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Abstract. We present the first group signature scheme with provable
security and signature size O(λ) bits where the group manager, the group
members, and the Open Authority (OA) are all identity-based. We use
the security model of Bellare, Shi, and Zhang [3], except to add three
identity managers for manager, members, and OA respectively, and we
discard the Open Oracle (OO). Our construction uses identity-based
signatures summarized in Bellare, Namprempre, and Neven [2] for man-
ager, Boneh and Franklin’s IBE [7] for OA, and we extend Bellare et
al.[3]’s group signature construction by verifiably encrypt an image of
the member public key, instead of the public key itself. The last innova-
tion is crucial in our efficiency; otherwise, Camenisch and Damgard[9]’s
verifiable encryption would have to be used resulting in lower efficiency.

1 Introduction

Identity based cryptography, introduced by Shamir [25], allows the users’ public
key to be their identity. Usually a trusted third party computes the private
key from the identity (any arbitrary string such as email address). Comparing
with certificate from certificate authority (CA), the identity based public key
can identify the user immediately. Besides, the problem of distribution of public
keys is avoided in identity based cryptography.

Group signature, introduced by Chaum and van Heyst [13], allows any mem-
ber of a group to sign on behalf of the group. However, the identity of the signer
is kept secret. Anyone can verify that the signature is signed by a group mem-
ber, but cannot tell which one. Therefore group signature provides anonymity
for signers. Usually in group signature schemes, a group manager issues certifi-
cates to his group members. Then the group member uses his certificate and his
own secret key to sign messages. Anyone can verify the signature by the group
manager’s public key. In some cases, an open authority has a secret key to revoke
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the anonymity of any signature in case of dispute. Mostly it can be done by an
encryption to the open authority when signing the message. On the other hand,
anonymity can be revoked when a signer double signs in some schemes. Group
signature is a very useful tool in real world. It can be used in e-cash, e-voting or
attestation [8] in trusted computing group.

Weil and Tate pairing has been widely used in identity based cryptography
in recent years. Pairing is also used to construct short group signature [6] re-
cently. However, none of the existing group signature scheme can be completely
verified in an identity based manner, that is the group public key and the opener
public key are arbitrary strings. The current ”Identity based” group signature
are mostly for identity based group member only ([22][19][26][11][14]). We think
that identity based group member is not enough for group signature. It is be-
cause the signer’s public key is always anonymous in group signature. Whether
it is identity based or not has no effect to the verifier. We think that it is con-
structive to have a group signature with identity based group public key, which
is the identity of the group manager in this case. At the same time, we also want
to support identity based group members, as well as open authority. We call this
new scheme to be a fully identity based group signature. In this paper, we will
give a generic construction, and then a specific instantiation of such a identity
based group signature.

Contributions. Our main contributions are:

– We introduce the formal study of group signature schemes with identity
based group manager, identity based group members and identity based
open authority.

– We present the first construction of the above scheme, complete with security
models, and reductionist security proofs in the random oracle model. The
size of the signature is O(λ) bits.

– We extend Bellare, Shi, and Zhang [3]’s generic group signature construction
by verifiably encrypt, to the Open Authority (OA), a one-way image of the
signer public key instead of the signer public key itself. This technique is
crucial to the topic in this paper.

The rest of the paper is organized as follows: Section 2 contains preliminar-
ies. Section 3 contains the security model. Section 4 contains the constructions.
Section 5, security theorems. Section 6, discussions and applications.

2 Preliminaries

2.1 Related results

After the introduction of group signature by Chaum and van Heyst [13], there are
numerous group signature schemes proposed, such as Ateniese et al [1], Dodis et
al [15], Boneh et al [6]. The state-of-the-art is to have a group signature scheme
with signature size independent of the group size. The security model of dynamic
group signature is proposed in [3].



Title Suppressed Due to Excessive Length 3

Identity based signature is suggested in 1984 by Shamir [25], but practical
identity based encryption is not found until 2001 by Boneh and Franklin [7]
using Weil pairing. Identity based group signature is firstly proposed by Park
et al [22]. [19] showed that the anonymity of the scheme was not guaranteed.
Tseng and Jan [26] presented a novel ID-based group scheme. However, it is
universally forgeable [18] and not coalition-resistant [17]. Several identity based
group signature schemes are proposed in [11], [14]. [11] requires a new pair of
certificate for each signature. However all of them only have identity based key
pairs for group members only. Group signature scheme with identity based group
manager and identity based open authority remains as an open problem.

2.2 Pairings

Following the notation of pairings in [7], let G1,G2 be (mutiplicative) cyclic
groups of prime order p. Let g1 be a generator of G1 and g2 be a generator of
G2. Let ψ is a computable isomorphism from G1 to G2, with ψ(g2) = g1.

Definition 1. A map ê : G1 × G2 → GT is called a bilinear pairing if, for all
x ∈ G1, y ∈ G2 and a, b ∈ Zp, we have ê(xa, yb) = ê(x, y)ab, and ê(g1, g2) 6= 1.

Definition 2. (co-CDH problem) The co-computational Diffie-Hellman problem
in (G1,G2) is as follows: given P, Pα ∈ G1, Q ∈ G2, for unknown α ∈ Zp, to
compute Qα.

Definition 3. (DDH problem) The decisional Diffie-Hellman problem in G1 is
as follows: given P, Pα, P β , R ∈ G1 for unknown α, β ∈ Zp, to decide if R = Pαβ.

Definition 4. (co-DBDH problem) The co-decisional Bilinear Diffie-Hellman
problem in (G1,G2) is as follows: given P, Pα, P β ∈ G1, Q ∈ G2, R ∈ GT for
unknown α, β ∈ Zp, to decide if R = ê(P,Q)αβ.

