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ABSTRACT

The central question discussed here is how the rate at which drifter positions are determined and the
position errors affect the calculation of velocity, acceleration and velocity gradients such as divergence
and vorticity. The analysis shows that the mean-square velocity and acceleration errors each are com-
posed of two terms. One arises from the position uncertainty and the discrete sampling rate. The other
term is an alias resulting from sampling a continuous velocity or acceleration spectrum discretely.
Effects at low and high frequencies and sampling intervals are examined by asymptotic expansions of
the spectra. Then optimum smoothing and derivative filters are obtained for the velocity and ac-
celerations, respectively. The efficiency of these filters is determined by comparison with the errors
previously established.

The calculation of divergence and vorticity from drifter clusters typically neglects the position error,
in which case the errors in the velocity gradients are proportional to the velocity errors. Our analysis
shows that this procedure produces estimates of the velocity gradients whose magnitudes are less than
the true values. This bias is easily removed. The analysis is concluded with a derivation of formulas
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Effect of Sampling Rate and Random Position Error on Analysis of Drifter Data

for unbiased estimates of the variance and covariance of the velocity gradients.

1. Introduction

A recent area of interest in oceanography has
been the description of the horizontal scales of the
velocity field of the ocean through observations of
drifters. For example, Freeland er al. (1975) have
presented some intriguing results of deep flow in the
western North Atlantic from sofar floats. Earlier
work in this area has been performed by Swallow
and Worthington (1961) and Rossby and Webb
(1971). Dickson and Baxter (1972) and Cresswell
(1976) have reported some current observations
from satellite-tracked drifters. Kirwan et al. (1976)
and Richardson (1976) also have employed this
technique for studying the Guilf Stream and cyclonic
eddies in the North Atlantic. Kirwan and McNally
(1975) used Stanford Research Institute Over the
Horizon Radar for studying the North Pacific Cur-
rent. Molinari and Kirwan (1975) determined the
differential kinematic properties (DKP) in the
vorticity balance in the Yucatan Current by the use
.of radar-tracked drifters. A similar technique has
been used by Stevenson er al. (1974) in studying
upwelling off the coast of Oregon.

The studies cited above have determined a num-
ber of kinematic properties of the ocean. These
include trajectories, velocities, Coriolis and inertial
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accelerations and the DKP such as divergence and
vorticity. The sampling rate and position accuracy
of the position fixing systems employed in the cited
studies have varied tremendously. However, an
analysis of how these characteristics affect the ac-
curacy of the calculations has yet to be made.
Kirwan et al. (1976) estimated the accuracy of
the velocity and acceleration obtained from the
Random Access Measurement System (RAMS) by
regarding successive position measurements as a
random time series in which the position uncertainty
o is the standard deviation of the position meas-
urement. Standard deviations for velocity and ac-
celeration were obtained by familiar formulas for
differencing random variables. Such an approach
cannot describe completely the errors arising when
observations are made in flows where there is sig-
nificant natural variability whose time scales are
comparable to the sampling period. Okubo and Eb-
besmeyer (1976) have investigated a number of
theoretical problems involved in estimating kine-
matic quantities from drifter data. However, the
effects of position error and sampling rate on the
calculations were outside the scope of their analysis.
The purpose here is to extend these last two
studies so that the effects of position sampling
rate and error in the determination of ocean kine-
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matics from Lagrangian data are assessed realisti-
cally. It is hoped that the analysis will result not
only in a better feel for the accuracy of previous
calculations, but also may serve as a guide for the
design of experiments to determine the horizontal
scales of variability in the ocean.

It is recognized that other factors may affect the
quality of drifter data. For example, with surface
drifters winds can produce considerable errors in
the trajectories and, perhaps, the velocities. These
problems are treated elsewhere (Kirwan et al.,
1975, 1978).

2. Errors in velocity and acceleration

The basic kinematic information obtained from
drifters is trajectories. Other kinematic properties
such as velocity and acceleration are inferred from
the trajectory data. It is assumed then that the
flow properties can be represented by the Fourier-
Stieltjes integrals

[X(t)} deb,(w)
v | = J e deuw) | (1)
a(r) debo(w)
where
dob, = dbidnf = ~dénf?. Q)

Typically, trajectory data are obtained at discrete
times with each position observation subject to a
random error. Thus at time ¢; the position vector
can be decomposed into

Xt)=Xi=12z —r, 3
where z; is the observed position and r; the position
error. For our purposes it is sufficient to take the

position error as random with the following properties:

rz; =rx;=r; =0, ry =0, @r);,,=0. ()

Eq. (4) asserts that the random position error has
zero mean; it is uncorrelated with the position error
at other times; and it is also uncorrelated with the
observed and true positions; furthermore, the x and
y components are also uncorrelated. However, the
variance of the components of the position error at
any one time is the same as it is at any other
time. Also, for convenience it will be assumed that
the position sampling interval is constant and is
denoted by

tiyg — 5= A

for all i. This then gives a Nyquist frequency of
fv = V(Q2A).

