
 37

 

 

Journal of Language and Linguistics 
Volume 5 Number 1 2006 
ISSN 1475 - 8989 

 
Some ‘counting’ properties of natural 

languages and their treatment in the AMS 
framework 

 
László Drienkó 

ELTE University, Budapest 
 
 
Abstract 
 
The present  paper  attempts to address  the issue of  interaction of  language and other 
cognitive capacities. In particular, we would like to highlight some parallelisms 
between  certain  linguistic constructions  and the basic mathematical capacity to 
enumerate cardinal numbers. Such parallelisms  will be drawn  within the generalised 
agreement framework as outlined in Drienkó (2004a, b). They will be explicitly 
represented by agreement strategy ABORDER. We discuss such constructions as Old 
Georgian Genitive, Chinese number names,  Dutch Coordination Phrases, and 
enumeration of  digit expressions (numbers). A model for the word-digit interface will 
also be given. 
 
1. Introduction 
 
The present  paper  attempts to explicitly address  the issue of  interaction of  
language and other cognitive capacities. In particular, we would like to highlight some 
parallelisms between  certain  linguistic constructions  and the basic mathematical 
capacity to enumerate cardinal numbers. Such parallelisms  will be drawn  within the 
generalised agreement framework as outlined in Drienkó (2004a, b). They will be 
explicitly represented by agreement strategy ABORDER. 
 
Agreement strategies play a very important  role in the  Agreement Mapping-System 
(AMS) model. Their task is to specify the way  how agreement properties of 
linguistics elements should be checked. A strategy can be seen as a mapping 
(function)  from sequences of  input elements to two dimensional  arrangements – 
strategy matrices1 – of  attribute-value structures (AVS’s). More formally, SF is a 
strategy iff  
                                                 
1 We shall also use the term ’checking table’ for ’strategy matrix’. 



 38 

 
 
(1.1) 

SF ∈ ( (KEL ∪ UEL)*  M), where M is the set of n×m matrices such that  
  1 ≤ n < ∞, 1 ≤ m < ∞, for any  matrix element smij of strategy matrix SM∈ M,   

1 ≤ i ≤ n, 1≤ j ≤ m: smij∈ALLAVS. 
 

KEL: a collection of  AVS’s representing ‘known’ lexical elements, i.e. 
elements whose values are specified for all (relevant) attributes,  
UEL: a collection of  AVS’s representing ‘unknown’ lexical elements, i.e. 

elements  
with missing attribute values 
ALLAVS: a collection of  all possible AVS’s 

 
For instance,  input sequence (1.2)  may be mapped  onto strategy matrix (1.3), 
representing a FIRST-TO-FIRST arrangement. 
 
(1.2)  a1, a2, a3, b1, b2, b3     
 
(1.3)   

element:     a        b 
 

sequence1    a1       b1   
sequence2    a2       b2   
sequence3    a3       b3   

 
The checking table in (1.4) corresponds to strategy LAST-TO-FIRST for the AVS’s 
in (1.2) 
 
(1.4) 

element:     a        b     
 

sequence1    a1       b3   
sequence2    a2       b2   
sequence3    a3       b1   

 
The rows (sequences) of strategy matrices represent  couplings of input elements with 
respect to agreement checking: the attribute values of the elements in the same 
sequence must be the same for the attribute specified by a corresponding agreement 
constraint. If, e.g., the a’s and b’s in (1.2) represented nouns and verbs respectively, 
an agreement constraint might require that  each noun should share some, say, 
subcategorization feature with a corresponding verb. That which  verb corresponds to 
which noun would be specified by the agreement strategy  prescribed by the 
agreement constraint in question. Strategy FIRST-TO-FIRST, as sketched in 
(1.3) would then yield a ‘cross-serial dependency’ effect. Cf. Drienkó (2004a : 
Section 2.1 ) 
 
The notion of agreement  can be generalised beyond just requiring the identity of 
some feature(s) between specified  linguistic elements. It is also possible to consider 
values of such elements collectively, i.e. to consider the configuration of  attribute 



 39

values as a kind of ‘meta feature’ capable of  taking part in what can be termed a kind 
of ‘meta agreement’. For instance, we may demand that the PHF (phonological form) 
values of a sequence of linguistic elements inputted  to the mapping system should 
constitute a certain sequence, i.e. that the, say,  phonological order (PHF_ORDER)  
value of the input sequence should agree with a predefined value. This type of 
agreement is represented by strategy ORDER in the Agreement Mapping-System 
framework. Agreement constraint (1.5),  for instance,   specifies the phoneme 
sequence ‘t o p’. 
 
(1.5)    1  2   3        PHF == t o p    ORDER 
 
The checking table is similar to that of strategy  FIRST-TO-FIRST. The checking 
process, however differs in that  elements in a sequence are considered not one by 
one, but rather their specified values must constitute the sequence given on  the right-
hand side  of the ‘==’ in the attribute part of the constraint. We represent the checking 
table for (1.5) with (1.6). 
 
(1.6) 

element:     1 2 3   s(PHF_ORDER) 
 

sequence1    a1b1c1   s(PHF_ORDER=top) 
 
To be consistent with our definition in (1.1), s(PHF_ORDER) denotes an AVS. This 
AVS has only one attribute, PHF_ORDER. The PHF_ORDER (meta)value ‘top’ is 
assigned to s by constraint (1.5) 
It is also possible, just like in (1.3) or (1.4), that  there are several sequences  made up 
by the input elements referred to in the constraint, i.e. there can be several 
occurrences of  a, b, and c type elements respectively corresponding to 1, 2, and 3 in 
(1.5) or (1.6). The checking table is then given as (1.7). 
 