Definition 5. (k-SDH’ problem) The k-Strong Diffie-Hellman’ problem in (G1,G2)
is as follows: given g1, g1

γ , ..., g1
γk ∈ G1 and g2, g2

γ ∈ G2 as input, outputs a
pair (g11/γ+x, x) where x ∈ Z∗

p.

Definition 6. (k-CAA2 problem) The k-CAA2 problem in (G1,G2) is as fol-
lows: given v, u ∈ G1, g2, g2γ ∈ G2 and pairs (Ai, ei, λi) with distinct and
nonzero ei’s satisfying Aγ+ei

i vλi = u for 1 ≤ i ≤ k as input, outputs a pair
(Ak+1, ek+1, λk+1) satisfying Aγ+ek+1

k+1 vλk+1 = u, with ek+1 6= ei for all 1 ≤ i ≤ k.

The above k-SDH’ problem and k-CAA2 problem are proven equivalent in
[27] assume the value logu(v) is known. [27] also shows that the k-Strong Diffie-
Hellman assumption in [20],[5],[28] is at least as strong as the k-SDH’ problem.

Definition 7. Let ê : G1 ×G2 → GT be a pairing. Given the following:

1. g1, gα
1 , g

βi

1 , g
γi

1 ∈ G1 for 1 ≤ i ≤ k;
2. g2, gδ1

2 , g
δ2
2 ∈ G2, R ∈ GT ;
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3. Pr{γi = αβi, all i, 1 ≤ i ≤ k} = Pr{γi 6= αβi, all i, 1 ≤ i ≤ k} = 1/2.
4. Pr{γi = αβi, all i, 1 ≤ i ≤ k AND R = ê(g1, g2)δ1δ2} = Pr{γi 6= αβi, all i,

1 ≤ i ≤ k AND R 6= ê(g1, g2)δ1δ2} = 1/2

The Lockstep DDH Problem (resp. Lockstep DDH+coDBDH Problem) is to
distinguish between the two nonzero probability events in (3) (resp. (4)) above
with non-negligible probability over 1/2. The Lockstep DDH Assumption (resp.
Lockstep DDH+coDBDH Assumption) is that no PPT algorithm can solve the
Lockstep DDH Problem (resp. Lockstep DDH+coDBDH Problem).

Lemma 1 The Lockstep DDH Assumption in G1 holds if and only if the DDH
Assumption in G1 holds. The Lockstep DDH+coDBDH Assumption holds in
(G1,G2) if and only if the DDH Assumption in G1 and the co-DBDH assumption
in (G2,G1) both hold.

Proof. We prove for the Lockstep DDH+coDBDH Assumption only. The other
case is similar. The DDH assumption and the co-DBDH assumption implies the
Lockstep DDH+coDBDH assumption is straightforward.

We now proof in the opposite direction. Let B be a PPT solver of the Lock-
step DDH+coDBDH problem with advantage ε1. Consider its performance when
given the following problems: [DDHi: (g1, gα

1 , g
βi

1 , g
γi

1 )] for 1 ≤ i ≤ k and [co-
DBDH: (g1, g2, gδ1

2 , g
δ2
2 , R)]; where γi = αβi or is random with half-half prob-

ability, and R = ê(g1, g2)δ1δ2 or is random with half-half probability. Then we
can give the ”generalized lockstep” problem to B to solve: [(g1, gα

1 , g
βi

1 , g
γi

1 ) for
1 ≤ i ≤ k; (g2, gδ1

2 , g
δ2
2 , R)]. With probability 2−(k+1), the ”generalized lockstep”

problem is a Lockstep DDH+coDBDH problem, and in that case B solves it
with probability 1/2 + ε1. Otherwise, the ”generalized lockstep” problem is not
a Lockstep DDH+coDBDH problem, and let us consider B’s performance in this
case. Let ε2 denote the probability that B outputs ⊥ meaning the problem is not
a Lockstep DDH+coDBDH problem. ε2 = 0 if he is not allowed to do so. Then
B outputs either DDHi and co-DBDH decision with equal probability (1− ε2)/2
because there is a symmetry w.r.t. the two cases.

Let us build an algorithm B’ to solve DDHi and co-DBDH: B’ outputs ”yes”
to DDHi and co-DBDH if B outputs ”yes” on input ”generalized lockstep” prob-
lem; and B’ outputs ”no” otherwise. Then:∑k

i=1
1

k+1Pr{B’ solves DDHi} + 1
k+1Pr{B′ solves co-DBDH}

= 1
2k+1 Pr{B solves Lockstep DDH+coDBDH} +ε2 + 1

2 (1− 1
2k+1 − ε2)

Therefore B’ has a probability non-negligibly over half of solving either DDHi
or co-DBDH problem. ut

3 Security Model

We present a security model for the identity based group signature. Here we
adapt the models for dynamic group signature in [3], and add support for IBGS.
Our scheme is applicable to multiple certificate authorities (CA, or group man-
agers) and open authorities (OA).
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3.1 Syntax

A identity-based group signature (IBGS) is a tuple (Init, OKg, GKg, UKg, Join,
Iss, GSig, GVf, Open, Judge) where:

– Init: 1λ 7→ param. On input the security parameter 1λ, generates system-wide
public parameters param. The identity manager of CA (IMA) has (sk,pk)
pair (xA, yA) for CA (resp. IMU has (xU , yU ) for group members, IMO has
(xO, yO) for OA) and an efficiently samplable one-way NP-relation 〈RA〉,
with trapdoor xA (resp. 〈RU 〉, with trapdoor xU , 〈RO〉, with trapdoor xO).
An efficiently samplable family of one-way NP-relation F = {〈RC,i〉 : i}
with trapdoor gski, is defined for issuing certificate. param is (yA, yU , yO,
RA, RU , RO, F).

