NOVEMBER 1979

"JAMES C. McWILLIAMS AND GLENN R. FLIERL

On the Evolution of Isolated, Nonlinear Vortices

JaMES C. MCWILLIAMS
National Center for Atmospheric Research,' Boulder, CO 80307

GLENN R. FLIERL

Massachusetts Institute of Technology, Cambridge, MA 02139
(Manuscript received 28 December 1978, in final form 8 May 1979)

ABSTRACT

The evolution of an isolated, axially symmetric vortex is calculated with a quasi-geostrophic,
adiabatic, hydrostatic, 8-plane, two vertical mode model. The circumstances of greatest interest are
those of weak friction and large vortex amplitude (strong nonlinearity). Systematic studies are made of
the consequences of varying the frictional coefficient, the vortex amplitude, the vortex radius (relative
to the deformation radius), the degree of nonlinear coupling between the two vertical modes and the
initial vertical structure of the vortex.

Results of note include the following. Within the approximation of a single vertical mode model (i.e., in
the absence of modal coupling), a baroclinic vortex has an increased westward and a finite meridional
propagation speed when its amplitude is greater than infinitesimal. Both of these speeds, however, are
limited by the wave speeds (as determined from infinitesimal amplitude theory) of the weak dispersion
field outside the vortex. The vortex amplitude decay rate, in the limit of strong nonlinearity, is governed by
the frictional coefficient rather than dispersion. When vertical modal coupling is included, the vortex
propagation and decay rate can be altered. Asymptotically in time, the vortex approaches a state of deep
compensation (i.e., beneath a shallow thermocline, there is no flow in phase with the upper ocean vortex),
with a propagation velocity less rapid in the westward direction and more rapid in the meridional direction
(compared to a single mode vortex), and with a decay rate again controlled by the friction coefficient. At
earlier times, however, more bizarre behavior can occur; for example, a vortex with initially pure baroclinic
mode vertical structure can behave as an eastward-propagating vortical modon for a brief interval.

This study focuses on vortices whose baroclinic component is of only one sign (a positive temperature
extremum in the thermocline); however, because of a symmetry of the model chosen (in particular due to
its quasi-geostrophic assumption), these solutions can be simply reinterpreted to apply to vortices
of both signs. ’
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1. Introduction

Intense vortices, referred to as Gulf Stream rings,
are frequently observed in the region of the North
Atlantic Ocean south and east of the Gulf Stream
(Parker, 1971). They are formed by the pinching off
of large-amplitude southward meanders of the Gulf
Stream (Fuglister and Worthington, 1951) and thus
have a characteristic direction of circulation (counter-
clockwise or cyclonic) and characteristic tempe:-ature
and pressure extrema (cold and low, respectively).
Similar vortices are observed elsewhere [e.g., near
the Kuroshio current in the North Pacific (Cheney
and Richardson, 1977)]. Most commonly, rings have
been identified from hydrographic measurements:
they are known to be isolated (i.e., frequently no
other temperature extrema of comparable magni-
tude are nearby), highly baroclinic (i.e., horizontal
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temperature gradients and, by geostrophy, vertical
shears of horizontal velocity are large), and strongly
nonlinear (i.e., aratio of the Rossby numbers associ-
ated with nonlinear advection and linear wave
propagation, V,/B/2, is large). Other characteristics
of rings, about which there remain significant un-
certainties, are the following. Their lifetimes are
long and their rates of decay are slow. Cheney and
Richardson (1974) observed one ring for nearly two
years before it was reabsorbed in the Gulf Stream.
During the time the ring was in deep water, its

' tangential transport, between zero and 1000 m

depth, decreased by less than 25% in 8 months.
Rings are observed over a wide geographical area.
They are most prevalent near the Gulf Stream,

-2 B is the northward gradient of the Coriolis parameter (1.7
X 107! m~! s7! at 40° latitude); V, is a typical particle speed for
the Gulf Stream or a ring (~0.8 ms™!); and / is a typical
pressure e-folding radius of a ring (~60 km). Thus, V,/gI*> = 13,
which is large.
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where their propagation velocities are typically
3 cm s7! toward the southwest, which is also the
direction of flow for mean thermocline circulation
(Lai and Richardson, 1977). Recently, a ring was
observed far from the Gulf Stream near 27°N, 70°W,
where the mean circulation is weak, moving toward
the northwest at a few centimeters per second (Taft
and Baronov et al., 1978). The current structure of
rings is poorly known beneath the thermocline;
however, from recent observations with neutrally
buoyant floats (Cheney, 1977) and electromagnetic
velocity profilers (Sanford et al., 1978) it appears
that the deep flow lies within the range from pure
baroclinic mode (zero total tangential transport) to
compensated structure (zero deep flow) to flow
weakly in phase with the upper layers. This range
of vertical structures is also probably that for the
Gulf Stream.

In our opinion, the present data are too incom-
plete to warrant a detailed fitting or hindcasting
comparison with theoretical models. What we shall
present is instead an idealized study of vortex
behavior under circumstances which are similar to
those of observed rings. Particular emphasis will be
placed on the influence of nonlinearity. The specific
problem addressed is that of the unforced evolution
of an initially axially symmetric Gaussian vortex in
a horizontally unbounded, otherwise quiescent
ocean (numerically approximated as periodic on a
scale large compared to the vortex diameter) within
the dynamical approximations of two vertical layers
(or modes), constant 8, quasi-geostrophy, and adi-
abatic thermal balances (though we include a weak
lateral momentum diffusion at least partly to ensure
numerical stability).3 Related calculations have been
reported by Bretherton and Karweit (1975), with a
‘six-layer quasi-geostrophic model, and Mied (1978),
with a two-layer primitive equation model. The
initial baroclinic, vortex amplitudes used by these
authors are considerably weaker than those in our
study. In addition, we examine a wider range of
circumstances (size, strength, vertical structure,
etc.) than has been considered in previous work and
are able to obtain solutions for longer time intervals
and with smaller side boundary influence (i.e., a
better approximation to an unbounded domain).*

This theoretical study is usefully seen in the con-
text of several simple but extreme models of vortex
behavior. In a uniformly rotating environment (8
= (), without friction, any stationary, axially sym-

31t is perhaps equally important to list those dynamical
processes which we shall not address, yet which are probably
important for at least some ring behavior. Among them are lateral
boundary effects, mean current effects, interactions with other
eddies or rings, topographic effects and initial axial asymmetries.

4 More recently, Mied and Lindemann (1979) have reported a
more extensive set of numerical calculations with their two-layer
primitive equation model.
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metric vortex is a steady, though not necessarily
stable, solution to the model described above, for
arbitrary vortex strength and vertical structure
(when the vertical and horizontal variations are
mathematically separable). With the addition of
lateral friction, but with g8 still zero, such a vortex
remains stationary although its radial profile changes
and its amplitude decreases with time.> These
changes occur without nonlinear influence, what-
ever the vortex strength, and without changes in
the vertical structure. For variable Coriolis param-
eter, however, an axially symmetric, small-ampli-
tude frictionless vortex will propagate due west as
well as rapidly disperse and decrease in amplitude
unless its radius is large compared to the radius of
deformation appropriate to its vertical modal struc-
ture (see Flierl, 1977). Different modal structures
can be superimposed.

None of these models are generally satisfactory
for interpreting Gulf Stream ring behavior. Our
attention in this study will be focused on the com-
bined effects of 8 # 0, which is essential to vortex
propagation, and nonlinearity, which we shall show
significantly alters the rates of propagation, decay °
and dispersion, and allows for strong interactions
between different vertical modes.

2. Mathematical formulation

We shall use a hydrostatic, quasi-geostrophic,
Boussinesq, rigid-lid model with a two-mode vertical
structure representation. Under these conditions, a
two-mode model is physically equivalent to either a
two-layer or two-level model. If p, and p, are the
pressures in the two layers (or at two levels), then
they can be represented as a linear combination of
the first two dynamical modal pressures pr and p.
(the barotropic and first baroclinic, respectively)
by the formulas

= + 6—-1/2
P1 = Pr PC} i @.1)

P2 =pr — 8"pc

where & (=H,/H,) is the ratio of the undisturbed
layer depths. The normalization in (2.1) is that which
is consistent with orthonormal modes, i.e.,

|

1 1 2
— | dzF @)F42) = ———— S HF(z)F oz
= L, SFUOFND) = i © HFUOF2)

a, B={1,C}, (2.2

where the F(z) are the vertical structure functions
which multiply the modal pressures p,(x,y,t) and

= 8&13;

> The combination of ageostrophic and, frictional effects can
lead to radial-vertical circulations (e.g., Charney, 1973). Schmitz
and Vastano (1975) studied this mechanism, in combination with
density diffusion, in modeling the observed decay of the tempera-
ture anomaly associated with .a ring.
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the z; are the mean depths of the two layers or levels.
Refer to Flierl (1978) for a thorough discussion of this
equivalence.