(1.7) 

element:     1 2 3   s(PHF_ORDER) 
 

sequence1    a1b1c1   s(PHF_ORDER=top) 
sequence2    a2b2c2   s(PHF_ORDER=top) 
… 
sequencen    anbncn   s(PHF_ORDER=top) 
 

 
Note that the PHF_ORDER value is a constant part of  constraint (1.5). It is 
predefined by the creator of the system. Nevertheless, it is also possible  to predefine 
an algorithm (or function) which  ‘generates’ a sequence of attribute values (a ‘meta 
value’) that must be matched by the input. We term the corresponding strategy as 
ABORDER  (across the board order). 
Strategy ABORDER  differs from ORDER in that it regards  the sequence of attribute 
values of all input elements mapped on the representational elements specified in the 
constraint as a single sequence  and this sequence  is  matched against a sequence of 
values generated by a function specified by the constraint. Table (1.9) represents the 
strategy matrix for constraint (1.8). 
 



 40 

(1.8)    1  2   3        ATTR == ::     ABORDER :Fc: 
 
(1.9) 

element:    1 2 3  s(ATTR_ABORDER) 
 

sequence1   a1…cn  s(ATTR_ABORDER =Fc(IS)) 
 
The ATTR == :: part of the constraint indicates that the value for attribute ATTR 
must be provided by a corresponding function,  the ABORDER  : Fc:  part specifies 
this function as Fc 
together with the strategy to be used,  ABORDER . As usual, numbers in the 
constraint refer to representational elements in the corresponding linguistic pattern. 
 
Checking table (1.9) tells us that the ATTR_ABORDER metavalue  of   input 
sequence IS consisting of  input elements a1…cn  as mapped onto representational 
elements 1, 2 and 3 of the given linguistic pattern should be identical with the value 
provided by Fc for IS. 
 
Employing functions through strategy ABORDER provides a way of incorporating  
some ‘counting’ properties of  natural languages into the  Agreement Mapping-
System model. For instance, we may demand that an element  should be represented 
in the input sequence by a growing  number of occurrences. We may prescribe, e.g., 
that any time element ‘a’ representing phoneme ‘t’ occurs after a ‘c’ element, it be 
followed by one more ‘a’s than at the previous occurrence. Cf. string S$ in (1.10). 
 
(1.10). 

S$: t o p  t t o p  t t t o p… 
 
A straightforward way to attempt to capture the regularity in (1.10) is to look for an 
algorithm  capable of generating such strings. Such an algorithm is sketched in (1.11). 
The corresponding strategy matrix is (1.12) 
 
(1.11)  
  FPREFIX_t 
 
 String$= “op” 
 S$=”” 
 Do until condition on length of output is fulfilled: 
 String$ = “t” + String$ 
 S$=S$+String$ 
 
(1.12) 

element:   1 2 3   s(PHF_ABORDER) 
 

sequence1  a1…cn 
 s(PHF_ABORDER=FPREFIX_t(n)=”topttop…”) 
 
Note that linguistic patterns in our model without  agreement constraints and, 
consequently,  without strategies could only handle a much  narrower range of 
phenomena. It would be possible to allow recursion, but ‘counting’ properties would 



 41

be lost. The system would not be able to differentiate, e.g, between  the sequences in  
(1.13). 
 
(1.13)  t o p  t t o p  t t t o p …. 

t t t o p  t t o p  t t  o p …. 
t o p  t o p  t t o p …. 

 
 

 
2. Natural language constructions with counting properties 
 
 
2.1 Old Georgian Genitive 
 
 
Michaelis and Kracht (1997) cite Old Georgian genitive examples  by Boeder (1995) 
to show that there are natural languages  that mildly context sensitive grammar 
formalisms are not capable of generating.2 The relevant construction is exemplified by 
(2.1). 
 
(2.1) 
 
govel-i    igi    sisxl-i  saxl-isa-j       m-is Saul-is-isa-j. 
all-Nom  Art-Nom blood-Nom house-Gen-Nom    Art-Gen Saul-Gen-Gen-
Nom 
‘all the blood of the house of Saul’ 
 
Disregarding irrelevant lexical categories, and phonological features we can formulate 
the basic genitive construction as in (2.2). 
 
(2.2) 
 N0-Nom N1-Gen-Nom   N2-Gen-Gen –Nom    ... Nk-Genk-
Nom 
 
As can be seen, the morphemes for this variant of Old Georgian genitive observe the 
regularity  shown  in (2.3). 
 
(2.3) ABC   ABBC   ABBBC    … ABkC 
 
That is the  ith occurrence of  the sequence AB…C contains one more B’s than the (i-
1)th for any i such that 0 < i ≤  k. 
Sequence (2.3) can be generated by the simple algorithm in (2.4).We shall refer to 
(2.4)  as FunctionOG, or FOG for short. 
 
(2.4)  

 FOG 
  S$=”” 
                                                 
2 Bhatt, R., and  Joshi, A. (2004)  gives another interpretation of  Boeder’s data which does not seem to 
exhibit the property emphasised by Michaelis and Kracht. Since Michaelis and Kracht’s interpretation, 
defying mild context-sensitivity, is more challenging  we rely on their analysis. 



 42 

  insert$ =”” 
   For i=1 to k 

insert$ = insert$+”B” 
S$= S$ + “A” + insert$ +”C” 
Next i                      

  
Drienkó (2004a :Sections 2.3, 2.4)  used the ORDER strategy to  ensure matching of  
the order of the attribute values of input elements with a predefined (arbitrary) 
sequence in connection with Arabic morphology, and Hungarian vowel harmony. 
However, such a predefined sequence can be thought of as a result of some 
computational predefining mechanism which can be referred to as an algorithm, or 
equivalently in our terminology, a function. FOG in (2.4) can be thought of as  such a 
predefining mechanism. It generates  (2.3) and  agreement checking will decide 
whether  or not  (2.3) and a given sequence of attribute values of  input elements  are 
the  same. 
Unlike in the case of strategy ORDER, where an  agreement checking  iteration only 
considers  a single sequence – of possibly several –  of input elements   mapped on a 
recursive representational element, in the present case all sequences are considered. 
We call this strategy ABORDER (across the board order). 
In much the same fashion, we can use functions like FOG to predefine combinations of  
category values. Cf. pattern  (2.5). 
 
