
A 32-bit RC4-like Keystream Generator

Yassir Nawaz1, Kishan Chand Gupta2 and Guang Gong1

1Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, ON, N2L 3G1, CANADA
2Centre for Applied Cryptographic Research

University of Waterloo
Waterloo, ON, N2L 3G1, CANADA

ynawaz@engmail.uwaterloo.ca, kgupta@math.uwaterloo.ca,

G.Gong@ece.uwaterloo.ca

Abstract. In this paper we propose a new 32-bit RC4 like keystream
generator. The proposed generator produces 32 bits in each iteration and
can be implemented in software with reasonable memory requirements.
Our experiments show that this generator is 3.2 times faster than original
8-bit RC4. It has a huge internal state and offers higher resistance against
state recovery attacks than the original 8-bit RC4. We analyze the ran-
domness properties of the generator using a probabilistic approach. The
generator is suitable for high speed software encryption.

Keywords: RC4, stream ciphers, random shuffle, keystream generator.

1 Introduction

RC4 was designed by Ron Rivest in 1987 and kept as a trade secret until
it leaked in 1994. In the open literatures, there is very small number of
proposed keystream generator that are not based on shift registers. An
interesting design approach of RC4 which have originated from exchange-
shuffle paradigm [10], is to use a relatively big table/array that slowly
changes with time under the control of itself. As discussed by Golić in [5],
for such a generator a few general statistical properties of the keystream
can be measured by statistical tests and these criteria are hard to establish
theoretically. Two RC4 like stream ciphers are VMPC [23] and RC4A [18].
RC4 consists of a table of all the N = 2n possible n-bit words and two n-
bit pointers. In original RC4 n is 8, and thus has a huge state of log2(28!×
(28)2) ≈ 1700 bits. It is thus impossible to guess even a small part of this
state and almost all the techniques developed to attack stream ciphers
based on linear feedback shift registers (LFSR) fail on RC4. For weakness
of RC4 and most of the known attacks on it see [1–7,9, 11–22].

The most important parameter in RC4 is n, which was typically cho-
sen as 8 by Ron Rivest in 1987. At that time 8-bit/16-bit processors were



available for commercial use. Increase in the word size also results in an
exponential increase in memory required to store it and N number of swap
operation in Key Scheduling Algorithm. But now we have 32-bit/64-bit
very fast processors available for commercial use and the cost of internal
internal memory has reduced drastically. So can not we easily take n to
be 32?. The immediate problem in original RC4 is N = 232 a huge table
size, and the number of swap operations in Key Scheduling Algorithm is
N , which is impractical. Over the past 10 years, numerous papers have
been written on various aspects of RC4, but to the best of our knowledge
none of them has tried to solve this.

In this paper we propose some modifications to the RC4 algorithm so
that it can exploit the 32-bit and 64-bit processor architectures without
increasing the size of the table significantly. The proposed algorithm is
general enough to incorporate different word as well as table sizes. For
example with 32-bit word size a table of lenght 256 words can be used.
We try to keep the original structure of RC4 as much as possible, however
the proposed changes affect some underlying design principles on which
the security of RC4 is based. Therefore we analyze the security of the
modified RC4 and compare it to the original RC4. The rest of the paper
is organized as follows. In section 2 we give a brief description of original
RC4. In section 3 we propose a modified RC4 keystream generator. The
security of the proposed generator is analyzed in section 4 followed by a
performance analysis in section 5. We conclude in section 6.

2 Description of RC4

In this section we give a description of the original RC4. The RC4 algo-
rithm consists of two parts: The key scheduling algorithm (KSA) and the
pseudo-random generation algorithm(PRGA). The algorithms are shown
in Figure 1 where l is the length of the secret key in bytes, and N is the
the size of the array S or the S-box in words. In most applications RC4
is used with a word size n = 8 and array size N = 28. In the first phase
of RC4 operation an identity permutation (0, 1, ..., N −1) is loaded in the
array S. A secret key K is then used to initialize S to a random permuta-
tion by shuffling the words in S. During the second phase of the operation
PRGA produce random words from the permutation in S. Each iteration
of the PRGA loop produces one output word which constitutes the run-
ning keystream. The keystream is bit-wise XORed with the plaintext to
obtain the ciphertext. All the operations described in Figure 1 are byte
operations (n = 8). Most modern processors however operate on 32-bit

2



or 64-bit words. If the word size in RC4 is increased to n = 32 or n = 64,
to increase its performance, the size of array S becomes 232 or 264 bytes
which is not practical. Note that these are the array sizes to store all the
32-bit or 64-bit permutations respectively.