The model equations are made nondimensional
by the following characteristic scales for the depend-
ent and independent variables:

x’y~l pT:pc~VQfOI
t~H, G, x~Vol }, (@3
t ~(BhH,

where V, is a particle speed, [ a pressure e-folding
radius, f, a value of the Coriolis parameter at a
central latitude (y =y,), and 8 the meridional
gradient of the Coriolis parameter. In (2.3), ¢ and x
are velocity streamfunctions associated with the
barotropic and baroclinic modes, respectively
(n.b., y = pr and x = p. nondimensionally). In
terms of these streamfunctions the nondimensional,
modal, potential vorticity equations are

fm — [V, + ¥, + QJ@, V) + QJ(x,V0)

+ K«Voy] = 0, (2.4)
(V2 = 9% + Xz + QY20
+ Qlm — 1J[J(x, V)
+ T,V — y)] + K«Vx = 0 (2.4b)

[cf. Eq. (2.11) of Flierl (1978)]. The parameters
which appear in Eqs. (2.4) are

Q - Lo/Blz, y = I/R
QA —— = Itdimensional ’ (25)
’ K* ———————

and m, the vertical mode number of the model. The
latter is a mathematical artifice which allows us to
examine (2.4b) alone as a model for a single vertical
mode, including only the nonlinearity of its self-inter-
action, When m = 1, this implies an ad hoc elimina-
tion of nonlinear coupling between the two modes,
whereas whenm = 2, Egs. (2.4) become the correct
two-mode equations. In Eq. (2.5), R {=[¢g'H.H,/
(H, + H))V¥,7'} is the first baroclinic or internal
radius of deformation, and g’ is the reduced gravi-
tational constant (i.e., the product of g = 9.8 m s72
and the relative density difference between the two
layers). All definitions involving vertical structure
have been given in terms of the two-layer approxi-
mation; for an intergretation in terms of continuous
vertical structure, ) and R would be defined by
integral properties of the fluid (Flierl, 1978). The
quantity Kgimensiona1 1N (2.5) is the coefficient of a
scale-selective, biharmonic lateral friction or mo-
mentum diffusion which appears as the final term in
each of Egs. (2.4). This frictional form is another
artifice, currently in common practice (e.g., Brether-
ton and Karweit, 1975; Holland, 1978), which
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assures computational stability while leaving the
larger scales of motion reasonably undamped, by
consuming the enstrophy (mean-square vorticity)
which can accumulate on the smallest resolved
scales due to nonlinear transfers between scales. It
will be seen to play an additional physical role
in regulating the rate of vortex decay in many of
our solutions. This effect should be believed only
qualitatively because a biharmonic operator is
undoubtedly a crude representation of the frictional
processes in the ocean.

When the solutions of Eqs. (2.4) are isolated ones
(i.e., ¥ and x — 0 as |x? + y?| — ), then several
integral moment equations can be derived which
will be helpful in interpreting vortex evolution. In
an infinite horizontal domain, the following rela-
tions hold:

o) [m—l]”dxdw=0

(i) o? % JJ dxdy x =0

(iii) 72%[[ dxdy xx = — ”x

ax
+ 2m — 1 dxd =
Oyim ]”xytlfay

(2.6)

F)
i — d
(iv) Py ”dx y ¥X

= ~Qyim ~ 1) ” dxdy 42X
ax
In all numerical computations of (2.4), a finite
square domain will be adopted, with boundary
conditions of periodicity in x and y on a nondimen-
sional distance L > [. For this geometry, there are
additional boundary integrals in the moment equa-
tions (2.6); however, for times even moderately
large (i.e., r < 20 for the parameters typically used
below), the final three relations, (ii)—(iv) in (2.6), can
be consistently examined neglecting these boundary
contributions, because the currents near the
boundary are relatively weak and unimportant.
These are the only circumstances under which we
shall use the moment integrals (2.6).
Initial conditions for the numerical studies are of
the form
x=e", Y=y 2.7
where r {=[(x — x¢)> + (¥ — yo)*1"?} is the radial
coordinate and (x,,y,) is the .initial location of the
vortex center.® The parameter v is the fractional

% In addition, periodicity of ¢ and x is imposed atx,y = 0, L.

Because these locations are far from (x,,y,), this alteration of
(2.7) is of small magnitude.
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barotropic component of the initial vortex. Note from
(2.1) that v = 82 defines a compensated vortex (i.e.,
one with zero lower layer flow). Eqgs. (2.4) are sym-
metric under the interchange of variables, i.e.,

{qJ’X’y} < {_'\l” —X» _y}'

Therefore, the solutions of (2.4) with an initial
positive amplitude in y, a high-pressure vortex
(i.e., one with a sign opposite to that of Gulf Stream
rings), can be reinterpreted as a low-pressure vortex
by reversing north and south.

A number of other mathematical relations will be
used in analyzing the vortex solutions of (2.4), but
for brevity their presentation has been assigned to
appendices. Various computational relations (finite-
difference formulas, resolution scales, etc.) and
a list of the numerical cases which are analyzed
in this paper are in Appendix A. A linear propagation
model (with Q = Q = Kx = 0) is in Appendix B,
and a frictional decay model (withQ = Q = g = 0)
is in Appendix C. An asymptotic expansion of (2.4)
as ¢t — 0 is in Appendix D. _

Finally, a physical interpretation of our solutions
can be made for Gulf Stream rings by an appropriate
set of values for the dimensional scales in (2.3) and
(2.5). We recommend the following:

~

! = 60 km, R = 45 km
fo=09x%x10"* pBg=17x 101 2.8
st m-ts!
Vo=08ms™,7 g’ =27x 1072
. ms2 |

From these dimensional
parameters (2.5) as

Q=13, & 0.16}
0=27, »=18 |

values we estimate the

2.9

The only a priori statement which we can make about
K gimensiona1 iS that Kx probably should be small.
A posteriori we could make an indirect estimate
by fitting our model solutions to the observed decay
of rings.

? The dimensional azimuthal velocity field v, for the vortex
.7y withv = 0 is

vo(r,z) = —2Vyre "F(2).

F(z) was calculated by Flierl (1978) for a realistic North Atlantic
mean vertical profile of density. Consistent with (2.2), he found
Fc(0) = 3 and F, (—800 m) = I; thus,

m;clx|u9 (z = 0)| = 2.6V,. !

For 2 m s~ as an estimate of the maximum surface current of a
ring, one obtains the V, value in (2.8).
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3. A single-mode vortex

The first problem we shall consider is that of an
isolated vortex with only a single vertical mode; i.e.,
the model equation is a truncation of Eq. (2.4) with
m = 1. Such a modelis often referred to as equivalent
barotropic. The only parameters of this problem are
O, v and K« from (2.5).

We shall henceforth adopt a set of standard
parameter values; viz.,

0=10, y*=2, Kx=5x10" (3.1

These represent a vortex which is strongly non-
linear, which has an e-folding radius somewhat
larger than the radius of deformation, and which has
a slow rate of frictional decay. They also qualita-
tively represent the parameter regime defined by
(2.9), although @ in (3.1) is somewhat too small.
Because we shall also present solutions with param-
eters different from (3.1), the consequences of the
discrepancies between (3.1) and (2.9) can be assessed
a posteriori. :

A computational solution to the initial value prob-
lem for the parameters (3.1) and the Gaussian vortex
(2.7) is illustrated in Fig. 1. Over a time interval
Ar = 17.3, the vortex has moved toward the west-
southwest, left behind a weak Rossby wave wake
[with a characteristic herringbone pattern similar to
that shown, for example, in Rhines (1977, Fig. 11)
for y* =Q = K« = 0], decreased somewhat in
amplitude, and developed a weak, wavenumber 1
axial asymmetry. On the whole, however, this initially
isolated vortex remains an isolated vortex for quite
a long period of time (a nondimensional interval of
17.3 corresponds to 196 days for the dimensional
values (2.8); the distance traveled is As = 7.9 or
470 km; the average rate of translation is As/Ar
~ 0.46 or 2.8 cm s7Y). '

The parameter dependence of the propagation of
single-mode vortices is shown in Figs. 2a-2¢, which
display the trajectories of the position of the
maximum in x for different values of Q, %, and
K+, respectively.® Fig. 2c shows that vortex propa-
gation is insensitive to the frictional decay rate,
at least in the K% <€ 1 regime.® The propagation
does, however, strongly depend on both Q and 2.

Flierl (1977) has calculated the propagation rate
for a linear, inviscid vortex (Q = Kx = 0), and his
formulas are evaluated for the Gaussian vortex (2.7)
in our Appendix B. Initially, the zonal rate has a
small westward value, dx./dt = —0.13 [we define

8 and v are, crudely, measures of the vortex strength and
size. However, from (2.5) one can see that both parameters
depend on /. Refer to Appendix A (Fig. Al in particular) for
a display of O and v variations as a function of V, and /.

® Note, however, that a purely frictional vortex with 8 = 0
(Appendix C) is nonpropagating.
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(x.,y.) as the position of the pressure maximum].
As time increases, this rate increases until it asymp-
totically approaches the fastest possible westward
linear wave speed, dx/dtr = —1/y* = —0.5. The
trajectory for 0O = 0in Fig. 2a has not yet reached
this asymptotic value during the time interval plotted
In this linear theory, the meridional rate is zero.
Fig. 2a shows that as O increases from zero, the

(@) X(x,y,0)
20

- -

o =
o] 20

(b)

20 m

X(x,y,17.3)

F1G. 1. Contours of x{(x,y,?) from a numerical solution of the
single-mode vortex initial value problem with the standard
parameters (3.1): (a) ¢t = 0 and (b) ¢ = 17.3. The contour interval
is 0.1 for the solid line contours; in addition, +0.02 contours
are drawn with dotted lines.
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FiG. 2. Trajectories of the positions of the spatial maximum for
x from numerical solutions of the single-mode vortex initial value

‘problem: (a) @ variable for t € [0,6.9], (b) y? variable for

t € [0,6.9], and (c) K« variable for ¢+ € [0,16.9]. Except for the
parameter being varied in each panel, the values are the standard
ones (3.1). The dots indicate positions every Ar = 3.45. Jumps in
the trajectories are due to the finite grid size in the numerical
solutions (i.e., Ax = Ay = 0.2).

westward rate increases above the linear value, at
least for intermediate times, and the southward
rate does as well. In the left-hand panels of Fig. 3a
the calculated values of dx./dt and dy./dt are
plotted as a function of Q for an intermediate time
interval. From these plots we see that 1) —dx_/df and
——dyc/dt monotonically increase with Q; 2) as
0 — =, dx./dt and dy./dt approach finite values and
3) it seems likely from these curves that 0 = 10 lies
within the large  asymptotic regime for propagation
rates. In the case of the zonal rate, the large Q
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a) VORTEX VELOCITIES FOR te

{a) [43,6.9]
0.0
4
dx,
F ~-0.5
-1.0
0.0
dy
—F -0.5
A_
_1o 1 Lo 00
0 5 Vo I 2 3 4 5
Q 72

F1G. 3a. Vortex translation velocities as function of Q and
during the time interval ¢ € [4.3,6.9]. These values are finite
differences calculated from the trajectories of Figs. 2a and 2b.
Also plotted (with dotted lines) are the most negative possible
linear ' wave velocities, dx/dt = —1/y* (either a phase or a group
velocity) and dy/dt = —1/4y? (a group velocity).

limiting value appears to be the fastest westward
linear wave speed —1/y%. For the meridional rate,
the limiting. value appears to be the fastest sotth-
ward linear group velocity —1/4y?. The reasons for
this are discussed below. Recall that these velocities
are made dimensional by the factor 8/2, which equals
0.06 m s~! from Eq. (2.8).

