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ABSTRACT

The refraction of small shallow water waves by an idealized circular island is studied in this paper. The
island’s shoal is modeled by a quartic polynomial in the radial variable. This particular model allows the
explicit construction of the rays (wave orthogonals) and the determination of several important features
of the wave motion. The various shortcomings of the particular profile are discussed.

1. Introduction

In this paper we shall study the refractive proper-
ties of a circular island with a specific depth profile.
The linear shallow water theory is assumed to be
valid. This assumption requires that 4/ < 1, where
\ is the wavelength of the incident plane wave and
h the depth of the fluid. We shall apply the method
of geometrical optics (Arthur, 1946) to obtain an ap-
proximate description of the wave motion in the
short wave limit. This limit requires that h/a < 1,
where a is a typical horizontal dimension. Since this
parameter must characterize the shoal’s slope and
the island’s size, we choose it to be both the island’s
radius (ro) and h/| Vh|. The short wave limit is then
given by the constraints |VA| < 1 and hir, < 1.
Thus we are concerned with the refractive properties
of large islands with gently sloping shoals. We offer
here no justification of this short wave approxi-
mation to the shallow water (long wave) equations.
The reader is referred to Jonsson ez al. (1976,
1978) where such matters are amply discussed and
clarified. However, the method of geometrical op-
tics does give a certain amount of qualitative in-
formation regarding the amplitude and phase of the
wave motion. The description is elegant in its
simplicity. Moreover, the rays play an important
role in the qualitative study of the time-dependent
wave equation (Lowell, 1948). Discontinuities and
other singularities propagate along these curves.

The depth profile we use differs from those
previously studied in the literature. Quadratic pro-
files, in the radial variable r’, are often used to
model the trapping of waves around the island; the
wave orthogonals (rays) then become logarithmic
spirals (Jonsson et al. 1976). Linear depth profiles
in ' are sometimes used for experimental and
computational reasons; the wave heights are
bounded at the shoreline (Lautenbacher, 1970;
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Smith and Sprinks, 1975). These models are re-
spectively called ‘‘parabolic and conical’’ islands.

Our island has a depth profile which is quartic in
r'. This choice allows us to determine the rays
explicitly: they are merely arcs of circles. It is in-
teresting to note that this particular profile has been
used in other mathematical and physical fields
(Luneburg, 1964, Sec. 28).

In Section 2 of this paper we formulate the
physical problem and briefly describe the method of
geometrical optics. In Section 3 we calculate the
rays and note several interesting features. Finally,
in Section 4 we compute the amplitude and phase
of the wave motion. We discuss the shortcomings
of our method and model.

2. Formulation

An idealized circular island is attacked by a small,
monochromatic plane wave. The island is situated in
an infinite ocean of constant depth H. The depth of
the water surrounding the island is given by

H, r=R
h(r') = 12 _ . 2)2 )
R ECE S Y
— 1y

where r, is the island’s radius, r'* = x'? + y'2, and
R is the radius of the island’s shelf (see Fig. 1). Ac-
cording to the shallow water theory (Lamb, 1945)
the harmonic wave height ne'* satisfies the reduced
wave equation (scaled with respect to r,) '

Vu2-v
VZ,D — /" - n + kzﬂzn = 0, (2.2)
where u? = H/h(x'lrq, y'fro), k2 = ritw?/C, C is the
phase velocity (gH), g the gravitational constant,
and w the frequency of the incident wave. The func-
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F1G. 1. The model depth profile.

tion w® is given in terms of the dimensionless
variable, r = r'/r,, by

1, r=d
(@* - 1y
e
where d = R/r,,.

In addition to satisfying (2.2) n and V» must be
continuous for r = 1. Moreover, the scattered wave

must satisfy the radiation condition at infinity. That
is, for r = d we have

2 -

ut = (2.3)

n = e’ + (2.42)
where the scattered wave 7, satisfies
eikr
ns ~ f(6) as r— o, (2.4b)
rl/Z

The total wave 1 has been made dimensionless
with respect to the amplitude of the incident wave.
The exponential term in (2.4a) represents the in-
cident plane wave which is progressing in the di-
rection of the negative x axis.