KSA(K, S)
for i=0 to N − 1

S[i] = i
j = 0

for i = 0 to N − 1
j = (j + S[i] + K[i mod l]) mod N
Swap(S[i], S[j])

PRGA(S)
i=0
j = 0
Output Generation Loop

i = (i + 1) mod N
j = (j + S[i]) mod N
Swap(S[i], S[j])
Output=S[(S[i] + S[j])mod N ]

Fig. 1. The Key Scheduling Algorithm (KSA) and Pseudo-Random Gen-
eration Algorithm (PRGA)

3 Proposed Modification to RC4

We now propose a modification to the original RC4 algorithm which en-
ables us to release 32 bits or 64 bits in each iteration of the PRGA loop.
This is done by increasing the word size to 32 or 64 while keeping the
array size S much smaller than 232 or 264. We will denote the new algo-
rithm as RC4(n,m) where N = 2n is the size of the array S in words, m
is the word size in bits, and n ≤ m. For example RC4(8,32) means that
the size of the array S is 256 and each element of S holds 32-bit words.
Also we will use the term Z2r to represent the integer ring modulo 2r.

If we choose n to be much smaller than m (m = 32 or 64) in RC4(n,m),
then this results in reasonable memory requirements for the array S. How-
ever now the contents of the array S do not constitute a complete per-
mutation of 32 bit or 64 bit words. To maintain the randomness of the

3



output keystream we add an integer addition modulo 232 (264 for n = 64)
to the state update part of the PRGA. The state update now consists of
a swap operation and a single word update operation through an integer
addition. The index value selected for the update in array S is the same
from where the output is taken. This is to ensure that the keystream
word just produced is no longer in the array S. This is important because
the array is not a permutation and the size of the array is only a small
fraction of all the possible numbers M . Therefore knowledge of any value
in the array can reveal important state information to the attacker.

KSA(K, S)
for i=0 to N − 1

S[i] = ai

j = 0
for i = 0 to N − 1

j = (j + S[i] + K[i mod l]) mod N
Swap(S[i], S[j])
S[i] = S[i] + S[j] mod M

PRGA(S)
i = 0
j = 0
Output Generation Loop

i = (i + 1) mod N
j = (j + S[i]) mod N
Swap(S[i], S[j])
Output=S[(S[i] + S[j] mod M)mod N ]
S[(S[i] + S[j] mod M)mod N ]=S[i] + S[j] mod M

Fig. 2. The Modified Key Scheduling Algorithm (KSA) and Pseudo-
Random Generation Algorithm (PRGA) for RC4(n,m)

We are still investigating the potential attacks on the proposed algorithm.
For example the integer addition modulo M provides the randomness in
the update operation however it also satisfies the relation S[t mod N ] = t
where t = S[i]+S[j] mod M . To avoid this we are currently experimenting
with a shift operation which provides a mixing from higher bits to lower
bits. The update operation with the shift is given by S[t mod N ]=t ¿ c,
where c is an odd integer.

A similar modification is made to the KSA. In addition to a swap
operation each word is updated through an integer addition. Moreover the
initial values of the array S can be selected randomly. These values are

4



precomputed and can be stored in ′a′ beforehand. We give some randomly
selected initial values for RC4(8, 32) in Appendix A. The modified KSA
and PRGA are given in Figure 2 where N = 2n, M = 2m and l is the
length of the key in bytes.

4 Security Analysis of RC4(n, m)

In this section we analyze the security of RC4(n,m). We consider the
resistance of the generator against state recovery attacks and the ran-
domness properties of the keystream.