‘When Q is large, the southward rate decreases
with increasing y?, while the zonal rate has a max-
imum near y®> = 1 (see Fig. 2b and the right-hand
panels of Fig. 3a). For y% = 1 both dx./dt and dy./dt
are close to the bounding curves from linear wave
theory. Finally, we note that except perhaps for the
purely barotropic vortex (y? = 0), dy./dt tends to
increase toward zero as t — «, while dx./dt does
not. In general, the magnitude of dy./dt is smaller
than that of dx./dt except, again, as y* — 0. Thus,
these vortices will propagate westward for the
most part.

(b} DISPERSION AT t=5.15
,T T 7T T 7777' T T T T T
r vz G=10
e 3k 4k -
oF ‘
I 2“‘*\’ i |
‘- 4 - -
ob— L Lo L Loy 1, 1 1 1. i 1
[¢] 2 4 6 8 [(¢] o] i 2 3 4 5
A
Q y2

FIG. 3b. Dispersion versus Q and y? at a time within the
interval of Fig. 3a.
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The moment integrals (2.6) indicate how the pre-
ceding parameter dependences of propagation are
intrinsically coupled to the degree of dispersion
which occurs for the vortex. If we define center of
mass coordinates (¥,¥) for the vortex center by

' )
” dxdy xx

”dxdyx

.”Mwyx
”dxdy X

then for a single-mode vortex in an infinite domain
dx
dt
45
D 0
dt
That is, the center of mass moves westward at the
greatest linear wave speed, and it moves not at all in
the meridional direction. From Figs. 1-3, it is clear
that the center of the vortex does not always co-
incide with the center of mass, and this discrepancy
can only occur if there is a significant contribution
to the moments (3.2) from streamfunction patterns
not associated with an axisymmetric, isolated vortex.

This departure field in the streamfunction can be
defined by

= x(x,y,t)
— Xmax €Xp[—(x — x> — (y = yJ)?l, (3.4)

where xmax(t) and [x.(z),y.(f)] are the maximum
streamfunction value and its position at time ¢, re-
spectively. From (3.2)~(3.4), we can derive the
following expressions for the difference between the
centers of the vortex and mass:

X, — X —Jdedy(x—xc)x’/”dxdyx
Ye— ¥ =~ ”dxdy(y — ¥ x/” dxdy x

where, from (2.6), the denominators are constants
in time. If the initial vortex simply propagated and
uniformly decayed in time, then x' would be zero
and (x,y) would equal (x.,y.). One can also see
from (3.5) that positive x’ values to the west of x,
(north of y.) and negative x’ values to the east of x,,
(south of y) allow x, to be to the east of X (y. south
of ¥).

In a linear vortex solution,

; (3.2)

—1/y?
3.3)

I

, 3.5)

I

~1y? < dx ldt < 0
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anddy./dt = 0. For such a case x' is even symmetric
about y., hence y = y. [see, e.g., Rhines (1977,
Fig. 11) or Flierl (1977, Fig. 3.1)]. On the other hand,
x' has a positive center to the west of the main
vortex and a negative one to the east; these centers
allow dx./dt to be more positive than dx/dt = —1/¥2.
As ¢t — =, the main vortex overtakes the eading
positive center in x', and to the east x’ exhibits an
alternating sequence of bands, the Rossby wave
wake, whose integral contribution to X in (3.2) is
negligible; hence dx./dt — dx/dt. For significant
nonlinearity, however, the departure field is quite
different: its amplitude is much smaller and there is
significant north-south asymmetry about y. in x'.
Fig. 4 shows x' at¢t = 5.2 and 17.3 for the standard
parameters (3.1). The leading positive center has
now shifted more to the north of the main vortex
[and encloses the central position (x.,y.) as well]
and the trailing positive and negative centers are
now displaced to the north or south, respectively,
of y.. As a consequence, dx./dt is much clcser to
dx/dt, and dy./dt has a significant southward
component.

One can see from Figs. 1 and 4 that the largest
amplitude in the streamfunction field outside the
main vortex is associated with the first trailing
low-pressure center to the east. Thus, its amplitude,
defined as minus the spatial minimum value of x
[i.e., —xmn(®)], is a measure of the degree of disper-
sion which has occurred by time ¢. Fig. 3b is a plot
of this amplitude versus Q and % Dispersion de-
creases with increases in either parameter, when
they are varied about their standard values (3.1).
For linear solutions (Q = 0), it is well known that
dispersion decreases with increasing vortex size,
since the group and phase velocities become in-
dependent of wavenumber as y? — . Nonlinearity
also inhibits dispersion.

One can interpret the meridional ¥’ asymmetry,
hence the meridional vortex motion as above, by the
following argument. The initial dispersive tendency
for a vortex is primarily due to linear, inviscid

processes (see Appendix D), and the dispersion

pattern initially consists of a positive x' center to the
west of the vortex and a negative one to the east.
The circulation of the main vortex is clockwise;
hence these x' centers are advected clockwise. Such
displacements reduce the magnitude of the (x — x.)x’
moment and increase the magnitude of the (y — vy )x’
moment, which lead through Egs. (3.5) to a westward
propagation closer to —1/* and a net southward
propagation. An alternative, more mechanistic inter-
pretation of the southward motion of the vortex—
one which does not refer to the moment integrals
—1Is that the leading and trailing dispersion certers
have secondary circulations which both aci to
advect the main vortex southward.

Neither of the preceding arguments determine a
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(@) x'(x,y,5.2)

Wave Nodes for v
k=75, 7£)

i

(b) X'(x,y,17.3)

TR T T

T

DA R e U (L LR

T TR T T T T AT AT

IR TV THIN

FIG. 4. The departure fields (3.4) for the standard case numer-
ical solution at (a) + = 5.2 and (b) ¢+ = 17.3 (see Fig. 1b for x at
this latter time). The contour interval is 0.03. Also drawn on
panel (a) are nodal lines for a plane wave with the indicated
wavenumber (see text for discussion).

rate for the southward vortex propagation, yet from
Fig. 3 it is clear that dy/dt =~ —1/4y* accurately
represents the numerical solutions for y, Q = 1.
The linear waves associated withthem = 1,Q = 0,
K+« = 0 form of (2.4b) have a nondimensional dis-
persion relation

_ k
K2+ 12+ o2

(3.6)
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where (k,[) is the vector wavenumber and o is the
frequency. For such waves the meridional group
velocity, ¢, = dw/dl, lies within the range (—1/4y2,
1/4y?). From (3.5) and Fig. 3, therefore, we can
deduce the relation

didt JJ dxdy(y ~ y)x’
~ max |c|.
)

j J dxdy X (]

By the usual interpretation of nearly mono-
chromatic wavepackets, one would expect a small
amplitude disturbance with (k,l) equal to either
(—'y/x/i, y/\/f) or (—yf'\/i, —y/\/i) to move meridi-
onally with a speed equal to max|c|. From Fig.
4a, one can see that x’ is of small amplitude (so that
one might reasonably expect its evolution to be
described by linear wave theory) and has a signif-
icant component near the first of the two wave-
numbers above at t = 5.2, hence with group
velocities near ¢’ = —1/4y%. The near match of the
group velocity of the x' pattern with the propagation
velocity of the main vortex which generates it allows
for a continual intensification of this pattern at the
rate implied by (3.7). The southward vortex propa-
gation rate could be no greater because the linearly
propagating x’ structure would be unabie to keep
up with the vortex and thus would not have its y
moment intensify as required to maintain southward
motion. Of course, ' is not solely the plane wave
with maximum group velocity. Its structure becomes
more complicated with time (as indicated in Fig. 4b)
and the right-hand side of (3.7) becomes an upper
bound on the southward vortex propagation rate.
Note from Fig. 2c the decrease of |dy./dt| at
longer times. X

In summary, strong dispersion (when Q — 0 for
moderate values of ¢ or when y> — 0 for any Q)
allows the zonal propagation rate to be much slower
_ than the fastest linear wave speed. If it occurs sym-
metrically in y (as when Q — 0), then there is no
meridional motion of the vortex. Weak dispersion
(when either O becomes large for finite y2 or when
v* — x) is weak enough to allow ¥ = x, yet strong
enough to allow significant meridional motion when
the dispersion is asymmetric (as when @ is large).
For sufficiently large ¢, the vortex amplitude be-
comes small and the dispersion field, for all y* and
O values, has little integral contribution to the
moment integrals (3.3) and (3.5). Thus, dx./dt — —1/
v* and dy /dt — 0 ast — =,

A possible interpretation of the north-south
motion of the vortex is that it reflects a tendency
to return to the rest latitude (i.e., the value of y
where a particle retains its initial value of potential
vorticity but with no motion). It is evident, how-

3.7
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ever, that this does not occur completely. For
example, the particle initially in the center has a
potential vorticity

(V2 - 72)X|r=0 + 07y = ~4 — ¥ + 07V,
corresponding to a rest latitude
Yr=Yo— QO + 4

or a displacement of 60 units southward for the
standard case, assuming the particle initially in the
center remains in the vortex (even if it does come
out, it is hard to imagine that it is pushed very
much further south than the eddy). Though the final
latitude of the vortex cannot be accurately deter-
mined, Fig. 2c would certainly suggest a net dis-
placement of only about 2 units. Friction also
contributes to this discrepancy.