(2.5) 
 
 
 
 N N G Nom 
 
  
  CAT==:: 
      (ABORDER : FOG:) 
 
The ‘::’ stands for the sequence of category  values (the CAT_ABORDER metavalue 
), which sequence is to be provided by the FOG function. For the present example, FOG 
would provide  the representation of  an Old Georgian genitive phrase containing k 
nouns. Notation  ‘(ABORDER : FOG:)’ explicitly indicates that strategy ABORDER is 
followed and function FOG is called. 
 
As (2.4) reflects, FOG   does not spoil the linearity of the agreement checking process, 
since it should be called only once,  the insertion of elements is done in k steps, and 
for any input length, n,  k <  n. 
 
 
 
2.2.  Chinese number names 
 
 
Radzinski (1991), in proving that natural languages cannot be generated by 
multicomponent tree adjoining grammars (MCTAGs), refers to a sublanguage of 
Chinese numbers names. The words wu (five)  and    zhao (trillion)  are combined in 



 43

such a way that every occurrence of wu is followed by a sequence of zhao’s, and 
every  sequence of zhao’s is shorter (contains less zhao’s) than the previous one. Cf. 
(2.6).  
 
(2.6) 
 wu   zhaok(1)  wu   zhaok(2) ...   wu   zhaok(m) ,   k(1) > k(2) > .... > 
k(m)   
 
We can apply  function FWZ  in (2.7) to  the situation. 
 
(2.7) 

  FWZ 
 
         S$=”” 

 For i=1 to m-1 
     If zhaok(i) ⊃  zhaok(i+1) then  

  S$=S$+  “wu” + zhaok(i)  
     Else 
  S$=S$+  “*” 
 Next 
 S$=S$+  “wu” + zhaok(m)  

 
S$, as generated by  FWZ, is actually  an identical image of  the input sequence  if the 
input is a legal ‘sentence’ of  the sublanguage of  Chinese number names. 
Consequently, agreement of input and  S$ will evidently follow.  If the ith sequence 
of  zhao’s  in the input does not contain the (i+1)th, i.e. input is an illegal sentence,  
FWZ inserts a  ‘non-compatible’ symbol, say “*”,   into string S$, thus non-agreement 
will be trivial.3  
Pattern (2.8)  can handle  the ‘wu-zhao’ phenomenon. 
 
 
 
(2.8) 
 
 
 W       Z 
 
 
         PHF ==:: 
 (ABORDER  : FWZ:) 
 
 
2.3 Dutch Coordination Phrases 
 
Groenink (1996) uses  a sublanguage of  Dutch coordination phrases to show  that 
Dutch is a non-MCTAL (multicomponent tree adjoining language). The  relevant 
fragment of the language is characterised in (2.9). 
 

                                                 
3 Naturally, inserting a non-matching symbol is just one  way  of many others to block  agreement.  



 44 

(2.9) 
dat Jan Piet Marie Fredk (hoorde lerenk uitnodigen)+ en (zag lerenk omhelzen) 

 
For k=1, and  k=2, e.g., we can have (2.10) and (2.11) respectively. 
 
(2.10) 

k=1 
dat Jan Piet Marie Fred (hoorde leren uitnodigen) +  en zag leren omhelzen 
’that Jan heard Piet teach Marie to invite Fred and saw Piet 
 teach Marie to embrace Fred’ 
 

(2.11)  
k=2 
dat Jan Piet Marie Fred Fred (hoorde leren leren uitnodigen) +  en (zag 
leren leren omhelzen 
‘that Jan heard Piet teach Marie to teach Fred to invite Fred and saw Piet 
 teach Marie to teach Fred to embrace Fred’ 

 
The Kleene ‘+’ means that  the bracketed verb phrase can be repeated an arbitrary 
number of times, except zero. For explicitness, we write (2.9) as (2.12). 
 
(2.12) 

dat Jan Piet Marie Fredk (hoorde lerenk uitnodigen)m en (zag lerenk omhelzen) 
 
 Thus k=1 and m=2 could yield something like (2.13). 
 
(2.13) 

k=1, m=2 
dat Jan Piet Marie Fred hoorde leren uitnodigen, hoorde leren uitnodigen  en 
zag leren omhelzen 

 
Although the grammatical case of the nouns is not explicitly indicated, we assume 
Piet, Marie, and Fred  to be accusative here. Then the order of ARG2CASE values in 
(2.12) is as in (2.14)4. 
 
(2.14) 

dat Jan Piet Marie Fredk (hoorde lerenk uitnodigen)m en (zag lerenk omhelzen) 
  ACC ACC ACCk (ACC   ACCk   ACC)m            (ACC  ACCk ACC) 
 
Nevertheless, there may be cases where explicit case-marking determines 
grammaticality. Consider the Hungarian sentences in (2.15) and (2.16). 
 
(2.15) 
 Jani  Petit  Marinak     látta    
 segíteni. 

                                                 
4 In the AMS model, subcategorization is  effected by agreement relations between the verb and its 
arguments. ARG1CASE=nom for the verb prescribes that its first argument, the subject, must be in 
nominative case, i.e. it must also have the ARG1CASE=nom feature. Further arguments of verbs are 
represented by ARG2CASE, ARG3CASE, etc.  