4.1 Internal State of RC4(n, m)

Like the original RC4, the security of RC4(n,m) comes from its huge in-
ternal state. The size of the internal state of original RC4 is approximately
1700 bits. In case of RC4(n,m) the internal state does not consists of a
permutation and it may have repetitions of words. Number of putting 2m

elements into N cells where repetitions are allowed is (2m)N . Therefore
the size of the internal state is simply given by N2× (2m)N . For example
for RC4(8, 32) this number is 8208 bits which is much larger than original
RC4. Recovering the internal state of RC4(n,m) is therefore much harder
than recovering the internal state of RC4.

4.2 Forward Secrecy in RC4(n, m)

Like most of the key stream generator RC4(n, m) keystream generator
can also be represented as a finite state machine. Suppose N = 2n, M =
2m and R = Z2

N × ZN
M . The next state function is f : R → R. Let

(i, j, x0, x1, · · · , xN−1) ∈ R be any state, and (e, d, y0, y1, · · · , yN−1) ∈ R
be the next state of the function f . Then we have e = i + 1 mod N , d =
j + xe mod N , yd = xe, ye = xd, yt = xt, t /∈ {e, d}, k = xe + xd mod M ,
yk mod N = k. Output of the cipher is xk mod N . As seen above we can
deterministically write down value of each parameter of the next state. So
given a state (e, d, y0, y1, · · · , yN−1), we can recover (i, j, x0, x1, · · · , xN−1)
except xk because xk has been replaced. Therefore Without the knowledge
of xk the state function is non invertible.

In original RC4 the state function is invertible. Non invertible state
functions are known to cause a significantly shorter average cycle length. If
the size of the internal state is s and the next state function is randomly
chosen then the average cycle length is about 2fracs2. For a randomly

5



chosen invertible next state function the average cycle length is 2s−1. As
s in RC4(8, 32) is huge (i.e., 8208) the reduction in cycle length is not a
problem.

4.3 Randomness of the Keystream

To analyze the keystream of RC4(n,m) we first state the security prin-
ciples underlying the design of original RC4. The KSA intends to turn
an identity permutation S into a pseudorandom permutation of elements
and PRGA generates one output byte from a pseudorandom location of
S in every round. At every round the secret internal state S is changed
by the swapping of elements, one in a known location and other pointed
to by a random index. Therefore we can say that the security of original
RC4 depends on the following three factors.

– Uniform distribution of the initial permutation of elements in S.
– Uniform distribution of the value of index pointer j.
– Uniform distribution of the index pointer from which the output is

taken (i.e., (S[i] + S[j]) mod N).

The above three conditions are necessary but not sufficient. The KSA
uses a secret key to provide a uniformly distributed initial permutation
of the elements in S. The value of the index pointer j is updated by the
statement j = (j + S[i]) mod N . Since the elements in S are uniformly
distributed the value of j is also uniformly distributed. By the same ar-
gument (S[i] + S[j]) mod N is also uniformly distributed. Note that the
internal state of RC4 consists of the contents of array S and the index
pointer j. The state update function consists of an update of the value
of j and the update of the permutation in S through a swap operation
given by the statement Swap(S[i], S[j]). Since j is updated in a uniformly
distributed way, the selection of the locations to be swapped is also uni-
formly distributed. This ensures that the internal state of RC4 evolves in
a uniformly distributed way.

We now consider RC4(n, m). The first difference from original RC4 is
that whereas the array S in original RC4 is a permutation of all the 256
elements in Z28 , the array S in RC4(n,m) only contains 2n m-bit words
out of 2m possible words in Z2m . Consider the PRGA and assume that
the initial permutation of 2n elements in S is uniformly distributed over
Z2m . Then the index pointer j is update by the statement

j = j + S[i] mod N

6



2 4 6 8 10 12 14 16
60

65

70

75

80

85

90

95

100

nu
m

be
r 

of
 d

is
tin

ct
 e

le
m

en
ts

 (
%

)

n

Fig. 3. The effect of n on the percentage of distinct elements observed
in 216 word long keystream