– OKg:(oa, xO) 7→ (xoa, auxoa). On input the OA identity oa, the IMO uses
his secret key xO to compute the secret key xoa of the OA, some auxiliary
information auxoa such that ((xoa, auxoa), oa) ∈ RO.

– GKg: (ca, xA) 7→ (xca, auxca, 〈RC,ca〉). On input the CA identity ca, the IMA

samples F to get the relation 〈RC,ca〉. The IMA uses his secret key xA to
compute the group secret key of CA xca, some auxiliary information auxca

such that ((xca, auxca), ca) ∈ RA.
– UKg: (id, xU ) 7→ (xid, auxid). On input the identity id of the member, the
IMU uses his secret key xU to compute the secret key xid of the member,
some auxiliary information auxid such that ((xid, auxid), id) ∈ RU .

– Join,Iss is a pair of interactive protocols between the user and the CA, with
common inputs ca and id. Iss’s additional inputs are xca and auxca. Join’s
additional inputs are xid and auxid. At the conclusion, Join obtains certid
satisfying ((xid, auxid, certid,ca), id) ∈ RC,ca, and Iss stores (id, certid,ca) in a
registration table reg.

– GSig: (id, xid, auxid, ca, oa, certid,ca, M) 7→ σ. On input the keys, certificates
and message, outputs a signature σ.

– GVf: (ca, oa,M, σ) 7→ 0 or 1. On input the message and signature, outputs
1 for valid signature and 0 for invalid signature.

– Open: (ca, xoa, reg,M, σ) 7→ (i, ω). The OA with key xoa has read access to
reg. On input a valid signature σ for message M for ca, output identity i for
the corresponding signer, and ω is the proof of this claim. Output i = ⊥ if
no such member is found.

– Judge: (ca, id, oa,M, σ, ω) 7→ 0 or 1. It checks if the proof ω is a valid proof
that id is the real signer of σ for message M under ca, oa. Outputs 1 for valid
and 0 for invalid.

Remarks: Here we use (param, ca) to denote gpk in [3]’s original syntax. We
also split the GKg in [3] into Init, OKg and GKg. It is because we want to empha-
size that group managers (CA) and open authorities (OA) are identity based.

3.2 Security notions

We have the security notions of Correctness, Anonymity, Traceability, Non-
frameability from [3], with modification for identity based. We give a brief de-
scription here.
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Correctness: Let σ ← GSig(id, xid, auxid, ca, oa, certid,ca, M) for arbi-
trary id, xid, auxid, ca, oa, certid,ca, M . The IBGS has opening correctness if
(id, ω) ← Open(ca, xoa, reg,M, σ) and Judge(ca, id, oa,M, σ, ω) = 1 with over-
whelming probability. It has verification correctness if GVf(ca, oa,M, σ) = 1 with
probability 1. The IBGS is correct if it has verification and opening correctness.

We have the following oracles for the adversary to query:

– The Random Oracle RO: simulate the random oracle normally.
– The Key Extraction Oracle-CA KEOc: ca→ xca. Upon input CA ca, outputs

his secret key xca.
– The Key Extraction Oracle-OA KEOo: oa→ xoa. Upon input OA oa, outputs

his secret key xoa.
– The Key Extraction Oracle-User KEOu: id → xid. Upon input user id, out-

puts his secret key xid.
– The Join Oracle JO: (id, ca) → certca. Upon input id of group ca, outputs

the certca corresponding to an honest Iss-executing CA.
– The Issue Oracle IO: (id, ca) → certca. Upon input id of group ca, outputs

the certca corresponding to an honest Join-executing user.
– The Corruption Oracle CO: (id, ca)→ (xid, auxid, certca). Upon input user id

of group ca, outputs the secret keys (xid, auxid, certca).
– The Signing Oracle SO: (id, ca, oa,M)→ σ. Upon input user id, group ca, oa

and a message M , outputs a valid signature.
– The Open Oracle OO: (oa, ca,M, σ)→ (id, ω). Upon input a valid signature
σ for message M under ca, oa, outputs the signer id and the proof ω.
Remark: KEOO is a stronger oracle thanOO in the sense that KEOO directly
gives the secret key for OA, while OO only opens a particular signature.

Anonymity: We have the following Experiment Anon for anonymity:

1. Simulator S invokes Init. S invokes UKg, Join, Iss together qu times to gen-
erate a set of honest users, denoted HU, with secret keys and certificates.

2. A queries RO, CO,OO, IO,KEOc,KEOu,KEOo in arbitrary interleaf.
3. A selects two users id0, id1 ∈ HU, cag, oag a message M and gives them to
S. Then S randomly chooses b ∈ {0, 1} and returns the gauntlet ciphertext
σ ← SO(idb, cag, oag,M). oag should not be input to OO,KEOo before.

4. A queries RO, CO,OO, IO,KEOc,KEOu,KEOo in arbitrary interleaf. oag

should not be input to OO,KEOo.
5. A delivers an estimate b̂ ∈ {0, 1} of b.

A also has write access to registration table reg in the experiment. A wins
the Experiment Anon if b̂ = b, and oag has never been queried to KEOo. A’s
advantage is its probability of winning Experiment Anon minus half.
Remark: By not allowing to query the gauntlet oag, our model is closer to that
of [6] which does not support any OO, than to that of [3] which supports OO.

Definition 8. The IBGS is anonymous if no PPT adversary has a non-negligible
advantage in Experiment Anon.
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Traceability: We have the following Experiment Trace for traceability:

1. S invokes Init. S invokes UKg, Join, Iss together qu times to generate a set
of honest users, denoted HU, with secret keys and certificates.

2. A queries RO, CO,JO,KEOc,KEOu,KEOo in arbitrary interleaf.
3. A delivers signature σ for messages M for group ca and open authority oa.

ca should not be input to KEOc.