Discrete estimates of the velocity can be deter-
mined from centered differences of z; by

Vj = (Zj+1 - Zj..l)/ZA.
Substituting (2), (3) and (5) into (1) yields

(%)
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v, - J(exp(iZWftm) — exp(i2mft, )dbulidnf A

+ (i1 — 15-1)/24

- j sin2mfA exp(i2mft,)dbu/2mf A

+ (e — Tm)/24. (6)

From (1), (4) and (6) the variance of the velocity error
is found to be

e =TG-V = 1 - Meany

x dg-ddr + o202, (7)

where M(a) = sina/a. The first term on the right-
hand side of (7) gives the contribution to the error
variance or covariance arising from motions whose
time scales are comparable to the sampling period.
This error source is independent of the position
error. Also note that frequencies greater than (24)7*
will alias the rest of the spectrum. For low fre-
quencies relative to fy the expansion of the inte-
grand in (7) yields

DY

X QufA[Q2p + D12 dd,-dof + %242 (8)

Thus at low frequencies the leading term increases
as At

On the other hand, at the high-frequency end
the integrand in (7) approaches its maximum value
of 1. Here the velocity spectrum is usually as-
sumed to have a power law form

Qufr{S (—1p+

p=1

dd,-dd; = S(fHdf = |f|"Tdf. )]
Then the (7) takes the form
e = 2TQmA! '
x J (1 — sinX/IXPX—dX + o?2A%  (10)
fo

The integral in (10) is finite for n > 1. Note that
for n = 5 Eq. (10) produces the same dependency
on A as the low-frequency expansion (8). Most
spectra from deep moorings, however, suggest that
2 <n <3 at the high-frequency end (Pillsbury,
et al., 1979). These are Eulerian measurements
and strictly speaking are not applicable, but it is not
likely that Eulerian— Lagrangian transformation will
affect the power law form.

The other contribution to the velocity variances
in (7) is due solely to position errors and the
sampling period. It is independent of the scale of
ocean motions. This is the error assumed by Kirwan
et al. (1976). This term is proportional to A~2,
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whereas from (8) or (9) the first error term is a
positive power of A. Thus there is an optimum A
at which the velocity variance is minimum. The
low-frequency expansion given by Eq. (8) shows
that the optimum A grows as ¢!2. At high fre-
quencies (10) indicates that the optimum A increases
as o' to ¢% for n = 2 and 3. In essence the
optimum A is not particularly sensitive to o.

These results are useful in evaluating an optimum
smoothing filter for the velocity. The smoothed
velocity is obtained by convolving the raw velocity
estimates from (6) with a filter A()), i.e.,

©

@) = J AOVU( — N)dA. (11)

Here U is the smoothed velocity and U the raw
velocity estimate obtained at discrete times from (6).
Note that (11) specifies & as a two-sided filter in
anticipation of analyzing data a posteriori. Minimiz-
ing the mean-square difference of (6) and (11) leads
to the Fourier representation of A(t), namely

J " h(emdr = H(F) = SUf)MFA)
X [S{IM*QAS) + Sy(HI7. (12)

Here Sy(f) is the spectrum of the noise whose vari-
ance is presumably ¢%2A%. This gives a mean-
square error for the smoothing operation of

-]

[U@) — VO = &2 = J SHSHFISH)

-0

X [SUIM*Q2Af) + Sy(HIT'df. (13)

At low frequencies it is expected that S, (f)M2Q2Af)
> Sy(f). In this region only the noise spectrum will
contribute to the error. Since M2 = 1, the noise
spectra contribution may be enhanced. At higher
frequencies M? will have a number of zeros and
in general will rapidly approach zero. At such
frequencies (13) indicates that the main contribu-
tion to the error variance is from the velocity
spectra. But in no frequency region is the con-
tribution to the error variance greater than the
velocity spectrum. This is not true for the un-
smoothed record since from (7) it is seen that the
velocity spectrum contribution is amplified by
(1 — M)*. Since M may have either sign there will
be some frequency bands in which (1 — M)% > 1.
Thus the optimum smoother given by (12), which
takes into account both the sampling rate and
position error, should substantially improve velocity
estimates.