We shall now suppose that k is ‘‘large’’ and seek
a solution of the form

X3Y}

) 9§ .
Go J  Jaa

FiG. 2. A typical ray.
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n(x,y; k) = e*=V[A(x,y) + O(/k)] (2.5)
as k — «, The term O(1/k) is a function of x, y and
k which is bounded by k! as k — . Eq. (2.5) is the
‘‘ansatz’’ of geometrical optics and is assumed to be
valid except in certain regions where other expan-
sions are appropriate. Thus, our first task is to com-
pute A and ¢ and determine where (2.5) breaks
down. Substituting (2.5) and (2.3) into (2.2) and
equating the coefficients of the powers of k to zero,
we obtain

V-V = u? (eikonal equation), (2.6)
2VA -V + AVH
v 2.
- A ___I_‘«_zv_lll '= 0 (transport equation). (2.7)
7
3. The rays

The eikonal equation is a nonlinear, first-order,
partial differential equation. We will solve it by in-
troducing a one-parameter family of curves ‘called
“‘rays’’ in the optics literature (or ‘‘wave orthog-
onals’’ in the marine literature) which are every-
where perpendicular to the curves y = constant
(Arthur, 1946; Synge, 1962). Since the incident wave
is plane, its rays are horizontal lines. We consider
the incident ray which strikes the island’s shelf at
(d cosa, d sina) (see Fig. 2). It is convenient to
use « as the parameter which labels a ray. If we
introduce the parametric representation of the ray,
X(s; a), whete s is the arclength, the orthogonality
condition is

DX Wy

. 3.1
D " 3.1)

Moreover, by differentiating this equation and using
Eq. (2.6), we find that X satisfies

D/ DX
—|p— =Vu. 3.2
{n ) = Ve (3.2)

This differential equation with u?* given by (2.3)
arises in other physical and mathematical situations.
For example, it gives the path of light in Maxwell’s
model of a fish eye (Luneburg, 1964, Sec. 28).
Luneburg gives an elegant solution of the differen-
tial equation by applying certain techniques and
results of differential geometry; he finds that the rays
are circles. In the next few paragraphs we give an
elementary proof of this result.

Let s = 0 correspond to the point where the in-
cident ray strikes the island’s shelf. The initial data
needed to solve (3.2) are deduced from the defini-
tion of a« [Eq. (3.1)], the form of the incident
wave and the continuity of n. We find that
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X(0; @) = d(cosa, sina), |a| < >
. (3.3)
92(— ©0;a)=(-1,00 and ¥(0; a) = cosa
Ds
Let V, and L be defined by
DX
V= —, 3.4a
"= Dy (3.42)
L=XXuV,. (3.4b)

One is tempted here to draw an analogy between
2 ray and the trajectory of a particle in a con-
servative force field. Indeed, wV, can be interosreted
as the velocity of the particle and u as the potential.
Then (3.2) becomes the statement of Newton’s
second law. In this spirit, L is the angular mo-
mentum and is conserved along the trajectory. This
fact readily follows from (3.2), (3.4), and the radial
symmetry of u.
The curvature of a ray K is defined by

3.5

where V, is the unit normal. By taking the scalar
product of (3.2) with V, it follows that

1
K=—VuV,.

M
Next, we let =+ — ¢ be the angle between V, and X
(see Fig. 3). Since Vu = rX(du/or), (3.4) and
(3.6) give

(3.6)

K = __1.6_/.". Sind)’
r or

3.7

|L| = ru sing. (3.8)

From (3.3) and (3.4) and the fact that L is coastant
along a ray, it follows from combining (3.7) and
(3.8) that

M _ -rK

o
This result is valid for any radially symmetric
depth profile.

Inserting our particular model p? [Eq. (2.3}] into
(3.9) vields the resuit!

K = 2d sina/(d®* — 1), 3.10)

I =r =d. Thus, for agiven a, the ray is en arc
of a circle with radius p = 1/K and center

3.9

2 d sina

fcr

(X6,Ye) = (d cosa, d sina — p). 3.11
The equation of a ray is

! The converse is also true: if K is constant, then (3.9) yields
n = (Cy? + C,)7! for arbitrary constants C, and Co,.
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Fic. 3. The tangent vector and the angle ¢.

x = x, — p sinKs ] . (3.12)

y =Y.+ pcosKs

These wave orthogonals possess two interesting
features. First, each ray strikes the shore perpendic-
ularly. This follows from (3.8): since |LT is a con-
stant along a ray and u— o as r— 1, then
sing - 0 or ¢ — 0. Second, a straightforward
trigonometric calculation shows that the ray strikes
the island at

(x*,y*) = (1 + p)7 (X = pye, pxc +yo). (3.13)
From this result it follows that some rays end up on

the leeward side of the island. In particular as
a — /2, the limiting ray strikes the shore at
(%£,9) = 1 + d» (1 — d%, 2d). 3.149)
In Fig. 4 we have sketched several rays and
wavefronts (y = constant). It is apparent from this
figure that the wave, as it penetrates into the shallow
water, ‘‘feels’” the bottom and ‘‘wraps’ itself
around the island. Finally, it should be noted that a

region, devoid of rays, exists on the leeward side of
the island. This is the geometrical shadow.

4. The phase and amplitude

Once the rays have been determined, the phase
function may be readily deduced. From (2.6) and

I
Fi1G. 4. Several rays and wave fronts.
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FiG. 5. The amplitude along various rays.