A also has read access to reg.A wins the Experiment Trace if GVf(ca, oa,M, σ) =
1, either i = ⊥ or Judge(ca, i, oa,m, σ, ω) = 0, where (i, ω)← Open(ca, xoa, reg,M, σ),
ca has never been queried to KEOc, and (i, ca) has never been queried to CO,
A’s advantage is its probability of winning.

Definition 9. The IBGS is traceable if no PPT adversary has a non-negligible
advantage in Experiment Trace.

Non-Frameability: We have the following Experiment NF for non-frameability:

1. S invokes Init. S invokes UKg, Join, Iss together qu times to generate a set
of honest users, denoted HU, with secret keys and certificates.

2. A queries RO, CO,SO, IO,KEOc,KEOu,KEOo in arbitrary interleaf.
3. A delivers (σ,M, i, ω), where ω is the proof of user i signed the signature σ

for messages M with group ca and open authority oa.

A also has write access to reg.A wins the Experiment NF if GVf(ca, oa,M, σ) =
1, Judge(ca, i, oa,M, σ, ω) = 1, i has never been queried to CO and σ is not the
output from SO for M, i, ca, oa. A’s advantage is its probability of winning.

Definition 10. The IBGS is non-frameable if no PPT adversary has a non-
negligible advantage in Experiment NF.

Definition 11. An IBGS scheme is secure if it is correct, anonymous, traceable
and non-frameable.

4 Constructions

In this paper, we present a generic construction for identity-based group signature
(IBGS) which is applicable to different kinds of relations between the identity
based CA, users and open authority. After the generic construction, we give an
efficient implementation which is provably secure in the random oracle model.

4.1 Generic construction

A generic IBGS is a tuple (Init, OKg, GKg, UKg, Join, Iss, GSig, GVf, Open, Judge) :

– Init, GKg, OKg, UKg, Open, Judge follows the syntax.
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– Join,Iss is a pair of interactive protocols with common inputs ca and id. Iss’s
additional inputs are xca and auxca. Join’s additional inputs are xid and auxid.
Join runs a proof of knowledge protocol to proof that he knows xid and auxid

to Iss. At the conclusion, Join obtains certid satisfying ((xid, auxid, certid,ca), id) ∈
RC,ca, and Iss stores (id, certid,ca) in a registration table reg. Join may also
obtain auxca as part of certid,ca.

– GSig: (id, ca, oa, xid, auxid, certid, M) 7→ σ. A user id who has certid runs:

SPK{(id, xid, auxid, certid,ca, r) : (xid, auxid, id) ∈ RU

∧ (id, auxid, certid,ca) ∈ RC,ca ∧ ctxt = Enc(id, oa, r)}(M)

The signature σ is obtained from the above SPK, following [10]’s notion.
– GVf: (σ,M) 7→ 0 or 1. On input the signature σ, a verifier verifies σ according

to the above SPK. The verifier outputs 1 for valid signature and 0 otherwise.

4.2 An instantiation: IBGS-SDH

We instantiate the generic construction above in the SDH group.
Init: On input the security parameter 1λ, generates a pairing ê : G1 ×G2 → GT

where the above three (mutiplicative) cyclic groups are of order p. The IMA

(resp. IMO, IMU ) secret key is xA ∈ Z∗
p (resp. xO, xU ) and public keys are

gA, yA = gxA

A ∈ G2 (resp. gO, yO = gxO

O , and gU , yU = gxU

U ). Let u be a generator
in G1. Define cryptographic hash functions HA : {0, 1}∗ → Z∗

p, HU : {0, 1}∗ →
G1, HO : {0, 1}∗ → G1, H : {0, 1}∗ → Z∗

p.

For CA, define RA = {((xca, R), ca) : gxca

A = Ry
HA(R||ca)
A }. For OA, de-

fine RO = {(xoa, oa) : xoa = HO(oa)xO}. For user, define RU = {(x, i) :
x = HU (i)xU }. For certificate, define F = {〈RC,i〉 : i} with trapdoor xi.
RC,ca = {(id, (A, e)) : Ae+xcaHU (id) = u}.

Let g0, g1, g2, g3, g4, u are generators in G1. Then:
param = (ê, gA, yA, gO, yO, gU , yU , g0, ..., g4, u,HA,HU ,HO,H,RA,RU ,RO,F).

OKg: On input OA identity oa, the identity manager IMO uses xO to compute
OA secret key xoa = HO(oa)xO .

GKg: On input CA identity ca, the identity manager IMA defines RC,ca =
{(id, (A, e)) : Ae+xcaHU (id) = u} and computes as follows:

1. Randomly generate r ∈ Z∗
p.

2. Compute auxca = gr
A, xca = r +HA(auxca||ca)xA mod p.

This is taken from BNN-IBI [2]. Finally CA gets (xca, auxca).

UKg: On input user identity id, the identity manager IMU uses xU to compute
user secret key xid = HU (id)xU .

Join,Iss: Common inputs are id, ca. Join’s additional input is xid and Iss’s addi-
tional inputs are xca, auxca. Join firstly runs a proof of knowledge of xid for id.
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Then Iss uses xca, auxca to computes certid,ca = (A, e) satisfying (id, certid,ca) ∈
RC,ca. Iss randomly selects e ∈ Z∗

p, and computes A = (u/HU (id))1/(e+xca).
Iss sends (A, e, auxca) to Join. The validity of auxca can be checked by BNN’s
IBI [2]. Note u is a fairly generated public parameter, Join accepts the cer-
tificate if and only if ê(u, gA) = ê(A, gA)eê(A,S)ê(HU (id), gA), where S =
gxca

A = auxcay
HA(auxca||ca)
A . Finally Join obtains certid,ca, auxca. Iss computes W =

ê(HU (id), gA), and puts (id, A, e,W ) in reg.