The analysis for the acceleration errors pro-
ceeds along the lines just given. Taking the centered
finite-difference formula for acceleration gives for
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the acceleration at the center time ¢;:
B = | MAAP) expli2nfi)de,

+ (e — 2r; + - /A% (14)

The variance of the difference between (14) and the
true acceleration is

=]

w=aar-|

—0

[1 = M*AN)P

X dg-dd* + 65%A%.  (15)

The integrand in (15) differs in two aspects from
that in (7). First the argument of M is now Af rather
than 2Af. This means that the effect on the ac-
celeration error variance from the acceleration
spectrum starts at a lower frequency than it does for
the velocity error variance. Also the acceleration
spectrum is multiplied by a function which is always
less than or equal to 1. Thus the acceleration
spectrum can never ‘‘over contribute’ to the ac-
celeration error variance as is the case for the
velocity.

The low-frequency expansion of the integrand in
(15) yields

e = f " {[4GY + SRR + O

—

X dg,-dd: + 6a%/AL.  (16)

As with the velocity error the leading term for the
low-frequency expansion increases as A*. The sec-
ond term, however, goes as A~ thus requiring the
optimum A for the acceleration to increase as
o4, At low frequencies acceleration errors are
less sensitive than velocity to position errors.

At the high-frequency region the acceleration
spectrum should decay as 27 f)%S.(f). Through (9)
this leads to the limit

eaz = 477.71—1An-3]"

X J {1 — [(sinX)/X12}2X%"dX + 60%A%. (17)
There is an important difference between (17) and
its velocity counterpart (10). For n < 3, Eq. (17)
has no A which produces a minimum variance.
The smaller the sampling interval the larger the error.

For acceleration, an alternative to an optimum
smoother is an optimum derivative filter operating
on the velocity. In practice it is generally necessary
to smooth the filtered acceleration, but this will
not be considered here. For a derivative filter
g(?) which minimizes

€2 = [a — a]?
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the filter is given by 3. Errors in differential kinematic properties
w In order to analyze the effect of position error
J ge 2 dt = G(f) = MUAS)S(f) and sampling rate on the DKP, it is necessary to
~ indicate both components of position as well as the

4 (FY1-1 time and drifter number. This requires a notation

X IMYASSf) + SN (8) change. The coordinates relative to the center of

Here Sy(f) is now the acceleration noise spectra mass of the cluster for the mth drifter are denoted as
whose variance is 60%/A4. Zin=Xom + Fimy i=1,2; m=1,...n. (20)

This leads to a minimum error of . R .
Here the first subscript refers to the coordinate

— (™ direction and the second to the drifter number. As
€* :J Salf)Sx(f) before, the true position is X, and r is the random
o position error which is subject to the restrictions

X [MYAf)Sf) + SMHITdf. (19) given by (4).

Following Molinari and Kirwan (1975) and Okubo
and Ebbesmeyer (1976), the velocity components of
the mth drifter of a cluster of n drifters can be
expressed as a Taylor’s expansion (in space) about
the cluster center of mass. Thus

Because of the presence of M* in (19) the noise
contribution will be less at lower frequencies than in
the velocity case.

oU
Um:U0+—6X Xim+ .. ..

61; m=1...n, sumon i{=1,2. 20

Vi = Vo + _E(TX"" +

In(21) U,, and V,, can be calculated by the algorithms given above, while the coefficients U, V,, 0U/0X; and

0V/8X; can be determined by least squares provided there are three or more drifters (Molinari and Kirwan,
1975; Okubo and Ebbesmeyer, 1976).

The least-squares procedure is followed here except in (21) the true position X is replaced by the observed

minus the position error. Also from section (2) it appears that position errors and finite-difference velocity
errors are uncorrelated.

The following functions are required in the analysis to follow:

n [P11P12] _ i [ (sz__ 22)2 ) _(Zlm - Z_l)(Z?m - Z-z)] , (22)
P21P22 m=1 _(Zlm - Zl)(ZZ2 - Zz) _(Zlm - 21)2

P = det(Py), (23)

Mi= S (Un~ 0)Zin, (24)

where U is the average of the X component of the
center of mass velocity. P = 02052 — ot + 0o + 02 + 0, (27)
From (22)-(24) the least-squares estimates of U, .

where
and 9U/8X,; are found to be _ n
N n of=n"1 Y (X — Xi)za
Uy=n1Y Up, (25) m=
m=1 n - -
:3?]' 2 op =n"" Y (X — X)(Xom — X2),
—— = 2 M;P/P. (26) . m=t .\
X, o and &% is the estimate of o2, the position error
Analogous expressions apply for V, and va’lizince. Then from (26) we have
v OU (Mo + My + 6XM, + M)UP, (28)
ax. " 0X,
i