 45

 Jani-NOM Peti-ACC Mari-DAT see-3rd –SG-PAST-DEF
 help-INF 
 ‘Jani saw Peti help Mari’ 
 
(2.16)  
 ?Jani  Petit        Marinak      Fricit        látta    segíteni meghívni 
         Fred-ACC       help-INF invite-INF 
 ‘Jani saw Peti help Mari invite Fred’ 
 
As the data show, the verb segíteni (‘help’) requires dative, látni (‘see’),  and 
meghívni (‘invite’) require accusative. We would not dare to make an explicit 
statement as to the grammaticality of  the  Hungarian analogue (2.17)  of  (2.9), but 
we suspect that  memory training can enhance its intelligibility. 
 
(2.17) 

Jani Petit Marinakk  Fricit (látta segítenik meghívni)m  és  ( hallotta segítenik 
elzavarni) 
 (hallotta: hear-3rd –SG-PAST-DEF, elzavarni: chase-away-INF, és: and) 
 
The order of ARG2CASE values is explicitly given in (2.18). 
 
(2.18). 

Jani Petit Marinakk  Fricit (látta segítenik meghívni)m  és  ( hallotta segítenik 
elzavarni) 
          ACC  DATk   ACC    (ACC   DATk   ACC)m     ( ACC   DATk     
ACC) 
 
As (2.14) and (2.18) reveal, the basic logic behind the constructions in questions can 
be represented by the  sequences of case values. Such sequences can be generated by 
function  FDCP, as given in (2.19). 
 
(2.19)   FDCP  
  A2$=ARG2CASE_N2 
  A3$=ARG2CASE_N3 
  A4$=ARG2CASE_Nk 
   A$= A2$ + A3$k + A4$ 
    S$= A$ +A$m + A$ 
 
ARG2CASE_N2 and  ARG2CASE_N3 are the respective ARG2CASE values of the 
second and the third noun, ARG2CASE_Nk is the ARG2CASE value of the last 
noun. The output S$ of  FDCP  is a sequence of  ARG2CASE values of the nouns and 
the verbs as predetermined by (2.12) or (2.17).5 Thus agreement pattern (2.20) can 
handle both (2.9) and (2.17).6 
 
(2.20) 
 
 
                                                 
5 Note that  ACC ACC ACCk  = ACC   ACCk   ACC. That is why FDCP is applicable to both the Dutch 
construction and its Hungarian counterpart. 
6 We use double lines just for better readability. 



 46 

    (dat)         N  N  N  N V  INF INF en V   
INF INF 
 
 
     PERS, NUM, ARG1CASE 

    (ALL-TO-ONE) 
   

PERS, NUM, ARG1CASE 
 
     ARG2CASE==:: 
     (ABORDER:FDCP:)  
 
Pattern (2.20 ) does not distinguish between individual verbs or nouns. If we choose 
to insist on having k occurrences of identical nouns (e.g. Fred’s), and  the 
corresponding (m+1)k occurrences of the same verb (e.g. leren) as (2.12) might 
suggest, we can add an across-the board PHF (phonological form) constraint to (2.20). 
The ABORDER constraint can  utilise function FDCP2. Cf (2.21) and (2.22). 
 
(2.21) 
 
 
    (dat)         N  N  N  N V  INF INF en V   
INF INF 
 
 
     PERS, NUM, ARG1CASE 

    (ALL-TO-ONE) 
   

PERS, NUM, ARG1CASE 
 
     ARG2CASE==:: 
     (ABORDER:FDCP:)  

 
PHF==:: 

      (ABORDER:FDCP2:)  
 
 
(2.22) 
          FDCP2 
 
   P1$=PHF_N4 
   P2$=PHF_INF1 

   S$= P1$k + (P2$k)m + P2$k   
 
If the PHF value of the last noun is “Fred”, i.e. PHF_N4=”Fred” and PHF value of the 
first infinitive is “leren”, i.e. PHF_INF1=”leren” then the output of FDCP2, S$, is  
(2.23) as required by (2.12). 
 
(2.23)  S$ = Fredk + (lerenk)m + lerenk 
 



 47

 
2.4 Counting 
 
 
In all previous examples there were some linguistics elements which  were recursive 
in the sense that they could be repeated any number of times, and there were also 
some elements whose occurrence was dependent on the occurrence of other elements. 
The dependency was determined by the function in the agreement constraint. For 
instance, in (2.3), repeated here as (2.24), the number of ‘B’s is dependent on which 
‘A’ they follow, or, equivalently, which ‘C’ they precede, i.e on k; and FOG specifies 
that the sequence of ‘B’s must grow by 1 each time. 
 
(2.24) ABC   ABBC   ABBBC    … ABkC 
 
When counting from a certain number to another, in a sense,  we do something 
similar. We repeat some elements and change others. In this case, however, it is not 
only the length of the string representing a number that grows in a systematic way, but 
also the digits must observe a predefined order. 
 
(2.25)  97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 
 
Considering, e.g, (2.25) may lead to the conclusions in (2.26). 
 
(2.26) 

1. Digits observe the order ‘0, 1, 2, 3, 4, 5, 6, 7, 8, 9’ 
2. When the last digit is ‘9’ a new ‘cycle’ begins, which means that the 

next number is constructed in the following way: 
Change ‘9’ to ‘0’ for the last digit and for all  ‘9’ digits 
immediately  
preceding it 
Change the first ‘non-9’  digit according to order ‘0, 1, 2, 3, 4, 
5, 6, 7, 8, 9’ 
If the first digit is ‘9’ then  suppose there is a ‘0’ before it , so 
that order ‘0, 1, 2, 3, 4, 5, 6, 7, 8, 9’ can  be observed (i.e the 
new number will begin with ‘1’). 

 
3. When the last digit is not ‘9’, next number is obtained by changing 

only the last digit (according to ‘0, 1, 2, 3, 4, 5, 6, 7, 8, 9’) 
 
We give a corresponding  pseudo-code  in (2.27). 
 