Another technique for distinguishing between
several influences in vortex evolution is by means of
an asymptotic expansion as ¢ — 0. The terms in the
expansion are defined in Appendix D, and the more
prominent ones are displayed in Fig. 5. The initial
baroclinic vortex (2.7) is shown in Fig. 5a. The O()
streamfunction tendency terms yx,; due to the
B-effect and x,x due to the friction, are shown in
Figs. 5b and Sc. Because of the axial symmetry of
x(x,y,0) there are no nonlinear effects at O(). x3
has a two-cell structure, with a positive center to the
west of the initial vortex position and a negative
center to the east. This can be interpreted as pri-
marily a tendency for westward propagation of the
vortex. Note that x,s = 0 at [x.(0),y.(0)]; there is no
O(t) tendency for a decrease in maximum amplitude
of the vortex due to the B-effect [cf., equation (B3)].
If there were a purely westward propagating
solution

t
x| V(t')dt',y},
0
then at t = 0, x, = —V(0)x.(x,y)~ For a value of
V() = —0.135 (this is the value which correctly
describes the initial propagation of the vortex center
—see Appendix B), one can compare x;; with
+2V(0)(x — xo) exp[—(x — x0)* — (¥ — yo)*] to
evaluate the extent to which x;zis pure propagation.
A cross-sectional comparison along the x axis is
shown in Fig. 6. x;; attains a larger extremum
farther from the vortex center and decays more
slowly for large distances than does the pure propa-
gation tendency +2V(0)(x — x,) exp[—(x — x¢)%].
The choice made for V(0) requires equal slopes for
the two curves at the origin; some other choice
would change the amplitude of the pure propagation
curve, but its extent would not match that of .
Thus, x5 is not entirely a westward propagation
tendency; it also represents a B-induced dispersion
[i.e., a positive (negative) center developing ahead
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(e) Xeclxy)

F1G. 5. Selected spatial coefficients of power of ¢ in a small 7 expansion for a single-mode vortex
with the standard parameters (3.1). The coefficients are defined in Egs. (D1), (D3), (D5) and (D7).
Contour intervals are 0.1 for panel (a), 0.02 for panels (b), (¢) and (f), and 0.002 for panels (c) and (d).
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X

F1G. 6. A comparison of the O(r) streamfunction tendency due
to the pB-effect, x5, with the functional form with which a
tendency for pure vortex propagation would occur at. O(t). V(0)
= —0.135 here (see Appendix B). Parameter values are given
in Eq. (3.1).

of (behind) the main vortex as discussed above with
reference to the integral moments].

X1k, the frictional tendency at O(f), has a central
region of small negative values and thus represents
decay of the maximum amplitude of the vortex.
Note, also, that it has a radial zero crossing at
* r = 0.7. Since this radius is smaller than that of the
main vortex, the frictional tendency also includes a
general flattening of the initially Gaussian vortex.
This tendency is reflected at later times in x’ as a
generally positive region about the vortex center
(see Fig. 4). )

Xz2¢ represents an O(r?) B8 tendency. It is shown in
Fig. 5d. Its central negative values represent a
combination of propagation and decay of the central
vortex amplitude,!® while its leading and trailing
positive centers represent further dispersion and
westward propagation. The terms xycc and xsc c2
are due to nonlinear self-interactions of the initially
propagating and dispersing vortex. They are also the
dominant tendencies at O(z?) and O(#3), respectively
(see Table D1). Both have an antisymmetric, two-
center structure (see Figs. Se and 5f), with which

Y

10 Note that the streamfunction tendency at the initial location
of the vortex, (x,,y0) = [x(0),y.(0)], is proportional at O(t) to
X25(%0,Y0), Which arises primarily through the linear inviscid terms
alone:

BotxX(xg,Y0,8) = . . =~2Xep(X0,¥o) + . .. = —0.046¢ + ...,

where the numerical coefficient is taken from Fig. 5d. In contrast,
the linear, inviscid vortex central tendency [Eq. (B3)] has a slower
rate of decay at this same order,

AldtXmax(t) = didtx(x(1),yc(0),1) = —0.014t + O(?),

where the numerical coefficient is for y* = 2. Thus, the former
tendency is more than simple vortex decay, and also represents a
decrease of amplitude due to the motion of the vortex center to the
west of (xg,Yq).
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we have previously identified propagation tendencies.
Xecc has its positive center to the south of the
vortex center, while x;¢ -, has its positive center to
the west. Thus, nonlinearities allow for a south-
ward and augmented westward propagation relative
to the B-effect alone. Because the spatial scales of
Xece and xsc ¢, are slightly smaller than that of the
main vortex (Fig. Sa)—and certainly smaller than
that of x,5 in Fig. Sb—they represent little disper-
sion and, in the case of x3¢ ¢2, €ven a weak tendency
to cancel the dispersion of x,. -

Since we know from Fig. 1 that the single-mode
vortex solution retains much of the character of its
initial state, we can qualitatively apply the small-
time tendencies to an interpretation of larger time
behavior. This is further illustrated in Fig. 7, which
shows x and its tendencies due to various terms in
the potential vorticity equation (2.4b) at a moderately
large time,¢ = 5.2 [from (2.8), this corresponds to 59
days]. The B term (Fig. 7b) represents a westward
propagation and dispersion tendency; the frictional
term (Fig. 7¢) represents a decay and flattening of
the vortex; the nonlinear term (Fig. 7d) represents
a southwestward propagation at a rate about twice
that due to the 8 term. Note in particular that there
is little streamfunctioq tendency at the vortex center

“except that due to friction.

The final feature of the single-mode vortex solu-'
tion which we shall address here is the rate of decay
of its maximum amplitude x,.«(?). For the standard
parameters (3.1), this function is plotted in Fig. 8.
Xmax(?) 18 monotonically decreasing with time, with
a somewhat slower decay rate for larger times. Also
shown in Fig. 8 are two extreme solutions for
comparison. One is from the linear inviscid solution
(Eq. (BD)]; except for small values of ¢ (<2), this
solution has a much smaller vortex amplitude than
does the standard solution. Thus, the large non-
linearity of the standard solution significantly slows
the rate of vortex decay due to linear wave disper-
sion. The other comparison solution is for pure
frictional decay with 8 = 0 [Eq. (C1)]. Its value for
Xmax 18 everywhere larger than the standard one,
implying that moderate dispersion does occur in the
general case even for large nonlinearity; however,
the two curves are close enough that we can con-
clude that a major fraction (~79% by ¢t = 17.3) of
the vortex decay in the standard case is due solely
to the action of friction.

This conclusion is reinforced by Fig. 9¢, which
shows xmax(?) for two. different values of Kx. The
decay rate is much smaller for K« reduced by an
order of magnitude from the standard value. If we
compare the smaller K« solution with a correspond-
ing purely frictional solution (not plotted), then
we can conclude that 53% of the decay is frictional
by t = 17.3, even for this very small value of Kx.
For a single mode vortex, therefore, the rate of
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(b) =(v2-y2y! 2%

(d)

Fi1G. 7. (a) x(x,y) at ¢t = 5.2; (b)-(d) streamfunction tendencies due to the indicated terms in the
potential vorticity equation (2.4b). Parameter values are given in Eq. (3.1). Contour intervals are 0.1 for (a),

0.04 for (b) and (d), and 0.002 for (c).

amplitude decay is essentially governed by the fric-
tional rate whén Q and v? are large.

We can also compare the decay rate to the esti-
mates of Parker (1971) or Cheney and Richardson
(1977) that the thermocline subsides at 0.6 or 0.4
m day~!, respectively. Our initial state corresponds
to about a 140 m displacement. The decay rates in
Fig. 8 for the standard case are thus 0.1-0.2 m day™!
—quite small. This discrepancy is probably ac-
counted for by transfers along various vertical
modes (see Fig. 13), though the value of the frictional
coefficient is also relevant.

Other parameter dependences for xma.x(f) are
shown in Figs. 9a and 9b. In the former we see that
Xmax decreases more slowly with ¢ as O increases,
and in the latter we see that xn,x decreases more
slowly as y?® increases. Both of these trends are
consistent with dispersion decreasing with increasing
y%and 0.

4. A baroclinic vortex in a two-mode model

The calculations of the preceding section can be ex-
tended to the full two-mode model equations (2.4ab)
by setting m = 2. If initially the vortex is purely
baroclinic {i.e., » =0 in (2.7)], then the non-
dimensional parameters of the problem are Q, &
(or Q), v and Kx.