~
We first consider the expansion of P from (23) in oU _ [M,o22 + Moo + 63M,+ My)IP. (29)
terms of the true position and position error 0X,
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Now the standard least-squares procedure ne-
glects the position error variance a?. The resulting
formula for the gradients are

U
EYT = [Mlo'l + M20'22]/P (30)
U _
= [M,0® + M,o2]/P, 31)
6X2 [ Y2 2 1] (
P=g202 — op* =P ~ 302 + o) — 64 (32)

Comparing (30) and (31) with (28) and (29), it is

~~
oU

0X,

N; = i (Vi
m=1
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= [M,Pyy + MyPy,
= [M,Py + M;P,, —
= [N,Py; + NyPyy —
= [N,Py; + N3Py —

= WZp= 3 (Va
m=1
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clear that since P > P the first two terms in the
latter equations are greater than the corresponding
terms in the former. But the last terms in (30) and
(31) can be either plus or minus and hence it would
be fortuitous if they always compensated the lower
bias produced by the first two terms. It is clear then
that position errors in general will produce a low
bias in the estimate of the velocity gradients.

Note that if an estimate of the position error is
known then it can be subtracted from (27), (28) and
(29) to produce unbiased estimates of the velocity
gradients. In terms of the observed displacements
and velocities these are given by

— (M, + M,))/P
(M, + M,))/P
(N, + Ny)J/P "o

(33)

(N, + Ny))/P

V)Xim

From (33) it is seen that the unbiased estimates of the velocity gradients are linear functions of M, and N;
which are random. This implies that the unbiased variance of the gradients is given by

U oU \ 0U 98U _
(o~ 3 o~ o) = o¥P - G*oulinP,
ax; ox;\ox, aXx,
1% av \/ oV oV X
( 9 - v )( - ) = O'vz[Pij - 6'28i,~]/nP. (34)
aX; ax;, \ax, aXx, |
Here the maximum likelihood estimates of o,2 and o,? are
n 30U 12 (U \ aU
-5 I {lom -] - (SRl
R 8X; 0xX; \ 0X;
1 V1 vy v
P AR R R e s
n m—1 3Xt aXl aX,

Eqgs. (34) and (35) give the unbiased covariances of

o~ I~ L " Y N
aUu aU av oV
(5% a%,) ™ (5% %)
0X; 0X; aX; 0X;
in terms of the observed displacements and the
center of mass velocity. In essence the equations
show that these covariances are all proportional to
the mean square velocity variances and the position
error variance. For negligible position error these
equations reduce to the standard least squares re-
sult given by Okubo and Ebbesmeyer (1976) that
the covariance is proportional to the variance of

the random independent variable U or V.

In many applications the DKP are of more
importance than the velocity gradients. As these
are linear combinations of dU/dX; and anaX the
variances and covariances of the DKP in principle
should be readily obtained from (34). Unfortunately
the least-squares machinery of Molinari and Kirwan
(1975) and Okubo and Ebbesmeyer (1976) does
not provide estimates of

U av
X,  oX;

as the U and V regressions are performed inde-
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pendently. Overcoming this requires a minor gen-
eralization of their least-squares procedure to in-
clude explicit dependence on the covariance of U
and V. This yields for the variances of the DKP

(D - Dy PG E+ Pol 2 + 2P 56y
(N - N)Z PII&H2 +I’22é.v2 - 2P12(_)'u,; (36)
(C - Z)2 P225’u2 +P116'u2 - 2P126'uv
(s - 8y P2+ Pui? + 2Py
where
| % 1% oU
D = a—U- -+ a . C = — — ,
6X1 6X2 6X1 6X2
N o OU oV 9V aU
X, 08X, X, 08X,
and the maximum likelihood estimate of o, is
~~~
n - oUu
Gu=n" ¥ (U -0 ———Xi)
v = m 0 BX,- m
i=1,2
Y4
x (v,,, A _xlm)
0X,;

To summarize it has been shown that position
error lowers estimates of the velocity gradients rela-
tive to the expected value. However with estimates
of the position error it is easy to obtain unbiased
estimates of the velocity gradients. Furthermore,
unbiased estimates of the covariance matrix of the
velocity gradients or the DKP can also be obtained
if the position error is known.

It has been our experience that smoothed esti-
mates of velocities should be used in the calcula-
tion of velocity gradients.
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