GSig: A member id from group ca with secret key x and certificate (A, e) com-
putes a signature σ for message M and oa by

SPK{(id, x, (A, e), d) : x = HU (id)xU ∧ Ae+xcaHU (id) = u

∧ ctxt = ê(HU (id), gA)ê(HO(oa), yO)d ∧ U = gd
O}(M) (1)

which is equivalent to

SPK{(id, x, (A, e), d) : ê(x, gU ) = ê(HU (id), yU )
∧ ê(u, gA) = ê(A, gA)eê(A,S)ê(HU (id), gA) (2)
∧ ctxt = ê(HU (id), gA)ê(HO(oa), yO)d ∧ U = gd

O

∧ S = auxcay
HA(auxca||ca)
A }(M) (3)

The further instantiation is as follows. Randomly selects s1, d ∈ Z∗
p. Computes

s2 = es1. The masked images are:

t0 = gs1
0 ∧ t1 = xgs1

1 ∧ t2 = HU (id)gs1
2 ∧ t3 = Ags1

3 ∧ t5 = te3g
s1
4 (4)

And we have: ctxt = ê(HU (id), gA)ê(HO(oa), yO)d ∧ U = gd
O.

Randomly selects r1, r2, r3, r4 ∈ Zp, R1, R2, R3 ∈ G1. Computes:

τ0 = gr1
0 ∧ τ1 = R1g

r1
1 ∧ τ2 = R2g

r1
2 ∧ τ3 = R3g

r1
3

∧ τ4 = [ê(g1, gU )−1ê(g2, yU )]r1 ∧ τ5 = tr3
3 g

r1
4

∧ τ6 = ê(g3, gA)r2 [ê(g3, S)ê(g2g4, gA)]r1 ∧ τ7 = gr4
A

∧ τ8 = ê(HO(oa), yO)r4 ê(g2, gA)−r1

The challenge is:

c = H((t0, · · · , t3, t5)||(τ0, · · · , τ8)||auxca||ctxt||U ||M) (5)

The responses are:

z0 = r1 − cs1 ∧ Z1 = R1x
−c ∧ Z2 = R2HU (i)−c

∧ Z3 = R3A
−c ∧ z4 = r3 − ce ∧ z5 = r2 − cs2 ∧ z6 = r4 − cd

The signature σ is: (t0, · · · , t3, t5)||c||(z0, · · · , z6)||auxca||ctxt||U ||M .
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GVf: Given a signature σ, it computes:

t4 = ê(t1, gU )−1ê(t2, yU ) ∧ t6 = ê(u, gA)−1ê(t2t5, gA)ê(t3, S)
∧ t8 = ctxt · ê(t2, gA)−1 ∧ τ0 = gz0

0 t
c
0 ∧ τ1 = Z1g

z0
1 t

c
1

∧ τ2 = Z2g
z0
2 t

c
2 ∧ τ3 = Z3g

z0
3 t

c
3 ∧ τ4 = [ê(g1, gU )−1ê(g2, yU )]z0tc4

∧ τ5 = tz4
3 g

z0
4 t

c
5 ∧ τ6 = ê(g3, gA)z5 [ê(g3, S)ê(g2g4, gA)]z0tc6 ∧ τ7 = gz6

A U
c

∧ τ8 = ê(HO(oa), yO)z6 ê(g2, gA)−z0tc8 ∧ S = auxcay
HA(auxca||ca)
A

(6)

Then it computes challenge ĉ according to Eq. (5), and compares it to the chal-
lenge c received in the signature. If they are equal, output 1 for valid signature.
In all other cases, output 0.

Open: The open authority uses his secret key xoa to open the encryption in the
signature σ. Denote Qoa = HO(oa). He computes:

m = ê(HU (id), gA) = ctxt/ê(xoa, U)

The open authority compares W with the registration table reg. If no such entry
is find, output ⊥. If it is found to be user id, the open authority computes a
proof of knowledge of xoa such that ê(xoa, U) = ctxt/m:

1. Randomly picks s′0 ∈ Zp. Computes:
t′0 = xoah

s′0 ∧ t′1 = ê(h, U)s′0 ∧ t′2 = ê(h, gO)s′0 .
2. Randomly picks r′0, r

′
1 ∈ Zp. Computes:

τ ′0 = Q
r′1
oahr′0 ∧ τ ′1 = ê(h, U)r′0 ∧ τ ′2 = ê(h, gO)r′0 .

3. Computes c′ = H((t′0, t
′
1, t

′
2)||(τ ′0, τ ′1, τ ′2)||ctxt||U ||m).

4. Computes z′0 = r′0 − c′s′0, Z ′
1 = Q

r′1
oaxc′

oa.

Outputs the proof ω = (t′0||c′||(z′0, Z ′
1)) to judge.

Judge: On input id, ca, oa, the signature σ and the proof ω, it computes:

m = ê(HU (id), gA) ∧ m′ = ctxt/m ∧
t′1 = ê(t′0, U)/m′ ∧ t′2 = ê(t′0, gO)ê(Qoa, yO) ∧ (7)

τ ′0 = Z ′
1t
′
0
c′
hz′0 ∧ τ ′1 = ê(h, U)z′0t′1

c′ ∧ τ ′2 = ê(h, gO)z′0t′2
c′ (8)

Then compares if c′ = H((t′0, t
′
1, t

′
2)||(τ ′0, τ ′1, τ ′2)||ctxt||U ||m). If it is true, output

1. Otherwise, output 0.

5 Security Theorems

We now give the security theorems for the above instantiation. It follows the
definition in section 3. The proofs can be found in the full version of this paper.

Theorem 2. The IBGS-SDH scheme is correct.

Proof. Obvious.
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Theorem 3. The IBGS-SDH is anonymous in the random oracle model if and
only if the DDH Assumption in G1 and the co-DBDH Assumption in (G2,G1)
both hold.