(2.27) 

 FCOUNT  
 

1. Set order of digits: OD$(-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) 
2. First number = substring to the left of first comma in input string 
3. N$=First number 
4. S$=N$+”,” 
5. Digit_step_back = 0: nine$=”false” 
6.   For i=1 to Number_of_commas-1 



 48 

7.   Flag 
8.   If  Last_digit - Digit_step_back=0 then N$= “0”+N$  
9.   E1$= the digit at position  Last_digit - Digit_step_back in N$ 
10.   If  E1$ = “9” then E1$=-1: nine$=”true” 
11.   E2$=the digit immediately following E1$ in OD$ 
12.   Replace E1$ with E2$ in N$ 
13.   If nine$=”true” then Digit_step_back= 
Digit_step_back+1:nine$=”false”:goto Flag 
14.   S$= S$ + N$ + “,” 
15.   Digit_step_back=0 
16. next 
 
The output of FCOUNT, S$, is a string containing numbers in increasing order separated 
by commas. Counting can  start from any number. Thus pattern (2.28) corresponds to  
a ‘language’  whose ‘sentences’ are  enumerations of  ordered sets of cardinal 
numbers. 
 
(2.28) 
 
 
 
   
  DIGIT  COMMA 
 
 
           PHF==::   
  (ABORDER:FCOUNT) 
 
In (2.27) we used ‘–1’ to mark the start of a ‘0, 1, 2, 3, 4, 5, 6, 7, 8, 9’ cycle. Of 
course,  other symbols could also do the job 
Commas – or equivalent symbols - are necessary to indicate the end of a given 
number. Such separating elements are employed both in written languge – spaces, 
commas, new lines, etc. – and in oral speech – pauses, intonation. 
 
3. Transition between words and digits: the word-digit interface  
 
In the previous section we modelled the abstract capacity to enumerate numbers. 
Nevertheless numbers are an integral part of natural language. Words can be 
combined to refer to the  various numbers, and at the same time there are numeric 
expressions corresponding to such word combinations. In other words, words can be 
transformed into sequences of digits and sequences of  digits correspond to linguistic 
utterances. Below we present a model of associating linguistic expressions with  
digital sequences. 
 
3.1 Words to digits 
 
While (2.28) represents the abstract capacity to process – to produce, or perceive – an 
infinitely long sequence of numbers, ‘linguistic counting’ can go on in a systematic 
way only before we reach the order of milliards/billions. Accordingly, our model will 
be concerned with only a finite set of numbers in the rest of this paper. 



 49

In order to obtain the necessary  patterns for numbers we divide words denoting 
numbers  into the following basic categories. Cf. (3.1). 
 
(3.1)  one, two, three, four, five, six, seven, eight, nine: CAT = one 
 ten... nineteen:  CAT = teen 
 twenty ... ninety: CAT = ty   
 hundred: CAT = hundred 
 thousand: CAT = thousand 
 million: CAT = million 
 
Now cardinal numbers 1 to 999 999 can be mapped on patterns (3.2). 
 
(3.2) 

ONE  
 TEEN  
 TY  
 TY ONE   

ONE HUNDRED 
 ONE HUNDRED  (AND)  ONE 
 ONE HUNDRED  (AND)  TEEN 
 ONE HUNDRED  (AND)  TY 
 ONE HUNDRED  (AND)  TY  ONE 
 ONE THOUSAND 
 ONE  THOUSAND (AND)   ONE 
 ONE  THOUSAND (AND)   TEEN 
 ONE  THOUSAND (AND)   TY 
 ONE  THOUSAND (AND)   TY   ONE 
 ONE  THOUSAND   ONE    HUNDRED   
 ONE  THOUSAND   ONE    HUNDRED  (AND)  ONE 
 ONE  THOUSAND   ONE    HUNDRED  (AND)   TEEN 
 ONE  THOUSAND   ONE    HUNDRED  (AND)   TY 
 ONE  THOUSAND   ONE    HUNDRED  (AND)   TY ONE 
 
 TEEN THOUSAND 

TEEN  THOUSAND (AND)   ONE 
 TEEN THOUSAND (AND)   TEEN 
 TEEN  THOUSAND (AND)   TY 
 TEEN THOUSAND (AND)   TY   ONE 
 TEEN THOUSAND   ONE    HUNDRED   
 TEEN  THOUSAND   ONE    HUNDRED  (AND)  ONE 
 TEEN THOUSAND   ONE    HUNDRED  (AND)   TEEN 
 TEEN  THOUSAND   ONE    HUNDRED  (AND)   TY 
 TEEN THOUSAND   ONE    HUNDRED  (AND)   TY ONE 
 

TY THOUSAND 
TY  THOUSAND (AND)   ONE 

 TY THOUSAND (AND)   TEEN 
 TY  THOUSAND (AND)   TY 
 TY THOUSAND (AND)   TY   ONE 
 TY THOUSAND   ONE    HUNDRED   
 TY  THOUSAND   ONE    HUNDRED  (AND)  ONE 
 TY THOUSAND   ONE    HUNDRED  (AND)   TEEN 
 TY  THOUSAND   ONE    HUNDRED  (AND)   TY 



 50 

 TY THOUSAND   ONE    HUNDRED  (AND)   TY ONE 
 

TY  ONE THOUSAND 
TY  ONE  THOUSAND (AND)   ONE 

 TY  ONE  THOUSAND (AND)   TEEN 
 TY ONE  THOUSAND (AND)   TY 
 TY  ONE  THOUSAND (AND)   TY   ONE 
 TY  ONE  THOUSAND   ONE    HUNDRED   
 TY ONE  THOUSAND   ONE    HUNDRED  (AND)  ONE 
 TY  ONE  THOUSAND   ONE    HUNDRED  (AND)   TEEN 
 TY ONE  THOUSAND   ONE    HUNDRED  (AND)   TY 
 TY ONE  THOUSAND   ONE    HUNDRED  (AND)   TY ONE 
 