(3.1) it follows that i satisfies the differential
equation

Dy _
Ds

along a ray. From the initial conditions (3.3) and
(3.4) we find that

(4.1)

§ = cosa + J u(|X(s'; a@))ds”.  (4.2)
0

The inversion of (3.12) would give s and « as
functions of x and y. When these expressions are
substituted into (4.2), the phase function is deter-
mined for each point (x,y) in the region covered by
the rays. Unfortunately, this procedure is difficult
to carry out even though the rays are simple.2 The
inversion can be carried out, in principle as long as
the Jacobian

(o o o oy

s da s du
does not vanish. From (3.12) it follows that

J = —d cos(Ks — a) + p cota(l — cosKs). (4.3)

A long and involved calculation shows that J < 0.
We do not produce it here. However, from Fig. 4 it
appears that only one ray passes through each point
in the ‘‘irradiated’’ region. This fact is sufficient
to guarantee the inversion of (3.12) and imply J # 0.

Although the inversion appears impossible to
analytically perform, we can still deduce an im-
portant qualitative feature of . Let s* correspond
to the arclength of a ray when it strikes the shore-
line. At this point r = 1 and u becomes infinite. A

2 The functional dependence of « on x and y is obtained by
finding the roots of a quartic in sina.
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careful analysis of the integral reveals that i is
logarithmically singular at the shoreline. Thus the
period of the wave approaches zero as r — 1. This
potential problem is a shortcoming of our depth pro-
file and not the geometrical optics method. In-
deed, if h(r) were linear in r, the singularity in (4.2)
would be integrable and i would be bounded at
the shoreline.

We shall now describe an interesting physical
observation which follows from the form of . From
(3.8) it follows that the rays perpendicularly strike
the shoreline for any radially symmetric u(r) which
becomes unbounded as r — 1 (or equivalently,
h — 0 at the shoreline). Consider a portion of the
incident plane wave given by x = x, > d and |y]|
=< d. The wave orthogonals are horizontal lines until
they reach the island’s shelf (r = d) where they bend
and perpendicularly strike the shoreline. Thus, the
shoreline appears to be a wave front where
= constant. For our particular model ¢ = « while
for others the constant is bounded. Now, from (4.1)
we have that the integral [ uds is invariant along all
the rays joining the wave fronts (r = 1) and
Y(x = x,). Since this integral is physically propor-
tional to time, all the wave crests (troughs) initially
at x = x, will strike the island at the same time.
For our particular model the waves ‘‘pile up’’ and
never reach the shoreline while for other models
they do so in a finite amount of time.

Before computing the amplitude we find it con-
venient to rewrite the transport equation (2.7) in
the divergence form

A2
\'A (—? V(p) = 0. 4.4
u
By integrating this expression over a small bundle
of rays, applying the divergence theorem, and
changing variables, we show in the Appendix that

1/2

A:(p,dcosa) ’ “@.5)
1

where J is given by (4.3). This result is valid for
any radially symmetric depth profile. Now as
s —>s* r—1 and A becomes unbounded. This
singularity is a result of the asymptotic method and
not the particular depth profile. It suggests that an
expansion, different from the geometrical optics
ansatz, is needed near the shoreline. Moreover,
there is a possibility that the nonlinear equations
are required as r — 1. Finally, in Fig. 5 we show
A as a function of s/s* along several rays.
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APPENDIX
Derivation of Eq. (4.5)

We consider two neighboring rays, X(s; a) and
X(s; @ + 8a), where |da| < 1. For s fixed let C,
= {(x,y)](x,y) = X(s; ), «a <u < a+ da}. Then
C, is the arc of the island’s shelf in between the
two rays. Let 8/, represent the length of C, and
assume 8/, < 1. Let Dy be the region bounded by
the neighboring rays, C, and C,. From (4.4) it

follows that
2
J J V(f— Vm[;)dxdy.
,uz

Dy

0= (A.1)

By applying the divergence theorem (more pre-
cisely, Green’s theorem) to this result and using (3.1)
one finds that

2 A 2
cosf; A 8l =~ cosBy —— 8o,
1 Mo

(A.2)

where the right-hand side is evaluated at a point on
C,, the left-hand side is evaluated at a point on Cj,
and B; is the angle between the normal to C, and
Vi. Since the energy ~AZ? and the group speed
equals the phase velocity [(gh)'? =~ 1/u], Eq. (A.2)
simply states that the mean energy flux is constant
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between neighboring orthogonals. Now, it is easy to
verify that
cosBs8l; = Jda, (A.3)

where J, is the Jacobian Eq. (4.3) evaluated at a
point on C,. As 8a approaches zero, &/, — 0,
8l, — 0 and (A.2) becomes an identity. Noting that
Ag=po =1 and |J,| = d cose, it follows from
(A.2) that

d 1/2
A= (———“ °°S") . (A.4)

/]
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