Proof. Suppose A is a PPT algorithm that breaks the anonymity of the group
signature. Then we show how to construct a PPT algorithm S that solves the
Lockstep DDH+coDBDH problem in (G1,G2), which is equivalent to the co-
DBDH problem in (G2,G1) and the DDH problem in G1.
S is given the instance g′1, g

′
1
α
, g′1

βi , g′1
γi ∈ G1 for 1 ≤ i ≤ 4; g′2, g

′
2
δ1 , g′2

δ2 ∈
G2 and R ∈ GT for unknown αi, βi, δ1, δ2 ∈ Zp. S is sets the public parameter
gO = g′2, yO = g′2

δ1 , g0 = g′1, g1 = g′1
β1 , g1 = 2 = g′1

β2 , g3 = g′1
β3 , g4 = g′1

β4 . S
generates gA, xA, yA = gxA

A , gU , xU , yU = gxU

U and u = gA. S randomly picks
` ∈ {1, ..., qH}, where qH is the number of query to HO. S provides A the
parameters param.

The oracles are simulated as follows:

– H is random oracle.
– HA(auxi||i): On input new auxi, i, randomly pick λ ∈ Zp Return λ. Store

(auxi, i, λ) in tape LA.
– HU (i): On input new i, randomly pick λ ∈ Zp and return gλ

U . Store (i, λ) in
tape LU .

– HO(i): On input new i, randomly pick λ ∈ Zp and return gλ
O. Store (i, λ)

in tape LO. For the `-th query, return Q = g′1 and back patch (i, Q) in LO.
Denote this identity as ig.

– KEOu(i): Computes HU (i). Then xi = yλ
U , where (i, λ) ∈ LU .

– KEOc(ca): On input ca, randomly pick h, xca ∈ Zp and computes auxca =
gxca

A y−h
A . S back patches HA(auxca||ca) = h. Store (auxca, ca, h) in tape LA.

Return (xca, auxca).
– KEOo(oa): Computes HO(oa). Then xoa = yλ

O, where (oa, λ) ∈ LO. If oa =
ig, declare failure and exit.

– IO(i, ca): It interacts with the honest user i. Computes (xca, auxca) as in
KEOc(ca). Randomly selects e ∈ Zp, and computes A = (u/HU (i))1/(e+xca),
W = ê(HU (i), gA). Stores (i, A, e,W ) in reg. Returns (A, e, auxca) to honest
user i.

– CO(i, ca): On input the identity, this oracle outputs the user’s secret keys.
ComputesH1(i). Computes xi as inKEOu(i). Computes certi,ca as in IO(i, ca).
Returns (xi, certi,ca).

– OO(oa, ca,m, σ): Computes H1(oa). Then xoa = yλ
A, where (oa, λ) ∈ L1.

Return (i, ω)← Open(ca, xoa, reg,m, σ). If oa = ig, declare failure and exit.

At any time, A can query the oracles above. At some point, A sends the
gauntlet identity i0, i1, group ca, open authority oa and message M to S. S
flips a coin b ∈ {0, 1} and computes (xb, Ab, eb) ← CO(ib, ca). S sets t0 =
g′1

α
, t1 = xbg

′
1
γ1 , t2 = HU (ib)g′1

γ2 , t3 = Abg
′
1
γ3 , t5 = teb

3 g
′
1
γ4 . S randomly chooses

a challenge c ∈ Zp and response z0, ..., z6 from suitable domains. It computes
τ0, ..., τ8 as in GVf. S sets U = g′2

δ2 and computes ctxt = ê(HU (ib), gA)R. Then
back patch c to H as Eq. 5. S returns the signature σg as the gauntlet to A.
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A finally outputs a bit b̂. If b̂ = b, S returns ”yes” for the Lockstep DDH+coDBDH
problem. Otherwise, S returns ”no”. By the back patch above, if A has a non-
negligible advantage ε in winning the game, S has advantage ε/qH in solving the
Lockstep DDH+coDBDH problem, and hence can either solve the DDH problem
in G1 or the co-DBDH problem in (G2,G1).

Bow we derive the opposite reduction in the Theorem statement: Give the
Adversary a Lockstep DDH+coDBDH Oracle which can solve the Lockstep
DDH+coDBDH Problem, and then show it can crack Anonymity. If the ad-
versary is given a signature σ = (t0, · · · , t3, t5)||c||(z0, · · · , z6)||auxca||ctxt||U ||M
which can pass GVf. A is also given (xb, Ab, eb) for users idb where b ∈ {0, 1}.
ThenA randomly flips a coin b = 0/1 and inputs to the Oracle: g′1 = g0, g′1

α = t0,
g′1

β1 = g1, g′1
γ1 = t1/xb, g′1

β2 = g2, g′1
γ2 = t2/HU (idb), g′1

β3 = g3, g′1
γ3 = t3/Ab,

g′1
β4 = g4, g′1

γ4 = t5/t
eb
3 , g′2 = gO, g′2

δ1 = yO, g′2
δ2 = U , R = ctxt/ê(HU (idb), gA).

If the Oracle outputs 1, then A outputs idb as the signer. Otherwise, A outputs
id1−b as the signer. ut

Theorem 4. The IBGS-SDH is traceable in the random oracle model if and
only if the k-CAA2 assumption holds.

Proof. Let A be a PPT adversary attacking the traceability. We show that given
a colluding group of k signers, with the knowledge of the opening key and access
to some oracles, we can use A to solve the k-CAA2 problem.
S is given the tuple u, v ∈ G1, g2, g2γ ∈ G2 and pairs (Ai, ei, λi) with distinct

and nonzero ei’s satisfying Aγ+ei

i vλi = u for 1 ≤ i ≤ k as input. The value
s = logu(v) is also given to S.
S sets gA = g2, gU = v. S randomly selects xA, yA = gxA

A , xU , yU = gxU

U and
gO, xO, yO = gxO

O . S randomly selects µ and sets g3 = vµ. S setups the rest of
param and provides to A. S randomly picks ` ∈ {1, ..., qc}, where qc is number
of query to CO.