ONE HUNDRED THOUSAND 
 ONE  HUNDRED THOUSAND (AND)   ONE 
 ONE  HUNDRED THOUSAND (AND)   TEEN 
 ONE  HUNDRED  THOUSAND (AND)   TY 
 ONE  HUNDRED THOUSAND (AND)   TY   ONE 
 ONE  HUNDRED THOUSAND   ONE    HUNDRED   
 ONE  HUNDRED THOUSAND   ONE    HUNDRED  (AND)  ONE 
 ONE  HUNDRED THOUSAND   ONE    HUNDRED  (AND)   TEEN 
 ONE  HUNDRED THOUSAND   ONE    HUNDRED  (AND)   TY 
 ONE  HUNDRED THOUSAND   ONE    HUNDRED  (AND)   TY ONE 
 

ONE  HUNDRED  (AND)  ONE THOUSAND  
ONE  HUNDRED  (AND)   ONE THOUSAND (AND)   ONE 

 ONE  HUNDRED  (AND) ONE THOUSAND (AND)   TEEN 
 ONE  HUNDRED  (AND)  ONE THOUSAND (AND)   TY 
 ONE  HUNDRED   (AND) ONE THOUSAND (AND)   TY   ONE 
 ONE  HUNDRED   (AND) ONE THOUSAND   ONE    HUNDRED   
 ONE  HUNDRED   (AND) ONE THOUSAND   ONE    HUNDRED  (AND)  ONE 
 ONE  HUNDRED   (AND) ONE THOUSAND   ONE    HUNDRED  (AND)   TEEN 
 ONE  HUNDRED (AND)  ONE THOUSAND   ONE    HUNDRED  (AND)   TY 

ONE  HUNDRED (AND)  ONE THOUSAND   ONE    HUNDRED  (AND)   TY ONE 
 
ONE  HUNDRED (AND)  TEEN THOUSAND  
ONE  HUNDRED (AND)  TEEN THOUSAND (AND)   ONE 

 ONE  HUNDRED (AND)  TEEN THOUSAND (AND)   TEEN 
 ONE  HUNDRED (AND)  TEEN THOUSAND (AND)   TY 
 ONE  HUNDRED (AND)  TEEN THOUSAND (AND)   TY   ONE 
 ONE  HUNDRED (AND)  TEEN THOUSAND   ONE    HUNDRED   
 ONE  HUNDRED (AND)  TEEN THOUSAND   ONE    HUNDRED  (AND)  ONE 
 ONE  HUNDRED (AND)  TEEN THOUSAND   ONE    HUNDRED  (AND)   TEEN 
 ONE  HUNDRED (AND)  TEEN THOUSAND   ONE    HUNDRED  (AND)   TY 
 ONE  HUNDRED (AND)  TEEN THOUSAND   ONE    HUNDRED  (AND)   TY 
ONE 
 

ONE  HUNDRED (AND)  TY THOUSAND  
ONE  HUNDRED (AND)  TY THOUSAND (AND)   ONE 

 ONE  HUNDRED (AND)  TY THOUSAND (AND)   TEEN 
 ONE  HUNDRED (AND)  TY THOUSAND (AND)   TY 
 ONE  HUNDRED (AND)  TY THOUSAND (AND)   TY   ONE 
 ONE  HUNDRED (AND)  TY THOUSAND   ONE    HUNDRED   
 ONE  HUNDRED (AND)  TY THOUSAND   ONE    HUNDRED  (AND)  ONE 
 ONE  HUNDRED (AND)  TY THOUSAND   ONE    HUNDRED  (AND)   TEEN 



 51

 ONE  HUNDRED (AND)  TY THOUSAND   ONE    HUNDRED  (AND)   TY 
 ONE  HUNDRED (AND)  TY THOUSAND   ONE    HUNDRED  (AND)   TY ONE 
 

ONE  HUNDRED (AND)  TY ONE THOUSAND  
ONE  HUNDRED (AND)  TY ONE THOUSAND (AND)   ONE 

 ONE  HUNDRED (AND)  TY ONE THOUSAND (AND)   TEEN 
 ONE  HUNDRED (AND)  TY ONE THOUSAND (AND)   TY 
 ONE  HUNDRED (AND)  TY  ONE THOUSAND (AND)   TY   ONE 
 ONE  HUNDRED (AND)  TY  ONE THOUSAND   ONE    HUNDRED   
 ONE  HUNDRED (AND)  TY ONE THOUSAND   ONE    HUNDRED  (AND)  ONE 
 ONE  HUNDRED (AND)  TY ONE THOUSAND   ONE    HUNDRED  (AND)   
TEEN 
 ONE  HUNDRED (AND)  TY  ONE THOUSAND   ONE    HUNDRED  (AND)   TY 
 ONE  HUNDRED (AND)  TY ONE THOUSAND   ONE    HUNDRED  (AND)   TY 
ONE 
 
Input elements in the agreement model  are represented as AVS’s. Words denoting 
numbers then can be characterised as in (3.3)-(3.5). 
 
(3.3)    
  PHF = three   ‘three’ 

CAT = one 
DIGITFORM1=3 

  
(3.4) 

PHF = eleven 
CAT = teen   ‘eleven’ 
DIGITFORM1=11 

 
(3.5) 

PHF= twenty  
CAT = ty   ‘twenty’ 
DIGITFORM1=20 

  DIGITFORM2=2 
 
Next we establish the connection between words of English ( a natural language) and 
the symbolic language of digits. First we model the conversion of sequences of words 
into sequences of digits. 
 
When input elements are successfully mapped on a pattern, we say that the pattern is 
saturated. A saturated pattern can be thought of as representing a grammatical 
sentence, or phrase. However, a sentence can also be regarded as a linguistic unit on 
its own right, its features being determined by the elements it consists of. Sentence 
(3.6), for instance, can be understood as a ‘higher level’ feature structure with 
attribute values like, e.g. those in (3.7). 
 
