km, H; = 4.85 km and A = 60
km, B = 78 km, both without rotation, f = 0, Fig.
2 shows the symmetric case dispersion equation fol-
lowed by Fig. 3 which shows the first two mode
shapes. Note that both symmetric and antisym-

10
08

RICHARD PAUL SHAW AND WAYNE NEU

1339

TABLE 1. Linear ridge cutoff frequencies @,(k,).

ﬁ:\n 1 2 3 4 5 6
0.1 1395 3220 4570 6.189  7.595  9.166
0.2 1.791  3.796  5.502  7.360  9.094  10.920
0.3 2.171 4.394  6.424  8.541 10.583  12.678
0.4 2.580  5.064  7.438  9.849 12.223  14.620
0.5 3.053  5.862  8.635 11.400 14.160

0.6 3.645  6.881 10.150 13.368

0.7 4.456 8297 12.249

0.8 5.800  10.567

metric modes result. Fig. 4 shows the asymmetric
case dispersion equation followed by Fig. 5 which
shows the first two mode shapes; note the slight
shift in mode shape caused by the asymmetry.

5. Comparison of cutoff frequencies

The cutoff frequencies for a discontinuous, seg-
mented constant depth ridge defined by depth H,
for x < —B., H, for —B; < x < B and H; for x
> +B. are given by

Wy = (”77/2)[;12/(1 - ilz)]”z,

where the depth H, and half ridge width B are again
used as reference lengths, e.g., Buchwald (1968),
Shaw and Neu (1979). Corresponding cutoff fre-
quencies may be found for the linear ridge for vari-
ous values of &,; these are shown in Table 1.

The ratio of these cutoff frequencies to those for
the constant-depth case varies with s, and slightly
with n and is shown in Fig. 6. Here @, (constant
depth)/@, (linear depth) is shown as a function of
h, with a range indicated at each h, representing

| Second Mode

f—

[First Mode

0

of — —

-20

10 43 20 23

X

FIG. 5. Asymmetric ridge—first and second modes for various values of k.
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5,(C) /G, (L)

FIG. 6. Ratio of constant depth ridge cutoff frequencies to linear ridge cutoff
frequencies as a function of depth ratio A,.

the variation with n. For a wide range of values of
hs, the ratio is ~0.5. This implies that a linear ridge
of total width 2B, and a constant depth segment
ridge of one-half of this width, B, = 0.5 B, would
lead to approximately the same cutoff frequencies.
This corresponds to maintaining the same total
cross-sectional area of the ridge and is physically
appealing as a useful approximation. Of course, this
example does not include rotation and is only for
the symmetric ridge.

6. Comparison of phase and group velocities

Again, consider symmetric ridges without rotation
and define non-dimensional phase and group veloci-
tiesas ¢ = @/k and ¢, = dw/dk respectively (¢ = ¢,

o
[« 0 —

= 1and ¢ = ¢, = h," corresponds to dimensional
velocities of {gH,]'? and [gH,]'?). The group
velocity is found by differentiating the appropriate
dispersion equation with respect to k and then solv-
ing for dw/dk.

The step ridge topography yields an identical form
of the group velocity for both the symmetric and
antisymmetric modes. It is given by

do l%(n+izz¢),

= 26
n+ ¢ (20)

P
where )

7) = x22}122:

¢ = N\3 4+ M2y, + A,

The behavior of the phase and group velocities

F1G. 7. Phase and group velocities—constant depth ridge z, = 0.4.
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in the step ridge case is well documented (e.g., Buch-
wald, 1968; LeBlond and Mysak 1978), and is shown
in Fig. 7 forh, = 0.4. At the cutoff points,¢ = ¢, = 1
and as k — o, both approach h,"? asymptotically.
However ¢ — h,'? from above and ¢, — h,'? from
below. This implies that there exists a minimum of
¢, for each mode. Waves of lengths corresponding
to this minimum group velocity would encounter
less dispersion and therefore are more likely to be
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observed over oceanic ridges of sufficient length.
However, LeBlond and Mysak note that no evi-
dence of these waves has been found despite an
attempt by R. A. DeSzoeke (personal communica-
tion) to observe them over the Norfolk Island ridge.

Now consider the linear ridge. Define M*(a, 1, &)
= 0M(a, 1, £)/0a and U*(a, 1, &) = 8U(a, 1, &)/
da. Upon differentiating the dispersion equation, the
antisymmetric modes yield

2’_12
T {M'(@)[vU(B) — 2U'(B)] — U'()[lvM(B) — 2M'(B)]}
2
+ - {M@@)[vU'(B) — 2U"(B)] — Ua)vM(B) — 2M"(B)1}
&t é
- m M) U(B) — U(@)M(B)] + -2—6—_—]15 [vD, — 2D,]
dw ¢ c
=T i [vD, - 2D,] - m M) U(B) — U(a)M(B)]} , 27)
where The results are shown in Fig. 8 where, again, h,

D, = [M()U(B) — UlM(B)]*,
D, = [M(a)U'(B) ~ UlaM'(B)]*.

For the symmetric modes, the expression is the same
except that M(a) is replaced by M(a) — 2M'(a) and
U(a) is replaced by U(a) — 2U’(a) at every occur-
rence of M(a) and U(a). In the evaluation of these
expressions, the derivatives with respect to a, D,
and D, were found numerically.