The oracles are simulated as follows:

– HU (i): On input new i, randomly pick λj from the given k-CAA2 tuple and
return vλj . Store (i, λj) in tape LU .

– JO(i, ca): It interacts with honest issuer ca. Computes xi as in KEOu(i).
Then interacts with ca with xi. Finally ca returns certi,ca.

– CO(i, ca): On input the identity, this oracle outputs the user’s secret keys.
Computes xi as in KEOu(i). Computes (xca, auxca) as in KEOc(ca). Ran-
domly selects e ∈ Zp, and computesA = (u/HU (i))1/(e+xca),W = ê(HU (i), gA).
Stores (i, A, e,W ) in reg. Returns (xi, A, e, auxca).
For the `-th query, randomly selects h ∈ Zp and computes auxca = gγ

2 y
−h
A .

S back patch HA(auxca||ca) = h. Picks a pair of (Ai, ei, λi) from the k-
CAA2 tuple. Back patches (i, λi) to LU . Then we have xi = yλi

U . Returns
(xi, Ai, ei, auxca). Computes W = ê(HU (i), gA). Stores (i, Ai, ei,W ) in reg.
Denote this identity as cag. If ca = cag in future queries, also runs the above
steps.

Other oracles are similar to the proof of theorem 3. cag should not be input
to the KEOc. Suppose A can output a valid signature σ such that the OA cannot
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trace the identity of the signer, or the OA can find the identity of the signer but
cannot prove that to Judge.

Below we proof the soundness of the proof system between Open and Judge.
Rewind the simulation to obtain:

1 = ∆Z ′
1h

∆z′0t′0
∆c′ ∧ 1 = ê(h, U)∆z′0t′1

∆c′ ∧ 1 = ê(h, gO)∆z′0t′2
∆c′

t′0 = ∆Z ′
1
1/∆c′

h∆z′0/∆c′ ∧ t′1 = ê(h, U)∆z′0/∆c′ ∧ t′2 = ê(h, gO)∆z′0/∆c′

And notice that we have:

t′1 = ê(h, U)s′0 = ê(t′0, U)m′−1

t′2 = ê(h, gO)s′0 = ê(t′0xoa
−1, gO)

Let s̃′0 = −∆z′0/∆c′. Hence m′ = ê(t′0, U)t′1
−1 = ê(hs̃′0t′0, U). Since we have

t′0xoa
−1 = h−s̃′0 , then m′ = ê(hs̃′0t′0, U) = ê(xoa, U). Therefore we extract the

witness xoa = t′0h
s̃′0 . Hence for an OA with secret key xoa, he can always output

a valid proof to the Judge if he knows the identity of the signer.
If finally A returns a signature with group ca = cag, then we rewind the

simulation to the point where c is computed.
After rewind, we get: g∆z0

0 t∆c
0 = 1, ∆Z1g

∆z0
1 t∆c

1 = 1, ∆Z2g
∆z0
2 t∆c

2 = 1,
∆Z3g

∆z0
3 t∆c

3 = 1, t∆z4
3 t∆c

5 = 1, g∆z6
A U∆c = 1.

Let s̃1 = −∆z0/∆c, x̃ = ∆Z
−1/∆c
1 , H̃ = ∆Z

−1/∆c
2 = H1(i), Ã = ∆Z

−1/∆c
3 ,

ẽ = −∆z4/∆c, s̃2 = −∆z5/∆c, d̃ = −∆z6/∆c. We have:

ê(g3, gA)∆z5 [ê(g3, S)ê(g2, gA)]∆z1t∆c
6 = 1

ê(g3, gA)s̃2 [ê(g3, S)ê(g2, gA)]s̃1 = t6
= ê(u, gA)−1ê(t2t5, gA)ê(t3, S).

After rearranging, we have:

ê(u, gA) = ê(Ã, gA)ẽê(Ã, S)ê(H̃, gA)e(g3, gA)ẽs̃1−s̃2

If ẽs̃1 = s̃2, then we get a pair of (Ã, ẽ, H̃) which satisfy Ãẽ+γH̃ = u. Then we
have (Ã, ẽ, λ), where (i, λ) ∈ L1, that solves the k-CAA2 problem.

If ẽs̃1 6= s̃2, then we have Ãẽ+γH̃g(ẽs̃1−s̃2)
3 = u. Then we have λ∗ = λ +

µ(ẽs̃1 − s̃2), where (i, λ) ∈ L1, such that (Ã, ẽ, λ∗) solves the k-CAA2 problem.
Hence if A has a non-negligible advantage ε in winning the game, S has

advantage ε/qc in solving the k-CAA2 problem.
Now we derive the opposite reduction in the Theorem statement: Give the

Adversary a k-CAA2 oracle, and then use it to compute/forge an additional
signature, which is not traceable, after k queries to the CO Oracle. Then A
gets k sets of (Ai, ei, xi) for idi where 1 ≤ i ≤ k. A inputs (Ai, ei, λi), where
(idi, λi) ∈ L1, to the k-CAA2 oracle. The oracle returns a new pair (A∗, e∗, λ∗).
A backpatches (id∗, λ∗) to L1. A uses the KEOU to find x∗ for id∗. Then A uses
(A∗, e∗, x∗) to compute a signature for message m. Then an honest OA will find
that the signature is valid and opens to a value ê(HU (id∗), gA). As it is not in
reg, the OA will outputs ⊥. Hence A can forge a signature. ut
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Theorem 5. The IBGS-SDH is non-frameable in the random oracle model if
and only if the co-CDH assumption holds.