First we consider a numerical solution for the
standard parameters (3.1) plus 8 = 0.16 (Q = 4.76).
Contour plots of ¢ and x for various times are shown
in Fig. 10. Initially (Fig. 10b), x evolves much as
in the single-mode solution. (i.e., it moves south-
westward with a dispersion pattern of a positive
center to the northwest and a negative one to the
southeast), while the i pattern (Fig. 10a) is a vortex
pair spinning up from rest. At an intermediate time
of t = 9.2 or 104 days (Figs. 10c and 10d),-the rate
of intensification of the barotropic vortex pair
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FiG. 8. The evolution of the streamfunction maximum for a
single-mode vortex with the standard parameters (3.1). Also
shown for comparison are Xmax(t) from a purely frictional model
solution [Eq. (C1)} and from a linear, inviscid model solution
{Eq. (B

greatly slows and the westward motion of the baro-
clinic vortex is arrested. At later times, the baroclinic
vortex returns to a southwestward propagation
(Figs. 10g and 10h), while the barotropic centers
separate and radiate Rossby waves (Fig. 10e) and
eventually become highly meridionally asymmetric
(Fig. 10g). The baroclinic field retains the character
of an isolated vortex, while the barotropic one tends
toward a uniform eddy far field. Trajectories for the
various eddy centers are shown in Fig. 11a. Initially
the baroclinic center lies between the two barotropic
centers, but it soon shifts southward over the
positive barotropic eddy as all three centers begin
moving eastward. After there is a sufficient
southward displacement of the positive centers,
separating them from the negative barotropic
vortex, they begin a southwestward ‘motion, while
the negative barotropic vortex moves northwest-
ward (recall from Section 3 that isolated, nonlinear,
single-mode eddies, whatever the value of v, move
southwest if they have a positive pressure extremum
and northwest if negative). The amplitude of the
eddy center (Fig. 11b) shows an initial weakening
(fort =< 6)followed by a longer period of much slower
changes. This can also be seen in an integral measure
in Fig. 12, where the nonlinear modal energy
conversion rate e is plotted against time. ¢ is defined
by
L rL
e=0 [ | dwyyiv, @D
0 Jo-

and it can be interpreted as a source of barotropic
energy at the expense of baroclinic as follows. From
(2.4) with m = 2, we can derive modal energy
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For the numerical solution under discussion, € has
a strong positive peak for: < 6 and weaker positive
values for ¢ € [6,40].

Various parameter variations are shown for yyax(t),
x.(¢) and y.(¢) in Figs. 13 and 14. As a function of
vertical mode number m, the initial rate of vortex
decay is much greater when m is larger and, as
described above, there can be an arrest to westward
propagation when m = 2 (Fig. 13a). For weaker
nonlinearity (see Figs. 14a and 14c¢), the arrest need
not occur (the barotropic vortex pair is not spun up
rapidly enough to cause the arrest—see the t — 0
analysis below), and the rate of baroclinic vortex
decay is initially slower (because the modal energy
conversion rate € is much less) but eventually more
rapid (vortex dispersion is greater for smaller Q).

. For a larger baroclinic vortex (Figs. 14b and 14d),
the arrest can be more systematic, even to the point
of persistent eastward propagation, and the rate of
amplitude decay is smaller (which is consistent with
Fig. 9b).

Two of the most prominent differences between
these two-mode and the one-mode solutions are the
spinup of the barotropic vortex pair and the tendency
for eastward propagation of the baroclinic vortex
due to modal coupling. Both of these features can
be seen in the small + asymptotic solutions (Ap-
pendix D). Each of the tendencies shown in Fig. 5
for the single-mode solution are applicable to the
two-mode, v = 0 case as well (see Table D2). In
addition, there are modal coupling terms, the jarger
ones of which are shown in Fig. 15. The leading
order barotropic term occurs at O(t%) due primarily
to baroclinic advection of baroclinic vorticity associ-
ated with the O(r) linear wave dispersion. This
term is yuce from Eq. (D4), and it is plotted in
Fig. 15a. Its structure is that of a meridionally
antisymmetric vortex pair, similar to s (¢t = 1.5) in
Fig. 10a but for a small clockwise rotation of the
pattern in the latter. Fig. 15b shows the dominant
O(¢®) barotropic term, ;¢ - from (D6), which is such
as to give this clockwise rotation when added to y,cc.
The leading order barotropic back interaction on the
baroclinic vortex is xsc r; from (D7), which is shown
in Fig. Sc. It has the antisymmetric two-center
pattern which we identified with propagation of the
main vortex in Fig. 5. Unlike x,5 and xsc ¢ (Figs. 5b
and 5f), however, xsc r; has its positive center to the
east and thus represents an eastward propagation
tendency. This is the small time manifestation of the
propagation arrest shown in Fig. 11a. Even though
its amplitude is relatively small in this asymptotic
expansion (see Table D2), its effect can be quite
important for finite times if Q and y are large
enough (e.g., see Figs. 14a and 14b).

The moment equations (2.6) have additional
terms, compared to Egs. (3.3), due to modal coupling
whenm = 2. Withreference to the vortex configura-
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tions which occur in Figs. 10 and 11, we note the
following influences of these additional terms on
dx/dt and dy/dt: (i) for a meridionally antisymmetric
¢ pattern centered beneath xna.x (as in Fig. 15a),
eastward propagation is increased and meridional
propagation is unaltered; (ii) for a moderate clock-
wise rotation of the above i pattern (as in Fig. 10a),
the eastward propagation tendency is less strong and
there is a southward tendency as well; (iii) for a
small southward relative displacement of the baro-
clinic vortex center (as in Fig. 11a for ¢ < 6), the
tendencies in (i) and (ii) are relatively weaker; (iv) for
concentric barotropic and baroclinic axisymmetric,
positive vortices (as, crudely, is shown in Fig. 11la
for ¢t = 18), there is no modal coupling influence on
center of mass propagation; (v) for the positive
barotropic center in (iv) slightly displaced to the
northwest (more precisely, as shown in Fig. 11a for
t = 20), the modal coupling propagation tendency is
westward and southward; and (vi) for a negative
barotropic center to the east of xm.x (as appears
weakly in Fig. 10g), the propagation tendency is
southward. These various influences are reflected in
the motion of the baroclinic vortex in its early
westward arrest [(i), (ii) and (iii) above], its shift
from being centered between the barotropic vortex
pair to being more concentric with the southern
high center in y [(ii) above], and its later south-
westward motion [(iv), (v) and (vi) above].

Compared to the m = 1 solution (see Fig. 13a),
the two-mode vortex, in its latest stages, moves
much more rapidly southward and slightly more
rapidly westward. The former is clearly due to the
presence of positive and negative barotropic
centers, respectively, to the west and east of the
main vortex. The latter is probably the result of a
competition between weaker westward propagation
due to a smaller vortex amplitude in the two-mode
case (see Figs. 3a and 13b) and greater westward
propagation due to the positive barotropic center
relatively displaced to the north. A dimensional
evaluation of the m = 2 velocities, based on Eq.
(2.8), yields westward and southward values of 3 and
2 cm s7Y, respectively.

In the initial stages of evolution shown in Figs.
10-12, the baroclinic vortex approaches a solitary
eddy solution known as a vortical modon (Flierl
et al., 1979). This solution consists of an eastward
propagating, permanent form, barotropic vortex pair
(with a negative center north of a positive center)
accompanied by a passive rider which is an axisym-
metric baroclinic mode vortex of arbitrary ampli-
tude. For a vortical modon, there exists a particular-
relationship between the barotropic streamfunction
magnitude Ay, (Which we define as maxy — miny),
the distance between vortex centers Ay,,, and the
rate of eastward propagation of the modon dx,,/dt.
For comparison with modon theory, we renormalize
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FiG. 10. Barotroplc and baroclinic streamfunction patterns at various times from a numerical solution
for the parameters 3.1 plus » = 0, m = 2 and & = 0.16. The contour irterval is 0.1 for all plots except

(a), where it is 0.03.

the preceding quantities as follows:
M = Y207 Ay

[ = Vayhyy, 4.3)
dx,,
C— Zm
v dt

Verifying that the numetical initial value solution of
Fig. 10 closely approaches a vortical modon can be
accomplished as follows. For 2 < ¢t < 4, the ¢rand x
fields have spatial patterns qualitatively similar to
those of vortical modons. Furthermore, we can
estimate from Figs. 10 -11 the following quantitative
values:

A, = 0.42 % 0.12

Ay, = 1.4 = 0.1 (44)
Pn _0.15 = 0.03

dt )

From (4.3), these values correspond to

M=2-37
[ =0.93-1.07 (4.5)
C = 0.24-0.36

Fig. 16 shows the theoretical property rélations for
a vortical modon, together with the ranges in prop-
erty values {4.5) for the numerical solution. It can be
seen that these ranges have a finite area of common
intersection, which implies that, at the level of ideal-
ization of vortical modons represented by the scales
(4.3), thie baroclinic vortex evolution passes through
such a solution state. Obviously, it does not persist
in this solution state. On the other hand, vortical
modons, while valid steady-state solutions of an
inviscid, two-mode model, are known to be strongly
unstable to infinitesimal perturbations (Flierl and
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(f) x(x,y,25

F1G. 10. (Continued)

McWilliams, 1979) whenever the baroclinic stream-
function amplitude is comparable to that of the baro-
tropic streamfunction.

For times later than the approximate modon state,
the standard parameter, two-mode vortex solution is
approximately compensated (i.e., the lower layer
expression of the main vortex is quite weak). This
feature [also remarked upon by Mied (1978)] can be
seen in Figs. 10e~10h and 11b, where the ratio of
barotropic and baroclinic streamfunction amplitudes
in the main vortex is approximately 82 = 0.4; from
(2.1) this implies ¢, = 0. Because compensation is
areasonably general property of two-mode vortices,
this issue is more fully discussed in the next section.

5. Mixed-mode vortices

In this section we shall examine solutions for
two-mode vortices with a nonzero initial barotropic

component [i.e., m =2 and » # 0 in (2.4) and
(2.7)]. It was shown in Section 4 that even a purely
baroclinic initial vortex develops a barotropic com-
panion vortex which is approximately compensat-
ing at depth, and here we shall explore this tendencfy
further.