= 0.4 and the scale of £ has been doubled from
Fig. 7 to account for the one-half relationship men-
tioned in the previous section. Note that in this case
the group velocity curves are monotonic with no
minimum. Fig. 9 compares the dispersion curves of
the first two modes for the linear and constant depth
cases. The lack of an inflection point in the linear
ridge curves is evident here. It is concluded that
the minimum group velocity is a consequence of the
depth discontinuity in the step model and is not

F1G. 8. Phase and group velocities—linear ridge, &, = 0.4.
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Fi1G. 9. Comparison of linear and constant depth dispersion
equations h, = 0.4.

present in the linear model where the ridge has gently
sloping sides.! '

To further illustrate this point, consider a two
step-ridge model, also symmetric and without rota-
tion. The cross section consists of five regions of
constant depth:

Region I:

—o <x < —-B; H(x)=H,
Region II:

-B<x<—-A; Hkx)=H,
Region III: _

-A<x<+A; Hx)=H,
Region IV:

+A <x < +B; H(x)=H,
Region V: :

+B <x < +»; H(x) = H,.

Using B and H, as horizontal and vertical reference
lengths, respectively, the development is analogous
to the single step ridge. The solutions in each region
are

L = A, exp(\,X),
- lAZ exp(—A'%) + By exp(A'x), A2 <0

L = )\22 -0

A, COSA X + B, sinh.x,

' In review, it was mentioned by one of the reviewers that
minimum group velocities are found for parabolic and exponential
ridge models; these results are expected to be published in the
near future.
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I = Aj COSAzX + By sinhgx,
B = Agexp(—A’X) + By exp(A'%), N2 <0
v A4 COSA X + B, sinh,x, AN2>0
Zv = Aj; exp(— A\ %), (28)

where
A= (/'(z ~'&,2)|;2’
Ay = (@%hy = k22,

A = (k* — @ hy)'?
Ay = (@Y hy — k)12

Note that regions II and IV have solutions which
may be either sinusaidal or exponential.

The phase and group velocities of the first four
modes for this case are shown in Fig. 10. Although
shallow water theory may be invalid for the large
values of k£ included in Fig. 10, the mathematical
behavior of the solution is of interest. Note, par-
ticularly in the third and fourth modes, the existence
of two local minimums of the group velocity. Both
the phase and group velocities of the third and fourth
(and higher) modes begin to approach h,'* before
dropping off to A%

Now return to the forms of the solution over the
two step ridge. By examining a branch of the dis-
persion relation, it is found that at first the solutions
in regions II, III and IV are all sinusoidal. As @
and £ move out along the dispersion curve, A, be-
comes smaller and reaches zero. Beyond this point,
the solutions in regions II and IV become exponen-
tial. The wave is then trapped over the top portion
of the ridge only.

A similar situation exists in the linear ridge model
which may be illustrated through appeal to the ap-
proximation of ray theory. Consider a wavefront
over the linear ridge whose normal makes an angle
¢ with the x axis. Denote this angle at the peak
(x = 0) by 6,. It is determined by

];]'121/2

()

sinf, = (29)

As the wave moves away from the peak and out
over the slope, it begins to turn back toward the
peak. Along this arc

l_d:l(x)”Z

singd = (30)

w
When the wave reaches its turning point, 6 = 99°,
the nondimensional depth may be denoted by /.
From Eq. (30)

h?2 = — =¢. 31

| &

Thus, it is seen that at the cutoff points on the dis-
persion curve, sin 8, = h,*? and A, = 1, i.e., the
turning point is located over the outer boundary
of the ridge. As k and @ move out along the dis-
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FiG. 10. Phase and group velocities—two-step ridge H, = 5 km,
H, =3km, H; = 1 km, A = 0.25B.

persion curve, 6, increases and the turning point
moves in toward the peak, decreasing the effective
width of the ridge. The exponential decay of the free-
surface elevation begins at the turning point and
extends over the remaining portion of the ridge as
well as the bounding constant-depth region on each
side. This can be seen in a closer examination of
the mode shapes of Figs. 3 and 5. This movement
of the turning point and narrowing of the effective
width of the linear ridge may account for the increase
with £ of the difference between the linear and step-
ridge frequencies and the subsequent lack of a mini-
mum group velocity.

7. Conclusion

The comparison of the linear and constant-depth
ridge models has shown that, in general, the two
models behave similarly. For an overview of wave
trapping by ridges, the constant depth model is use-
ful due to its simplicity. However, if one looks at
the details of the dispersion equation, some signifi-
cant differences between the models are found.

It has been seen that the cutoff frequencies of
the linear and constant depth ridges compare favor-
ably provided the width of the constant depth ridge
is adjusted such that the areas of the ridge cross
sections are equal, at least for the symmetric ridge.
It is not known how well this relationship holds for
the asymmetric ridge.

It also was seen that the minimum of the group
velocity found by Buchwald is a consequence of the
constant depth approximation in the step ridge

model and is not present in the linear ridge model.
It is therefore not surprising that trapped waves at
such a predicted minimum group velocity, which
should suffer little dispersion, have not been
observed.

In the review process, it was mentioned by a re-
viewer that such minimums do exist for other topog-
raphies; it will be interesting to see these results
when they are published.
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