Proof. Assume A can win Experiment NY with advantage ε, and it delivers
signature σ, message M and a proof ω to signer ig. It remains to prove that (1)
the VE (Verifiable Encryption) part, ω, validly opens to ê(HU (ig), gA); and (2)
the signature part is sound.

(1) This means if Judge(ca, ig, oa,M, σ, ω) = 1, then ctxt = ê(HU (ig), gA)ê(QxO

B , U),
where QB = HO(oa). We prove by forking simulation. Some may find this proof
approach not rigorous enough. But this is the state-of-the-art proof technique
for the correctness of decryption in many results on VE. Besides, it is possible to
modify the security model somewhat slightly to make this kind of proof rigorous.
We omit details of the modification for the simplicity of presentation.

Suppose S is given (P, Pα, Q). S sets gU = P, yU = Pα for the identity
manager of members.
S sets gA = gO = P . S randomly selects xA, xO and computes yA =

gxA

A , yO = gxO

O . S setups the rest of param and provides to A. S randomly
picks ` in {1, ..., qH}, where qH is the number of query to HU .

The oracles are simulated as follows:

– HU (i): On input new i, randomly pick λ ∈ Zp and return gλ
U . Store (i, λ) in

tape LU . For the `-th query, return Q and back patch (i, Q) in LU . Denote
this identity as ig.

– KEOu(i): Computes HU (i). Then xi = yλ
U , where (i, λ) ∈ LU . If i = ig,

declares failure and exits.
– CO(i, ca): On input the identity, this oracle outputs the user’s secret keys.

Computes H1(i). Computes xi = yλ
U , where (i, λ) ∈ LU . Computes certi,ca

as in IO(i, ca). Returns (xi, certi,ca). If i = ig, declares failure and exits.
– SO(i, ca,M): If i 6= ig, computes xi, certi,ca as in CO. Then uses xi, (Ai, ei)

to sign the message M . Return the signature σ.
If SO(ig, ca,M) is called, randomly selects t0, ..., t3, t5 ∈ G1, chooses a chal-
lenge c ∈ Zp and response z0, ..., z6 from suitable domains. It computes
τ0, ..., τ8 as in GVf. Then back patch c to H as Eq. 5. Obviously this signa-
ture will pass GVf.

Finally if A can frame a member i∗ of signing a message m, it has probability
1/qH of framing user ig. A should not query CO(i∗) or SO(i∗,m). If i∗ = ig, S
opens the signature and extracts xig

as the solution to the co-CDH problem.
(2) This means the soundness of the proof system in Equation 3 when ctxt

and U are discarded. This is proved in theorem 4.
Hence if A has a non-negligible advantage ε in winning the game, S has

advantage ε/qH in solving the co-CDH problem.
Now we derive the opposite reduction in the Theorem statement: Give the

Adversary a co-CDH oracle, and then show it can frame. Suppose A wants
to frame user id∗. A then inputs to the co-CDH oracle: P = gU , Pα = yU ,
Q = HU (id∗). Denote the oracle output Qα be x∗. Then A uses x∗ to act as
an honest user to interact with the Issue Oracle. The oracle outputs a valid
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certificate (A∗, e∗) for user id∗. Then A uses (A∗, e∗, x∗) to output a signature
σ for message m. After that A extract the secret key of OA by KEOO. A uses
it to compute a proof ω that shows id∗ signs sigma. Hence ω must pass Judge.
Then A outputs (σ,m, id∗, ω) to frame user id∗. ut

Summarizing, we have:

Theorem 6. Let ê : G1 × G2 → GT be a pairing. The IBGS-SDH is secure if
and only if the DDH Assumption in G1, the co-DBDH Assumption in (G2,G1),
the k-SDH’ Assumption, and the co-CDH Assumption all hold in the random
oracle model.

6 Discussions

6.1 Other instantiation

For the above generic construction, we use a discrete logarithm type of identity
based key pairs for CA and pairing type of identity based key pairs for OA and
group members to give an instantiation. From [2], we have three identity based
identification for discrete logarithm type: Beth [4], Okamoto [21], BNN [2]. They
are suitable for constructing the key pairs for both CA and group members. We
have different identity based identification for pairing type ([24], [16], [12]). They
are suitable for constructing the key pairs for group members. For OA, the key
pairs can be obtained from secure identity based encryption which allows efficient
verification. Therefore we can form different identity based group signature using
different combination of the above key pairs.

For other kinds of certificates in group signature schemes, CA in Ateniese
et al [1] has private key (p′, q′) from the strong RSA assumption. However no
existing identity based identification has this form of user key pairs. For Dodis
et al [15], there is no CA and the group public key is some accumulated value.
Both are not suitable for having identity based group manager.

If one wants the encryption scheme for the open authority to be CCA-2, then
we can modify our scheme as follows. We perform the SPK without encryption,
and then perform a verifiable encryption scheme from Camenisch and Damg̊ard
[9] with Fiat-Shamir heuristic. The encryption scheme used is FullIdent from
Boneh and Franklin [7], which is CCA-2. However, the signature size of this
scheme will depend on the group size.

6.2 Short Ring signature

We can formulate our group signature scheme without open authority. We refer
this kind of signature scheme as ring signature, as the anonymity of the signature
scheme is non-revokeable. It extends the idea of ring signature in [23].

Without the open authority, our signature scheme has signature size inde-
pendent of the group size. To turn the identity based group signature to a short
identity based ring signature scheme, we only have to remove the encryption
from GSig. The OA, Open, Judge are also removed. Then short identity based
ring signature is constructed.
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7 Conclusion

In this paper, we present a fully identity based group signature scheme, with
identity based group manager, identity based group members and identity based
open authority. We give a generic construction and also an instantiation, which
the signature size is independent of the group size. We prove the security of the
instantiation in the random oracle model. We also showed that a short identity
based ring signature can be formed similarly.
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