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Abstract

The present paper is a first step towards modelling cracks within the frame of
finite element anisotropic meshes. We will consider 2-dimensional models with
straight cracks. The non-classical FE model is proposed, and it is noticed that
the stiffness matrix is positive definite and symmetric. The proposed theory
remains valid for kinked cracks as well.
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§1. Introduction

There are a great number of numerical methods used to solve boundary value
problems that occur in fracture mechanics, like finite difference method, finite element
method, finite volume method, boundary element method, meshless methods, etc. In
this paper we will investigate a non-classical finite element method, the method of
anisotropic finite elements. The solutions of a great number of boundary value prob-
lems could be called anisotropic because they exhibit different behaviour on certain
directions, e.g., little variation on some directions and bigger variation on other direc-
tions. In order to characterize the anisotropic behaviour of the solution of the elliptic
boundary value problems one can use anisotropic meshes. This kind of mesh violates
the condition which characterizes isotropic meshes: the ratio between the diameters
of the circumscribed and inscribed spheres of a finite element is bounded. Extensive
work on anisotropic FE has been done by Zienkiewicz and Wu ([7]), Stein and Ohn-
imus ([5]), etc. In this paper we propose a first attempt in modelling cracks within
the frame of anisotropic meshes. We will use barycentric coordinates and bubble
functions in order to implement our theory.

§2. Basic equations

Let Ω be an open, bounded, polygonal domain in the 2-dimensional Euclidian
space with an interior straight crack. Suppose that the domain D is occupied by an
isotropic and homogenous medium. The boundary Γ is composed by mutually disjoint
Γu, Γt and Γc, such that Γ = Γu

⋃
Γt

⋃
Γc. Prescribed displacements are imposed on
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Γu, while tractions are imposed on Γt. The crack surface Γc is assumed to be traction
free. The basic equations of equilibrium of the linear elasticity are [6]:

The equilibrium equations

divT + f = 0 on D;(2.1)

the constitutive equations
T = C [E] ,(2.2)

where
C [E] = λtr(E)δ + 2µE;(2.3)

the strain-displacement relations

E(u) =
1
2
(∇u +∇uT ) on D,(2.4)

where u is the displacement vector, T is the Cauchy stress tensor, E(u) is the strain
tensor, f is the specific body force, λ and µ are constants characteristic to the material.
We shall consider the following boundary conditions:

u = 0 on Γu,(2.5)

Tn = t on Γt,(2.6)

Tn = 0 on Γc,(2.7)

where t are continuous functions given on the specified boundary parts, and n is the
outward unit normal. We define the space of admissible displacement fields ([4]) by

U = {v ∈ V : v = u on Γu; v discontinuous on Γc},(2.8)

where the space V is related to the regularity of the solution. A detailed discussion
about the definition of V can be found in [2]. The test function space is defined by

U0 = {v ∈ V : v = 0 on Γu; v discontinuous on Γc}.(2.9)

In the following we take V ≡ H1, where H1(Ω) is the usual Sobolev space. The weak
form of the equilibrium equations should provide u ∈ U0 such that

∫

Ω

E(u) · C [E(u)]dΩ =
∫

Ω

f · vdΩ +
∫

Γt

t · vdΓ, ∀v ∈ U0.(2.10)

It can be shown [1] that the weak form (2.10) is equivalent with the strong one (2.1)-
(2.7).

§3. The finite element discretization

Let’s begin with a classical finite element approach and consider a triangulation
Imh, which covers completely Ω, consisting of triangles T . Suppose that each edge of
any triangle is entirely contained in Γu,Γt and Γc, respectively. We denote Mh ⊂ C(Ω)
the space of piecewise linear, continuous functions over Imh. Let M0h = Mh

⋂
H1

0 (Ω).
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Thus, the approximate finite element problem for (2.10) is requires to find uh ∈
M0,h such that:

∫

Ω

E(uh) · C [E(uh)]dΩ =
∫

Ω

f · vhdΩ +
∫

Γt

t · vhdΓ,∀vh ∈ M0h.(3.1)