where j ∈ Z2n and S[i] ∈ Z2m . If the value of S[i] is uniformly distributed
over Z2m , the value of index pointer j is also uniformly distributed over
Z2n . This implies that the value of the index pointer from which the output
is taken (i.e.,(S[i] + S[j] mod M)mod N) is uniformly distributed over
Z2n . For the above properties to hold during PRGA phase it is essential
that the internal state of the RC4(n,m) evolves in a uniformly distributed
manner. Recall that in original RC4 the uniform distribution of pointer j
was the reason for the state to evolve uniformly since all the 256 elements
in Z28 were present in the state. However in modified RC4 this is not
the case and the uniform distribution of j over Z2n is not sufficient. The
state update function also consists of the update of an element in S by
integer addition modulo M given by the statement S[(S[i] + S[j] mod
M)mod N ] = S[i] + S[j] mod M . Since both S[i] and S[j] are uniformly
distributed, the updated element in the state is also uniformly distributed.
The internal state of RC4(m,n) evolves in a uniformly distributed manner
and therefore the output of the cipher is also uniformly distributed, i.e.,
all the elements from Z2m occur with equal probability.

Next we analyze the randomness of a smaller segment of the RC4(n,m)
keystream and compare it to original RC4. The output of the original RC4
can be considered as drawing cards randomly from a deck of 256 distinct
cards with replacement. In this model if we draw

√
256 cards randomly

then due to birthday paradox we can get a collision, i.e., at least one

7



card is drawn twice with high probabilty. Similarly it can be shown that
if we draw 256 cards randomly with replacement the number of distinct
cards that will be selected is approximately .632 × 256 ≈ 162. There-
fore we can expect to observe 162 distinct values in a 256 bytes segment
of original RC4. The RC4(n,m) case is slightly different. Here we can
view the output as coming from a deck of 2n cards, without replacement,
which has been drawn from a larger deck of 2m distinct cards. After each
draw the smaller deck is replenished by taking a new card from larger
deck with replacement. To study the behavior of this model we consider
a reduced RC4(n,m) example. We fix m = 16 and vary n to see the
effect of the size of the smaller deck on the number of distinct cards
chosen when 216 cards are drawn. In other words this is the number of
distinct 16-bit words observed in a 216 words long RC4(n, 16) keystream.
The results of our experiment are shown in Figure 3. The graph shows
the number of distinct 16-bit words observed as a percentage of the total
words in the keystream, i.e., 216. For each value of n we ran the algorithm
10,000 times and the number of distinct words observed were averaged
over 10,000 streams. The results show that when n is small the number of
distinct elements observed is very high. However as n increases this num-
ber comes down and seems to be approaching towards 63.2 (original RC4
case) as n approaches m. However for n = 16 the percentage of distinct
values observed was 62.1 which is slightly lower than original RC4. This
difference is because of the fact that the array S in RC4(n, n) can have
duplicate elements whereas the array S in original RC4 can not since it is
a permutation. Therefore the number of collisions in RC4(n, n)is slightly
higher than original RC4.

Another way of studying this behavior is to look at the frequency
distribution graph of RC4 and RC4(n,m). For this purpose we used
RC4(n, 16) to generate 224 words long keystreams. The frequency of each
16-bit word in the keystream was computed. If each word occurs equal
number of times in the keystream, then all words occur with a frequency
of 224−16 = 256. We plot the number of elements observed for each fre-
quency in Figure 4. For each value of n, 100 different keystreams were
generated. The graph suggests that if n is small compared to m, the
output of RC4(n,m) can be distinguished form original RC4 by look-
ing at the frequency distribution of the words in the smaller segments
of the keystream. The curves for RC4(4,16) and RC4(7,16) can be easily
distinguished from RC4 curve in Figure 4. However as n increases the fre-
quency distribution resembles more with the original RC4 distribution.
This behavior is demonstrated more clearly in Figure 5 where the curves

8



200 220 240 260 280 300 320
0

1

2

3

4

5

6
x 10

6

Frequency

N
um

be
r 

of
 ti

m
es

 o
bs

er
ve

d

RC4
RC4(4,16)
RC4(7,16)
RC4(10,16)
RC4(16,16)

Fig. 4. Frequency distribution of RC4(n,m)

200 220 240 260 280 300 320
0

1

2

3

4

5

6

7
x 10

5

Frequency

N
um

be
r 

of
 ti

m
es

 o
bs

er
ve

d

RC4
RC4(7,16)
RC4(10,16)
RC4(16,16)

Fig. 5. Frequency distribution of RC4(n,m)