Streamfunction patterns are shown in Fig. 17 for
an initially compensated vortex. The vortex propa-
gates to the southwest, with both modal components
moving together. The dispersion is relatively much
greater in the barotropic field, although the vertical
structure remains approximately compensated (e.g.,
maxy/maxy = 0.39 at t+ = 9.2, and ¢, in Fig. 17f
shows little evidence of the main vortex). The energy
loss from the main vortex by barotropic dispersion is
consistent with continuing compensation. The
dispersion loss is balanced partly by a transfer of
baroclinic energy through nonlinear model coupling,
and partly by the barotropic component of the vortex
which adjusts to a smaller energy by a shrinking of
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FiG. 11. Trajéctory (a) and amplitude (b) plots for three stream-
function extrema from the numerical solution described in Fig.
10. In (a), small squares demark time intervals of Ar = 3.1. For
times greater than the selected time limit, 7 = 27.1, the local
extrema associated with the initial barotropic vortex pair (Fig.
10a) cease to be giobal barotropic extrema (e.g., see Fig. 10g).
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the vortex diameter (see Fig. 17¢). The modal energy
transfer rate € from (4.1) is shown in Fig. 18. It is
generally positive for all 7 in order to supply energy
to the barotropic dispersion field, but it does not attain
the large values seen in Fig. 12 at small ¢, which were
required for establishing vortex compensation.

A parameter study of the influence of v is shown
in Fig. 19. Most striking in the trajectory plot is the
greater temporal uniformity of propagation for the
solutions with v not too small. The westward arrest
discussed in Section 4 does not occur except for

= 0. The velocities at intermediate times (¢ = 10)
are similar for the » = 0.4 and 1.0 solutions; they
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Fi1G. 12. The time history of the integrated modal energy conver-
sion (4.1) for the numerical solution described in Fig. 10.

are also similar to the v = 0 velocity for times well
past the propagation arrest (see Fig. 13a). Table 1
presents velocities calculated from the trajectories
for each of these three cases. There is a moderate
tendency for faster, more southward and less west-
ward propagation as v increases. On the other hand,
these characteristics strongly distinguish these two-
mode vortices from the single-mode baroclinic
vortex (see Fig. 13a) or the single-mode barotropic
vortex (see Figs. 2b and 3a). The speeds in Table 1
correspond to ~4 cm s~! for the dimensional values
(2.8). This speed is ~40% faster than the analogous
single-mode velocity for Q = 10 and y® = 2. The
increment is due to the modal coupling implied
cooperatively propagating baroclinic and barotropic
vortices, as expressed in the moment equations
(2.6). For v = 0, the primary effects were from a
barotropic positive center northwest from the baro-
clinic center and a barotropic negative center in the
southeast, both of which contributed a westward and
southward tendency to propagation (see Figs. 10e—
10h and 11a). The tendency with » for more south-
ward and less westward propagation (Table 1) is
associated with the barotropic positive center
moving closer to the baroclinic center and the baro-
tropic negative center moving counterclockwise to a
relative position in the east-northeast. There is thus
a moderate dependence of the vortex propagation
velocity at large times on the initial conditions of the
barotropic component, which manifests itself in
rather small shifts in the barotropic center locations
near the main baroclinic expression of the vortex.
The amplitude decay rates (Fig. 19b) are mono-
tonically decreasing with v for ¢ < 8. This is con-
sistent with a decreasing modal energy transfer rate
€ associated with an increasing barotropic com-
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Fi6. 13. Trajectory (a) and baroclinic amplitude (b) plots for the one- and two-mode baroclinic vortex numerical solutions (labeled
by dashed and solid lines, respectively; see Figs. 1 and 10). In (a), the small squares demark time intervals of At = 2.6.

4 () Trajectories vs.Q (b} Trajectories vs. y2
| T ] 1 T

1 1 1 T 1 T R I 1

(c) Amplitudes vs. Q (d) Amplitudes vs. y2
10 T T =—I_ 1 I T T

= -~
O+ \\ = = \\ —

Xmax S 1 r

[
T T 1
1
I

00 1 ] 1 1 1 ] ] I 1 4
8 10
t t
F1G. 14. Trajectory and amplitude plots for variations in the parameters O and y. Parameters other

than the one being varied have the values described in the caption of Fig. 10. The time period shown
is ¢ € [0,10.2], and the marks on the trajectories correspond to Ar = 2.1.
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FI1G. 15. Spatial coefficients for the small time expansion of
Appendix D. Parameters for this calculation are those of Fig. 10.
Contour intervals are 0.01 for panels (a) and (b) and 0.003 for
panel (c).
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F1G. 16. Barotropic property relations for vortical modons
(from Flierl et al., 1978, Fig. 13). a is the modon radius, C its
propagation speed, M its stréamfunction amplitude, and [ is
half the separation between extrema. Also shown (with thin
lines) are the property ranges (4.5) and (with slanted lines) their
common area of intersection.

ponent. For intermediate times (t € [8,14]), the
v # 0 decay rates become similar to each other and
greater than the » = 0 rate. At even longer times
(t = 27) the v = 0 rate further increases to a value
closer to the intermediate time v # 0 rates (see
Fig. 13b). Thus at large times the decay rate appears
independent of the initial value.

The various tendencies which can be identified
inat — 0 asymptotic analysis become quite numer-
ous for a mixed-mode vortex. The tendencies shown
previously (Figs. 5 and 15) for single-mode and
baroclinic, two-mode vortices are relevant in the
more general case as well; the tendencies through
O(t?) are unaltered, while those at O(t3) are quanti-
tatively but not qualitatively altered. There are,

.however, additional important terms in the mixed-

mode case (see Appendix D, Table D3 in particular),
the more important of which are shown in Fig. 20.
We have seen that isolated concentric maxima in the
two modes tend to move together and generally
persist in their structures. Thus, parallel tendencies
can generally be identified in the two modes. How-
ever, they cannot be identical because the spatial
operators, which must be inverted to obtain the
tendencies, are different (Helmholtz and Poisson).
This can be seen most clearly in Fig. 20a, which
shows the B-induced tendency for westward propa-
gation and dispersion in the barotropic mode .
It is similar in symmetry and amplitude to its
baroclinic counterpart (x5 in Fig. 5b) but of much
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(x,y, 1.5)

(a) y(x,y, 1.5) (b)

(x,y,9.2) ‘

F1G. 17. Barotropic and baroclinic streamfunction patterns are shown in panels (a)-(d) at¢ = 1.5and 9.5
from a numerical solution for the parameters (3.1) plus v = 82, m = 2 and & = 0.16. In addition,
panels (e) and (f) show the layer streamfunctions , and , at-z = 9.2 by use of Eq. (2.1). The
contour interval is 0.1 for all plots except (a), where it is 0.04, and (e), where it is 0.2.
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F1G. 18. € from (4.1) for the numerical solutioh
described in Fig. 17.

larger Scale. If the linear tendency were dominant,
the two modal maxima would not long evolve co-
herently. Nonlinear modal coupling terms at O(r2),
Yorr and xocr, are shown in Figs. 20bc. These are
meridionally asymmetric patterns which are similar
to the previously shown yiec and xpoc (Figs. 15a
and 15e). In the latter case we identified the pattern
with southward propagation and in the former with
the spinup of a vortex pair. Now that there is an
initial axisymmetric barotropic vortex present, all
four of these patterns can be identified with non-
linearly induced southward propagation of the main
vortices. Similarly, at O(#®) the nonlinear terms
produce a westward propagation tendency (Figs.
20de). As indicated in the legends, these O(t%) terms
are composites of several terms acting similarly.
Previous manifestations of zonal propagation were
shown in Figs. 5f, 15b and 15c. When the additional
modal coupling terms are added as in Figs. 20d and
20e, all tendencies are westward; the propagation
arrest which arises from y;¢ 7, is not dominant.
There is a longer term tendency for these mixed-
mode solutions to approach a compensated state, as
was briefly discussed above. This appears to be a
general tendency when Q and 42 are large and 8 is
small. Fig. 21 shows the ratio of modal vortex ampli-
tudes as a function of time for different initial
vertical structures (different v). In each case the
solutions vary only moderately about the compensa-
tion ratio 82 after an initial period of adjustment.
Two other cases, whose solutions were partly
described in Fig. 14 but whose amplitude ratios are
not shown in Fig. 21, also approach a compensated
state. Their parameters were {Q,y%,v} = {10,5,0}
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and {2,2,0} in addition to standard values for the
other ones. A further case (also not plotted) was
done with {Q,y%,v} = {10, 2, —0.4}. Its vortex
also went through an initial period of eastward,
modon-like propagation and eventually reached
compensation, but the time required for this evolu-

(a) Trajectories for te [0, 12.8]
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F1G. 19. Trajectory (a) and amplitude (b) plots for the baroclinic
component of mixed mode vortex numerical solutions which
differ only in their initial barotropic amplitude v. Three values
of v are shown, two of which are the solutions of Figs. 10 and
17. In (a) the marks along the trajectories are separated by
Ar = 5.2.
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tion (Ar = 45) was much larger than for the v = 0
cases in Fig. 21.

We can examine both the tendency for the per-
sistence of a vortex in a compensated state and the
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manner in which compensation is approached. The
former issue is best examined in the layer rather
than the modal equations. From Egs. (2.1) and (2.4),
we obtain

2. ¥ )2, 8 K*VG] TG, V2 ¥ 3 27 _ o
{[V 1+8]6t BT Ui+ QI V) e + o T .
8')’2 6 6 H 8‘)’2 a 8‘)12
2 _ o, o 6 . 8 B _
[[V 1+ 6]61‘ Y TR }% F QI V) + g T T QW) =0

Compensation occurs for x order one when

P = 0™,
by = 0(8'?) in the vicinity of x = Xmax 5.2)
? 0O(8'?) elsewhere.