In the following we propose a local finite element subspace, characteristic to the
anisotropic meshes. In order to do this, let T ∈ Imh be an arbitrary fixed triangle;
let ωT be the domain formed by T and all adjacent triangles that have at most a
common edge E with T :

ωT =
⋃

T ′
⋂

T=E

T ′.(3.2)

Let λT,1, ...λT,3 be the barycentric coordinates of T . We define the element bubble
function bT ∈ P 4(T ) via

bT = 256 · λT,1 · λT,2 · λT,3 on T,(3.3)

where P 3(T ) represents the space of polynomials of order 3 or less. Let T1 and T2 be
two triangles belonging to Imh which have a common edge E. Let us denote:

ωE = T1

⋃
T2.(3.4)

In case that E is a boundary edge, let ωE = T , T ⊃ E. Let’s define the edge bubble
function

bE = 27 · λTα,1 · λTα,2 · λTα,3 on Tα, α = 1, 2.(3.5)

Suppose that both the previously defined bubble functions are zero outside their
original domain of definition. We define the space

H1
0 (ωT ) = {v ∈ H1(ωT )|v = 0 on (∂ωT − Γ)

⋃
Γu}.(3.6)

Thus, the local finite element space VT ⊂ H1
0 (ωT ) will be given by:

VT = span{bT , bE1 , ..., bEk
, bEk+1,1, bEk+1,2, ..., bEm,1, bEm,2},(3.7)

where E1, ..., Ek denote all interior and Neumann edges (Γt), Ek+1, ..., Em denote all
the edges that belong to the crack (⊂ Γc), Em+1, ...E3 denote all the Dirichlet edges
(Γu), 1 ≤ k ≤ m ≤ 3, and

bE,i = bE · λT,α, α = 1, 2.(3.8)

In this way, an arbitrary function from VT can be written as

vT = ξ0 · bT +
k∑

i=1

ξi · bEi +
m∑

i=k+1

2∑

β=1

ξi,β · bEi,β , ξi, ξi,β ∈ R .(3.9)

We define the vector

Φ = {bT , bE1 , ..., bEk
, bEk+1,1, bEk+1,2, ..., bEm,1, bEm,2}(3.10)
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and let E1, ..., Ek denote all the interior and Neumann edges; let Ek+1, ..., Em denote
all the edges that belong to the crack (⊂ Γc), and let Em+1, ...E3 denote all the
Dirichlet edges, 1 ≤ k ≤ m ≤ 3.

Consider the vector

v = (ξ0, ξ1, ..., ξk, ξk+1,1, ξk+1,2, ..., ξm,1, ξm,2) ∈ R1+k+2(m−k).(3.11)

We shall look for a solution of (3.1) in VT of the form

vT = Φ · v ∈ VT ,(3.12)

with the unknown v. The formula (3.12) has the aspect of a classical FE solution.
Further on the algorithm follows exactly the FE classical ideas, i.e. we shall finally
have the algebraic equation

Kv = g,(3.13)

where K is the stiffness matrix, having the entries

KIJ =
∫

Ω

BT
I CBJdΩ,(3.14)

and
g =

∫

Γt

Φ · tdΓ +
∫

Ω

Φ · fdΩ,(3.15)

where B is related to Φ, like in the classical FE algorithm. One can show that the finite
element stiffness matrix K is symmetric and positive definite and the conditioning
number of the same matrix is bounded, independently of T . The demonstration
follows immediately as in [3], for the 3-dimensional case. Some numerical examples,
which will compare the present solution with, the ones existing in literature will follow
in another paper.

§4. Conclusions

In this paper we have presented a first attempt to model cracks within the frame
of finite element anisotropic meshes. We have studied 2-dimensional models with one
straight crack. It was noticed that the theory works for kinked cracks as well. We
have used barycentric coordinates and bubble functions in order to implement our
theory. As well, to implement the theory, the FE model with an anisotropic mesh is
proposed, and it is noticed that the stiffness matrix is positive definite and symmetric.
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Răzvan Răducanu
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