9



for RC4(10,16) and RC4(16,16) are very similar to original RC4. To in-
crease the complexity of distinguishing RC4(n,m) from RC4, based on
frequency distribution analysis, a large n can be used. However even if we
use a smaller n, distinguishing RC4(n,m) output does not help in recov-
ering the internal state of RC4(n, m). There are many existing pseudo-
random generators which can be distinguished from a random process by
such analysis. For example if a generator generates a complete cycle or
permutation, i.e., 2r r bit distinct words in a 2r words long keystream, it
can be distinguished from a truly random stream by observing 2r/2 words.
AES used in counter mode, Klimov-Shamir pseudorandom sequence gen-
eraotr [8] and LFSRs with primitive feedback polynomials are examples
of such generators.

5 Performance of RC4(n, m)

RC4(n, 32) has been designed to exploit the 32-bit architecture of the
current processors. If n is chosen such that the corresponding memory
requirements are reasonable, RC4(n, 32) can give much higher through-
puts than the original 8-bit RC4. We implemented both 8-bit RC4 and
RC4(8,32) on a PC and computed the ratio of the throughputs obtained
from both. Our results show that RC4(8,32) is approximately 3.2 times
faster than the original 8-bit RC4. This speedup will be much higher for
RC4(n, 64) on a 64-bit machine.

6 Conclusions and Future Work

In this paper we have proposed a new 32-bit RC4 like keystream gen-
erator. The proposed generator is 3.2 times faster than 8-bit RC4 on
a 32-bit machine. The internal state of the proposed generator is much
larger than the internal state of original RC4. Moreover given the current
internal state of the generator it is not possible to retrieve the previous
state in the absence of the keystream. The keystream produced by the
proposed generator has good randomness properties and is uniformly dis-
tributed. However the frequency distribution of the words in a smaller
segment of the keystream is different from original RC4 for smaller table
sizes.

In future we would like to find the relation between the values of n
and m which gives optimal frequency distribution and other randomness
properties of the keystream. Like RC4 it would be interesting to investi-
gate the existence of certain states that can not occur or have a negligible

10



probability of occurance in the proposed RC4(n,m). Similarly it will be
nice to see what is the probability of occurance of a particular state. An-
other problem is to compute the functional form of the RC4(n,m) state
update function.

We are currently working on the security aspect of the 32/64 bit RC4
like stream cipher and trying to make it robust.

References

1. E. Biham, L. Granboulan, and P. Nguyen. Impossible and Differential Fault Analysis
of RC4. Fast Software Encryption 2005.

2. H. Finney, An RC4 cycle that can’t happen, Post in sci.crypt, September 1994.
3. S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the Key Scheduling Algorithm

of RC4. SAC 2001 , vol. 2259 of LNCS, pp. 1-24, Springer-Verlag, 2001.
4. S. Fluhrer and D. McGrew. Statistical Analysis of the Alleged RC4 Keystream

Generator. Fast Software Encryption 2000. vol. 1978 of LNCS, pp. 19-30, Springer-
Verlag, 2000.

5. J. Golić. ”Linear Statistical Weakness of Alleged RC4 Keystream Generator,” Eu-
rocrypt ’97 (W. Fumy, ed.), vol. 1233 of LNCS, pp. 226-238, Springer-Verlag, 1997.

6. A. Grosul and D. Wallach. A related key cryptanalysis of RC4. Department of
Computer Science, Rice University, Technical Report TR-00-358, June 2000.

7. R. Jenkins. Isaac and RC4. Published on the Internet at
http://burtleburtle.net/bob/rand/isaac.html.

8. A. Klimov and A. Shamir, A New Class of Invertible Mappings, CHES 2002, Vol.
942 of LNCS, pp. 470-483, Springer-Verlag, 2002.

9. L. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege. Analysis Methods
for (Alleged) RC4. Asiacrypt ’98, vol. 1514 of LNCS, pp. 327-341, Springer-Verlag,
1998.

10. M. D. MacLaren and G Marsaglia. Uniform random number generation. J. ACM,
vol. 15, pp. 83–89, 1965.

11. I. Mantin. Predicting and Distinguishing Attacks on RC4 Keystream Generator.
Eurocrypt Vol. 3494 of LNCS, pp. 491-506, Springer-Verlag, 2005.