We formally expand (5.1) as § — 0 under the as-
sumptions that @, v, K«, and u = Qy?$"* are
order 1 and that
U
Y,

I

Vi, + .. ] . 5.3)

32y + . ..

it

The result is
9 i}
[(V2 - ,YZ) 5; + —(—9; + K*VG}¢1
+ 0J(¢:, V%) = —pd (o)
] L 5.4)

V2 — + — + K«V8id, + y2 — ’
{ o ox }4’2 Ya®

o
- u[J(du,qbz) - J(¢2,V2¢z>]

plus neglected terms of relative O(8). For the stand-
ard parameter values [Eq. (3.1) plus 8 = 0.16}, u is
3.8, and, for the cases cited above where compensa-
tion develops, u is between 0.8 and 9.5. Thus, u is
not necessarily a small number. However, it is
helpful to interpret compensation persistence par-
tially as a consequence of the small u form of (5.4).
In this case, ¢, satisfies the single-mode baroclinic
vortex equation studied in Section 3, and ¢, satisfies
a weakly damped, nonresonantly forced, linear,
barotropic Rossby wave equation. Barotropic
Rossby waves are highly dispersive, and it is there-
fore unlikely that the lower layer streamfunction
amplitude will efficiently increase at any point in the
fluid while ¢, propagates as a single-mode vortex.
For u > 0, Egs. (5.4) do not have familiar properties,
and they must be integrated numerically. This is
done for compensated initial conditions,

b =e 7, ¢ =0, (5.5)

which are approximately equivalent to Eq. (2.7)
when v = §"2. The spatial patterns of the resulting
¢, and ¢, are shown in Fig. 22 for three values
of w at t = 15.3. In all cases, there are an O(1),

" southwestward propagating vortex in ¢, and an O(1),

wave dispersion field in ¢,. In gross measure, then,
the compensating nature of Egs. (5.4) is insensitive
to w. Trajectories for the ¢, vortex are shown in
Fig. 23. There is a strong dependence of the propaga-
tion rate on w, but it is the same one discussed above
for one- versus two-mode vortices (note the asterisk
locations on Fig. 23). Only for the largest value of
w in Figs. 22 and 23 do the uniform propagation
rate and approximate axial symmetry of the ¢, vor-
tex become disrupted near the end of the integration
period shown. Also, at this time the ¢, pattern
begins to show the main vortex, which is a departure
from exact compensation. This u value (12.5) is
larger than for any other case discussed in this
paper, and since u « 8'2 by definition, excessively
large w is inconsistent with a small 8 expansion.
Global maximum ¢, amplitudes are plotted as a func-
tion of time in Fig. 24. These amplitudes are in fact
a decreasing function of u, indicating that intensi-
fication of ¢, away from compensation is inhibited
by the terms on the right-hand side of (5.4).

Thus, we have a means of interpreting com-
pensation persistence in terms of the dispersion of
lower layer Rossby waves forced by the thermocline
interfacial deformations of the upper layer vortex.

TABLE 1. Two-mode vortex propagation speeds
as a function of v.t

Time
v interval Xe Ve | % tan~}(y /% )*
0 [30.2,38.4] -0.51 -0.32 0.60 238
0.4 [ 5.6,13.8) —-0.42 -0.46 0.62 222
1.0 [ 5.6,13.8] -0.39 -0.56 0.68 215

* Angles in degrees measured clockwise from north.

t The m = 1 propagation speeds can be calculated from Fig.
3a. The comparison values for the final four columns of this table
are —0.49, —0.13, 0.51 and 256, respectively.
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(G) \Pw(x, Y)

FiG. 20. Selected spatial coefficients of powers of ¢ in a small time expansion for an initially
compensated vortex (the parameters are those of Fig. 17). The contour interval is 0.02 except in (e)
where it is 0.06.
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The approximate dynamical separation of the two
layers is a consequence of a thin upper layer and the
amplitude ordering of (5.2).

Other processes can occur when the streamfunc-
tion orders are not as indicated in (5.2). In Section 4
it was shown that for an initial deficit of a barotropic
component—or an initial vortex component in ¢,
of opposite phase to the ¢, vortex—a baroclinic
vortex will spin up a barotropic vortex pair. When
the barotropic amplitude is approximately large
enough 1o be compensating, the baroclinic vortex
center will shift over the barotropic positive center
by the vortical modon instability mechanism. For an
initial excess of a barotropic component, it appears
that barotropic wave dispersion will efficiently erode
the barotropic vortex component until its amplitude
is approximately compensating. Fig. 9a shows that a
barotropic single-mode vortex does have a rapid
amplitude decay due to wave dispersion (n.5., there
is no modal coupling and the frictional decay rate
is weak). For the two-mode vortex solution with
v = 1 (see Figs. 19 and 21), the barotropic vortex
amplitude decreases by 70% in the first 9 time units,
while the modal transfer rate € from (4.1) remains
small and generally positive. The barotropic decay
toward compensation, therefore, is not due to non-
linear transfer to the baroclinic mode vortex nor
to the weak friction; thus, it must be a wave disper-
sion process. Note that both directions of approach
to compensation depend on the baroclinic com-
ponent being sufficiently strong (or Q sufficiently
large, since Q is defined from the baroclinic scales
in Section 2). Only through the nonlinear terms is
there any modal coupling.

6. Summary and comparison with other solutions

We have examined various numerical solutions
for the evolution of an isolated, axisymmetric vor-
tex for different values of parameters representing
the vortex size and strength (y and Q), the fractional
depth of the ocean thermocline (§), the rate of
frictional decay (Kx), the degree of vertical modal
coupling (m), and the initial fractional barotropic
component (v). A number of interesting phenomena
have been found which are due to the vortex ampli-
tude being large enough for the nonlinear advective
processes to be important. For sufficiently large Q
and vy, the rate of vortex decay can become small
enough to be significantly influenced by even weak
frictional processes, even though there are also sig-
nificant losses to both barotropic and baroclinic
wave dispersion. The baroclinic vortex propagation
rate can have a large meridional component due to
both baroclinic nonlinear self-interactions and baro-
clinic-barotropic modal coupling; the westward
linear propagation tendency due to 8 is enhanced by
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F1G. 21. Time histories of the ratio of barotropic and baro-
clinic maxima for mixed mode vortices (the latter maximum is
global and the former is a local one in the vicinity of the
baroclinic maximum). The three curves are for the numerical
solutions shown in Fig. 19. The value 82 corresponds to perfect
compensation.

the former process and can either be enhanced or

- opposed by the latter, depending on initial condi-

tions. For large Q and v and small §, there is a
general tendency for any vortex with a significant
initial baroclinic component to approach a state of
deep compensation, with little lower layer expression
of the main vortex, but also with an energetic field
of barotropic eddies outside the main vortex.

The solutions obtained are for circumstances too
simple to warrant detailed comparisons with ob-
served rings. However, we would predict certain
tendencies to occur. Because the Gulf Stream gen-
erates high- and low-pressure rings, respectively, to
its north and south, there should be a tendency for
these rings to return to the Stream due to the non-
linear meridional propagation tendency described
above. The westward propagation velocities of rings
should, on the whole, be faster than linear ve-
locities. The ring decay rate should be strongly in-
fluenced by even weak nonconservative processes
[thus, in retrospect, the study of Schmitz and
Vastano (1975) can be considered even more
relevant after our examination of many of the
processes they neglected]. Finally, rings can be
viewed as a probably significant source of other
types of eddy energy in the ocean, not primarily
through the mechanism of baroclinic wave disper-
sion [as discussed by Flierl (1977)] but more strongly
through nonlinear transfers to the more dispersive
barotropic mode (n.b., € is universally positive in
Figs. 12 and 18). The most relevant new observa-
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(a) »=0.00, ¢,

(b) =0.00, ¢,

(c) p=3.75, 4,
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FiG. 22. Renormalized layer streamfunctions ¢, and ¢, which are solutions of the small & equations
(5.4) with initial conditions (5.5). The patterns are at + = 15.3 for three values of x. The contour inter-
val is 0.2.
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Fi1G. 23. Trajectories of the position of the maximum value
of ¢, for r € {0,15.3] and three values of . Also marked with
asterisks are the positions of xmax at z = 15.3 from the full
equations (2.4) with parameter values similar to those for the two
solutions of (5.4) with the smaller u values (i.e., comparable to
u = 0is the m = 1 solution shown in Fig. 2 and comparable to
w = 3.75is the {v = 0.4, m = 2} solution shown in Fig. 17). The
dots demark time intervals of 3.1.

tion which we would recommend is the spatial
distribution of deep currents in the vicinity of
a ring.

Bretherton and Karweit (1975) presented one
solution for an initially compensated, low-pressure
vortex from a model similar to ours but with higher
vertical resolution (six layers). We estimate their
parameter valuesasy® = 1.8,Q = 2.8,8 = 0.16 and
K% small. They showed three upper layer stream-
function patterns (Figs. 10, 11 and 12 forr = 0, 8
and 22, respectively). Their eddy decreased in
amplitude and propagated to the west-northwest.
The fractional amplitude decay (13%) and propaga-
tion velocities (X, = —0.6 and y, =~ 0.4) during the
first interval are quite consistent with those of our

20—

C T 1 7 1 ]
- 1

15 A
P p =0 .
f I.Or—— —
é [E w=3.75 /:
C p=12.5 N

o) -4 N S N S SO N Y S S

0 2 4 6 8 10 12 14 16

t

FIG. 24. Maximum values of |¢,| versus time for the u
values of 0, 3.75 and 12.5.
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solutions, while those during the second interval
(50%, —0.7 and 0.5, respectively) are all excessive
compared to our solutions. It seems likely that edge
effects in their solutions, due to their relatively
smaller horizontal domain, account for these differ-
ences at later times.

Mied’s (1978) study (carried out simultaneously
with ours) of the evolution of a Gaussian eddy in a
two-layer primitive model also gives similar results
to ours. He considers vortices of fixed size (y* = 2.3)
and nearly fixed baroclinic velocity (Q = 0.5 to 0.8
with & = 0.25) and variable barotropic velocity
(v = 1.1 to 15). When v is not large, the motion
becomes compensated. For the large » cases,
though, the evolution is similar to a barotropic
eddy case with rapid dispersion and essentially
similar motions in both layers.
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APPENDIX A
Numerical Techniques and Cases

The numerical solution presented in this paper
is based on a finite-difference representation of (2.4)
in a periodic domain of dimension L. The finite-
difference formulas were centered second-order
ones in both space and time; in particular, the
nonlinear Jacobian operations were calculated by
the spatially conservative formula of Arakawa (1966).