(3.6) Joe sleeps  
 
(3.7) 
     PHF =joe sleeps 
     SUBJ = joe 



 52 

     PRED = sleep 
     TYPE = declarative 
 
 
The composition of  such feature structures  from saturated patterns  can be done in an 
automatic way by  specifying instructions/algorithms for the individual patterns. 
It can be prescribed, for instance,  that the SUBJ value for (3.7) should be identical 
with the PHF value of the input element mapped on the first element of the pattern  
licensing (3.6), or it can be declared that the TYPE of the sentence is declarative, etc. 
 
Analogously,  patterns in (3.2) can be interpreted as standing for ‘number sentences’. 
(3.8) can saturate (3.9). 
 
(3.8) Twenty one thousand    nine hundred and eleven 
 
(3.9) TY  ONE  THOUSAND   ONE    HUNDRED  AND   TEEN 
 
For (3.9) we can then  provide an algorithm to obtain the feature structure 
representation of number (3.8). Cf. (3.10). This representation can serve as input 
element to patterns of other cognitive modules.7 
 
(3.10) 
  
 PHF = twenty one thousand    nine hundred and eleven 

DIGITFORM =  2 1  9 1 1 
  
An   algorithm  that outputs AVS (3.10) is sketched in (3.11). 
 
(3.11) 
  New structure: s 
 s(PHF = the concatenation of  the PHF values of all the elements mapped on 
(3.9)) 

s(DIGITFORM = DIGITFORM2 of the first element + DIGITFORM1 of  the 
second element + DIGITFORM1 of the fourth element + DIGITFORM1 of  
the  seventh element) 

 
Note  that words with CAT = ty have both DIGITFORM1 and DIGITFORM2. The 
reason is that the digit representation of these words consists of one digit when they 
are followed by a CAT = one word, and it consists of two digits in other cases. Cf. e.g. 
(3.12) and (3.13). 
 
 
(3.12) twenty  20 
 twenty nine 29 
 
(3.13) 
 TY  
 TY ONE   

                                                 
7 E.g. DIGITFORM values, interpreted as sequences of digits, can serve as input to pattern  (2.28). 



 53

 
 
 
3.2 Digits to words 
 
 
It would be quite idyllic for the system to be able to use patterns like those in (3.2) 
both ways, i.e. both for word-to-digit and for digit-to-word  mapping. However this 
could be done for one-digit numbers only. Letting the category values be the same, 
say, one both for the word and for the digit representing it would make it possible to 
map ‘zero’, ‘one’, ‘two’, ‘three’ ‘four’, ‘five’, ‘six’, ‘seven’, ‘eight’, ‘nine’, and 
‘0’,’1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’ on  pattern (3.14).8 
 
(3.14)  ONE 
 
For more digits there are two basic problems. First, the number of digits does not 
equal the number of words in the linguistic form. Cf. (3.15). 
 
(3.15) 
   
 eleven    11      one word, two digits 
 twenty thousand  20000    two words, five digits 
 
The second  problem is that  digits can have different linguistic forms at different 
positions. 
For instance,’2’ is pronounced as two in ‘200’ or ‘32’, but it is ‘twenty’ in ‘20’, or ‘0’ 
is pronounced when alone – zero, nought -, but not in other cases9. 
Now what our system will do is use digital patterns as in (3.16) to  initialise ‘higher 
level’ feature structures like (3.10). 
 
(3.16)   

 D  
  D D 
  D D D 
 … 
  D D D  D D D 
 
Recall our goal is the converse of what we did in  Section 3.1. Then linguistic 
elements were mapped on a linguistic pattern, their PHF values made up the PHF 
value of the input, and its  
DIGITFORM value was calculated according to the algorithm linked to the pattern. In 
the present case the input  is a sequence of digits, and our aim is to obtain a linguistic 
form. 
 
As usual, input elements are feature structures.  Cf. (3.17) –(3.19). 
                                                 
8 This method could work for all numbers up to a boundary as well if the inner structure of numbers 
were not to be considered. We could then just enumerate  all the numbers less than the boundary, both 
in linguistic and digital form, and assign the same category to all forms.  However, the inner structure 
of number is our primary concern, so we need a more insightful analysis. 
9 Recall we do not discuss (decimal) fractions. 



 54 

 
(3.17) 
   
  PHF = nine    ‘9’ 

DCAT = d  
DIGITFORM = 9 

  
(3.18) 

PHF = eleven 
DIGITFORM =11  ‘11’ 

 
 
(3.19) 

PHF= twenty three 
DIGITFORM =23  ‘23’ 

  
 
We divide input elements into two categories. Those with DCAT = d, representing 
numbers 0-9, can be directly mapped on patterns (3.16). On the other hand, those with 
the missing DCAT value, representing numbers 10-99, cannot. 
 
Now suppose digit sequence (3.20) is mapped on (3.21). 
 
(3.20)  9  1  1 
 
(3.21)  D  D  D 
 
The feature structure  representation of (3.20) is  then (3.22) as provided by algorithm 
(3.23).10 
 
(3.22) 
  
  DIGITFORM =   9 1 1 
  PHF = nine hundred (and) eleven 
 
(3.23) 
  New structure s: 

s(DIGITFORM = the concatenation of  the DIGITFORM values of all the 
elements mapped on (3.21) 
Indirect_element$ = the concatenation of the DIGITFORM values of the  
second,  and the third elements  
s(PHF = the PHF  value of the first element + “hundred (and)” + the PHF 
value of Indirect_element$) 

 
Thus the usefulness of indirect elements is reflected in the effect that input elements 
mapped on different representational elements of a pattern can be considered together, 
as a single element.11 

                                                 
10  ’(and)’  indicates that in British English ’and’ should be pronounced, and in American English it 
should  not. 