12. I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. Fast Software
Encryption 2001. Vol. 2355 of LNCS, pp. 152-164, Springer-Verlag, 2001.

13. I. Mantin. The Security of the Stream Cipher RC4. Master Thesis (2001) The
Weizmann Institute of Science

14. A. Maximov. Two Linear Distinguishing Attacks on VMPC and RC4A and Weak-
ness of the RC4 Family of Stream Ciphers. Fast Software Encryption 2005.

15. I. Mironov. Not (So) Random Shuffle of RC4. Crypto Vol. 2442 of LNCS, pp.
304-319, Springer-Verlag, 2002.

16. S. Mister and S. Tavares. Cryptanalysis of RC4-like Ciphers. SAC ’98, vol. 1556
of LNCS, pp. 131-143, Springer-Verlag, 1999.

17. S. Paul and B. Preneel. Analysis of Non-fortuitous Predictive States of the RC4
Keystream Generator. Indocrypt 2003, vol. 2904 of LNCS, pp. 52-67, Springer-
Verlag, 2003.

18. S. Paul and B. Preneel. A New Weakness in the RC4 Keystremeam Generator and
an Approach to Improve the Security of thr Cipher. Fast Software Encryption 2004.
Vol. 3017 of LNCS, pp. 245-259, Springer-Verlag, 2004.

11



19. M. Pudovkina. Statistical Weaknesses in the Alleged RC4 keystream generator.
Cryptology ePrint Archive 2002-171, IACR, 2002.

20. A. Roos. Class of weak keys in the RC4 stream cipher. Post in sci.crypt, September
1995.

21. A. Stubblefield, J. Ioannidis, and A. Rubin. Using the Fluhrer, Mantin and Shamir
attack to break WEP. Proceedings of the 2002 Network and Distributed Systems
Security Symposium, pp. 17-22, 2002.

22. Y. Tsunoo, T. Saito, H. Kubo, M. Shigeri, T. Suzaki, and T. Kawabata. The Most
Efficient Distinguishing Attack on VMPC and RC4A. SKEW 2005.

23. B. Zoltak. VMPC One-Way Function and Stream Cipher. Fast Software Encryp-
tion, vol. 3017 of LNCS, pp. 210-225, Springer-Verlag, 2004.

12



Appendix A

Initial values for RC4(8,32) in hexadecimal format

a0=AC1C1485 a1=93FBFC7A a2=EF6E4DCF a3=5840EDE3
a4=93A55E19 a5=2A61EB6E a6=76DAACEC a7=F998D38B
a8=7E857AB1 a9=3AC3B17D a10=C5941CD9 a11=19A50BE5
a12=25C0DE69 a13=079DF648 a14=2E1AEB67 a15=17CEC440
a16=189EC261 a17=CF544912 a18=2C2E2485 a19=0C28B1AC
a20=6A2C2144 a21=C6B4FD97 a22=5A8DEC93 a23=447391E7
a24=FDE63D36 a25=BE7F23AD a26=186F96CD a27=92B5E8AD
a28=880D1003 a29=29E97FE8 a30=204FAD86 a31=0E6DD8B3
a32=D4805387 a33=536B9CCC a34=63D6C749 a35=38B83DCE
a36=CC0A04A6 a37=025B7563 a38=D9E5E723 a39=9AE27819
a40=44848A51 a41=E4294F27 a42=3401AD9E a43=592F8A17
a44=B042F066 a45=7233B29F a46=92B9B132 a47=62EB7323
a48=1B97CA70 a49=3089A026 a50=A0BFAC39 a51=05FCF2AA
a52=2081C18D a53=711B88B3 a54=D1C669AE a55=428B1206
a56=B5B8DE0E a57=082B7A97 a58=9165923C a59=207F2DF4
a60=FFB20384 a61=90F1AD8F a62=9B90D15F a63=B4E14AF6
a64=9A5B3C5A a65=2FD7569F a66=E564DFB6 a67=CD630423
a68=E795C72C a69=FDBB5E8B a70=B45977AB a71=5A9B5D37
a72=67BA087B a73=7D107FEF a74=D91B4819 a75=0BB71EDA
a76=30B4C371 a77=C6DCC43F a78=289159A8 a79=BCADC277
a80=F16A54C6 a81=4AE5923A a82=A7E87CE7 a83=9F3FFB22
a84=3292BA1A a85=61879694 a86=098DC774 a87=51424859
a88=A62BAC2E a89=08094AE5 a90=6C8327AE a91=330A3FA2
a92=CD241DE5 a93=6A72FF1A a94=787B8AC7 a95=C1F17854
a96=3603D1FB a97=30257CFF a98=4E8E3735 a99=BE463311
a100=2784F0D1 a101=ADCEC09B a102=E89445C8 a103=6B323ABC
a104=718CC2BE a105=606B6072 a106=DD665CF6 a107=265288EA
a108=B6E2F1BD a109=657597EE a110=A1911B1E a111=2411BA20
a112=728B0382 a113=C46E1179 a114=B93ED4CD a115=23135C61
a116=80BDF530 a117=C564E110 a118=82619049 a119=41248BD5
a120=FBC41845 a121=B52F5554 a122=736E67F0 a123=648A8194
a124=A1529479 a125=B76A7D6F a126=091BB331 a127=D6B90BD2
a128=220C51A8 a129=9E799F39 a130=B706AF21 a131=F7A6FB04
a132=0C5308FA a133=E220F287 a134=96317BFE a135=3E5308BD
a136=2C9ECCE4 a137=2571548D a138=AAA99C21 a139=E455C945
a140=94DB51BF a141=F01BD3B2 a142=EDE57029 a143=DD55A344
a144=B7B1B6FF a145=89674C52 a146=8F973667 a147=19DFE7F3