TABLE Al. Numerical cases.

Section(s)
where
m 0 ¥ K v 8 discussed
1 10 2 5 x 107 — — 3
1 0 2 5% 107 — — 3
1 0.5 2 5 x 10~ — — 3
1 2 2 5 x 10~ — — 3
1 10 0 5x 104 — — 3
1 10 1 5% 107 — —_ 3
1 10 S 5§ x 10 _ — 3
110 2 5x10° o~ .— 3
2 10 2 5 x 107 0 0.16 4,5
2 2 2 5 x 10~ 0 0.16 4,5
2 10 5 5 x 10 0 0.16 4,5
2 10 2 5 x 107 0.4 0.16 5
2 10 2 5x 107 1 0.16 5
2 10 2 5 x 107 -0.4 0.16 5
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F1G. Al. Contours of O (solid lines) and y* (dashed lines), as
defined in Eq. (2.5), as a function of V,, a typical particle speed
[see the footnote to Eq. (2.8) for an interpretation of V,] and
I, a pressure e-folding radius. B8, R and & are as in Eqs. (2.8)
and (2.9). Also plotted (as dots) are the (, y* values for the
numerical cases listed in Table Al.

The numerical parameters of the calculations were

L =200 ]

Xxo = 16.7

yo = 10.0 , (A1)
Ax = Ay = 0.2

At = 0.014

where (x,,y,) is the initial vortex center [see Egq.
(2.7)], Ax and Ay are the spatial resolution scales,
and At is the temporal resolution scale. Dividing the
resolution scales by 2 yielded numerical solutions
which were unimportantly different from the ones
calculated from (Al).

A listing of the parameters for the numerical
solution cases, including a reference to the sections
where they are discussed, is given in Table Al, and
a plot of the Q and y values used, as a function of
V,and [, is given in Fig. Al.

APPENDIX B
Linear, Inviscid Vortex Evolution

Following Flierl (1977), we can write the solution
to Egs. (2.‘}b) and (2.7), in an infinite domain with
Xg=Yo=0Q =0 =Kx =0, as

1
X(x,y,’) == J dS Se_szm
0

X Jo {s[(x + ——t—->2 + yz]m] . (‘Bl)
52+ 2

If we define the zonal propagation velocity V(¢)
as the zonal transldtion speed of the location of the
maximum value in x, then

N
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where E,(z) = [7 e~'dt/t is an exponential integral.
For y* = 2—the standard parameter value in (3.1)
—we evaluate (B2) to give V(0) = —0.135. Ast — o,
V(i) - —1/y? = —0.5.

If we define xnax(f) as the spatial maximum value
of x at time ¢, then

V() = - % v S By, (BY)

1 t © 2
Xomaxl) = 1 — _J dTJ ds 295 _
2 0 0 S2 + ‘y2
X e™H4), [ST[V(T) + —————l ]]
52 + 2
=1 — T2 + 0%, (B3)
where
1 (= s2 1
= —J —Sdi-e-sm[V(O) + ———] . (B4
4, s2+° 524y

For y* = 2, T = 12.0.

APPENDIX C
Frictional Vortex Evolution

Eqs. (2.4a) and (2.4b) would apply to motions in
a uniformly rotating environment (i.e., 8 = 0) if the
terms 9y/dx and dy/dx were deleted. For an initially
Gaussian vortex, Eq. (2.7)—the baroclinic stream-
function solution for all time, in an infinite domain
—can be written as

1
X(x9y9t) - 'Z'J

[

o 6
5%+ 72)
X Jo{s(x® + yH¥2}, (C)

where att = 0, x is centered at the origin. Note that
this solution is independent of nonlinearity and baro-
tropic modal coupling and that it is non-propagating.

ds s exp(—s2/4 -~ Kxt

APPENDIX D
A Small Time Expansion

The solution to (2.4) and (2.7) can be represented
as a Taylor series in powers of the time. We define

g =ve T+ T Pup*
=t , D1)
X =e"”+ 3 xua"
n=1

where the coefficients for n = 1, 2 and 3 are each
defined as a sum of several terms. These terms have -
subscripts which identify their order and the process
which gives rise to them (e.g., B8 = the g-effect,
K = friction, CC = baroclinic-baroclinic non-
linear interaction):
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Y = [m — (s + YPsx)

Vi = ~v _19_6_,4

D2
™ (Db2)
Vo = —vKaVoe
X1 = (e + X0
d
(V2= yBxe=— —e™" (D3)
ox
(V2 = Y)xax = ~K+Ve™
Yo = [m — s + Yox + Pocc + YPorr)
1 0
Voo = — = 2
Yz > ox n
1
Vooy = — = K+V°
Yok == 5 KV (D4)
Viace = = L LT + 06,9
2 = — QV —rz 2 2 —r2
Viorr = 5 (™, V2,) + J(h,,Vie™™)]

Xz = (Xeg + Xex + Xecc + Xzcr)

V2 — )y = — — —
( Y )Xz8 2 o X1
1
(V2 - ’)'2)X2K = EK*V6X1
(W—wmw=—%uwﬂwm (DS)

+ J(x;,VZe™™)]
g
2
+ J(e Vi) — YA (Yy,e™™)
= vy (e X))

Yy = [m — 1J(sp + Yax + Yara + Usrr
+ Yscc1 + e c2)

(V2 = ¥Deer = — = [m — 1JW,V%e™)

1 8
Vg = — 3o Uy
V2¢3K = - ‘I‘(;‘ VGd’z

Vzdng = T %’ J( aVz\lll) (D6)

v %‘ [J(e™™,V242) + J (e, VZe™™)]

V2‘!’3T T2
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Viscer = — %— J(:, V0

Visc ca = — %— (JE@ ™, V3x) + J(x,V2%e™™)]

X3 = (s + Xasx + Xscer T Xscez + Xsem
+ Xacre t Xacr3)

1 0
V2 — A2 =
( ¥)X38 3730
K
(v* - 72)X3K = - -3—* V2X2
V2 =~ YIxacer =

(V= Pxsccs = = 5 Uoa. Ve
+Je ™ Vixy)] (P

Q

Y fm — 1[J (2, V%e™™)

(V2 - '}’Z)Xsc 1=

+ Je™, (V2 + vD)]

_e
3
(V2 = ¥)x2) + vJ(x2,Vie™)]

(V2 — ¥Ixscme = m — Ylvd(e™,

(w—ymwn=—§mn—mﬂ%

(V2 — yAx1) + J0a, VAL,

In Sections 3-5 a sequence of three different
problems are considered:

a. Section3: m=1,v=20

In this case ¢, = 0 for all n. Only the following
coefficients are nonzero: X1z, Xixs Xzs» Xzk» X20C»
X38> X3ks Xac c1» Xsc cz- For the standard parameter
values (3.1), the peak amplitudes for each of these

TaBLE D1. Peak amplitudes for coefficients in a small time
expansion for a single-mode vortex.*

Coefficient Peak amplitude
Xis 0.14
X1k - 0.012
Xz28 0.024
Xek 0.0009
" Xece 0.14
X35 0.006
Xax 0.003
X3¢ 1 0.014
X3¢ ¢2 0.12

* These calculations are based on the standard parameters (3.1).
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TABLE D2. Peak amplitudes for coefficients in a small time
expansion for a two-mode, initially baroclinic vortex.*

JOURNAL OF PHYSICAL OCEANOGRAPHY

Coefficient Peak amplitude
X18 0.14%*
X1k 0.012%*
Yace 0.088
Xz28 0.024**
Xz 0.0009**
Xecc 0.14x*
Yagp 0.004
Yax 0.002
Ysc o1 0.009
Ve 2 0.07
X3s 0.006**
X3x 0.003**
Xsc ¢t 0.014**
X3¢ cz 0.12*x
X3c 11 0.015

* These calculations are based upon the standard parameters
B plusm =2and v = 0.
** Identical to corresponding coefficient in Table D1.

coefficients are listed in Table D1. A subset of these
coefficients is plotted in Fig. 5.
=2,v=0

In this case Y, = ¢, = 0but s, and ys; are nonzero.
Only the following coefficients in (D2)-(D7) are

b. Section 4: m

TABLE D3. Peak amplitudes for coefficients in a small time
expansion for a two-mode compensated vortex.*

Coefficient Peak amplitude
U 0.13
Yk 0.006
X168 0.14**
Xix 0.012%*
W2 T 0.10
Yok 0.0005
Yace 0.088+F
Yarr : 0.051
Xa5 0.024%*
Xek 0.0009%*
Xzcc 0.14%*
Xaer ‘ 0.135
Yas 0.05
Yak 0.003
Yar 14 0.005
Yar 12 0.018
Yac o1 0.009%
Wi c2 0.09
X38 0.010
X3x 0.005
X3c c1 0.014
Xac c2 0.16
X3c Tt 0.028
Xac 12 0.076
Xac T3 0.007

* These calculations are based upon the standard parameters
(B.)plusm =2and v = 0.4.
** Jdentical to corresponding coefficients in Tables D1 and D2.
t Identical to corresponding coefficients in Table D2.
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NONZEro: Xig, X1k » Yacc» X285 X2k » X2cc» Yags sk Yac c1»
PYsc c2» X385 X3xs Xac c1» Xac c2» Xac r1- For the standard
parameter values (3.1) plus § = 0.16 (Q = 4.76), the

peak amplitudes for each of these coefficients are
listed in Table D2 and a subset is plotted in Fig. 15.

=2, v#0

In this case all coefficients in (D1)—(D7) are non-
zero. For the standard parameter values (3.1) plus
8 = 0.16 (Q = 4.76) and v = 0.4, the peak ampli-
tudes for each of these coefficients are listed in Table
D3 and a subset is plotted in Fig. 20.

c. Section 5: m
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