 55

For (3.24) algorithm (3.23) should produce phonological form (3.25). 
 
(3.24)  9   0   1 
(3.25)  nine hundred (and) one. 
 
This can be effected by assuming (indirect) input elements like (3.26). 
 
(3.26) 
 
  PHF = one 

DIGITFORM =01  ‘01’ 
 
For  (3.27) this method would result in (3.28) 
 
(3.27)  9  0  0 
(3.28)  nine hundred (and) zero 
 
Here we assume (3.29). 
 
(3.29)  
 
  PHF = zero 

DIGITFORM =00  ‘00’ 
 
  
In order to eliminate the ‘(and) zero’ part we  modify algorithm (3.23). Cf.  (3.30). 
 
(3.30) 
 New structure s: 

s(DIGITFORM = the concatenation of  the DIGITFORM values of all the 
elements mapped on (3.21) 
Indirect_element$ = the concatenation of the DIGITFORM values of the  
second,  and the third elements  
P$ = the PHF value of the first element + “hundred (and)” + the PHF value of 
Indirect_element$ 
If there is an  “(and) zero” segment in P$ then replace it with “”, (the empty 
string) 
s(PHF = P$) 

 
If we choose to consider (3.31) and (3.32) as legal three-digit numbers, we have to 
cancel the first zero as well. 
 
(3.31)  0  9  0 
(3.32)  0  0  9 
 
This involves further modification of (3.23). Cf. (3.33). 
 

                                                                                                                                            
11 Note that Indirect_element in (3.23)  represents the string  ‘11’ , and this string  in turn represents  
AVS (3.18). 



 56 

(3.33) 
New structure s: 
s(DIGITFORM = the concatenation of  the DIGITFORM values of all the 
elements mapped on (3.21) 
Indirect_element$ = the concatenation of the DIGITFORM values of the  
second,  and the third elements  
P$ = the PHF value of the first element + “hundred (and)” + the PHF value of 
Indirect_element$ 
if there is a “zero hundred (and)” segment in P$ then replace it with “”, (the 
empty string) 
if there is a “hundred (and)”  segment in P$ and there is also a “zero” segment 
then replace “zero” with “”, (the empty string) 
s(PHF = P$) 

  
Furthermore, for (3.34) algorithm (3.33) yields phonological form (3.35). 
 
(3.34)  0  0  0 
(3.35)  zero 
 
‘Interface algorithms’ like (3.33)  can be worked out for all patterns in (3.16) in 
similar fashion. 
For simplicity,  we do not distinguish between indirect elements ‘00’-09’, ‘10-19’, or 
’20’ ‘30’ …’90’. Our analysis shows that no such distinction is needed, however it 
could be possible to assign different  statuses to the different types. It  would, in turn, 
entail the modification of  our present analysis. 
 
Recall that we placed an arbitrary upper bound (one million) on the scope of our 
discussion. 
Although we do not see a sharp boundary, the case seems to be  that  (very) large 
numbers require the activation of other cognitive modules. For example, one can add 
additional value to certain  numbers by repetition, like in (3.36). 
 
(3.36)  a million million  … 
 
On the one hand, such repetitions can be regarded as a linguistic means to give 
emphasis. Cf. sentence (3.37).  
 
(3.37). It’s very very good 
 
On the other hand they represent mathematical multiplication, since a million million 
is understood as a million times million. Indeed, further exact  characterisation of 
numbers is only possible by mathematical means. Cf. the exponential expressions in 
(3.38). 
 
(3.38)  1030 
  1,11111111111111111  ×  1017  
 
. 



 57

 
 
 
4.  Conclusions 
 
 
This paper investigated the interaction of language and some basic mathematical 
capacities. We presented a model that allows parallel analyses for the various 
phenomena. A central part was played by strategy ABORDER, and the functions 
characterising individual constructions. 
As was shown, ‘interface algorithms’ can establish  the connection between a natural 
language and the symbolic language of digits by converting saturated patterns into 
feature structures that can, in turn, serve as input elements for other cognitive patterns. 
We did not emphasise the computational complexity aspect of the functions and 
interface algorithms employed in this work, however a closer look would reveal that 
we attempted to keep to computational simplicity, i.e. our algorithms do not go 
beyond linearity in  the length of the input sequence. 
 
 
References 
Bhatt, R., Joshi, A. (2004) Semilinearity Is a Syntactic Invariant: A Reply to 
Michaelis and Kracht 1997 Linguistic Inquiry - Volume 35, Number 4, Fall 2004, pp. 
683-692 
Boeder W. (1995) Suffixaufnahme in Kartvelian. In . Double Case. Agreement by 
Suffixaufnahme. OUP. New York. pp. 151-215 
Drienkó, L. (2004a). Agreement Mapping System Approach to Language. Journal of 
Language and Linguistics. Vol.. 3. No. 1. 38-61. 
Drienkó, L. (2004b). Outlines of Agreement Syntax. Journal of Language and 
Linguistics. Vol.. 3. No. 2.  154-181.  
Groenink, A.V. (1996). Mild context-sensitivity and tuple-based generalizations  of 
context-free grammar. Report CS-R9634, Centrum voor Wiskunde en Informatica 
(CWI), Amsterdam 
Michaelis, J,  Kracht, M. (1996). Semilinearity as a Syntactic Invariant.. Paper 
presented at the conference Logical Aspects of Computational Linguistics (LACL `96), 
Nancy, September 23-25, 1996. Appeared in C. Retoré (ed.), Logical Aspects of 
Computational Linguistics,  pp. 329-345, Springer, Berlin, 1997. Online version: 
http://tcl.sfs.uni-tuebingen.de/~michael/papers.html 
Radzinski, D. (1991) Chinese number-names, tree adjoining languages, and mild 
context-sensitivity. Computational Linguistics. 17: 277-299. 