13



a148=2C9F9C55 a149=105F613A a150=FDFF8DD2 a151=23FF74AF
a152=1D48D23F a153=48F19AE2 a154=AF0AA311 a155=8D7692E7
a156=6D68E4D7 a157=B81571B2 a158=DEBE6453 a159=D398EDB5
a160=164B3FDD a161=04398FDC a162=79C46A18 a163=9E07CDA9
a164=57C0D84B a165=AE7F8F86 a166=1F0E8114 a167=84EB028D
a168=9ED574FD a169=A594FB5D a170=E8E7F7C9 a171=BD562227
a172=5BEAFE2E a173=482A62CE a174=3FFA129F a175=67F60747
a176=19CF8EDC a177=C156B571 a178=23076173 a179=4C48ACA6
a180=9716174C a181=F1655069 a182=7B63C7F6 a183=49DFDC5B
a184=B4BCCD49 a185=3BE45CCB a186=697C6A5C a187=C58154F7
a188=62D3C4D4 a189=EEF06449 a190=C9F0F522 a191=DA294682
a192=0CD55B58 a193=29095DB3 a194=2EFCC7F8 a195=1E3059ED
a196=0AC768AA a197=61F86F0B a198=2348010E a199=2E279EC3
a200=13584D54 a201=FA8C373E a202=8067A05B a203=6B28150D
a204=DB9C4FFD a205=8D416CC9 a206=077DFA94 a207=83AFB0CF
a208=311BEEF4 a209=D601FDC4 a210=AEE358ED a211=C332FD86
a212=613D0F1B a213=5AA32732 a214=3DCA86D7 a215=4312DC90
a216=A96639D0 a217=47DD1B8D a218=2A2A905E a219=67A1E863
a220=F1402D83 a221=1BB91FD9 a222=DA8001D2 a223=4C4A7FFD
a224=3D00A615 a225=17CF5BCB a226=AD2267DC a227=1F2592FD
a228=64A5033B a229=8DD7ABCB a230=843BE330 a231=6D749833
a232=13892876 a233=7B4D29CF a234=9BAD0682 a235=E6E362B5
a236=25BFDF62 a237=213B5A66 a238=F65B605D a239=3280A5C0
a240=D80A7565 a241=706B1576 a242=A8C05B12 a243=C8C36AE2
a244=6D716E08 a245=7D869E68 a246=C5B255DC a247=E325CD41
a248=25C98682 a249=64F298E3 a250=BBB923E5 a251=0A0AAE06
a252=CB9D5A3B a253=3E6CAB45 a254=627860DA a255=C919422D

14


