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ABSTRACT

A new type of standing equatorial wave mode is described that exists in the semi-infinite ocean
0<sx =L, -0 <y <o Itconsists of a finite sum of the meridionally trapped equatorial waves in an
infinite x domain. The new mode is thus itself equatorially trapped and requires no energy sources or
sinks at l y | = o, However, it exists only for a discrete, countable set of pairs of values of the frequency
w and the ocean zonal width L. Previously described standing modes exist for any ocean width, but
are infinite sums of trapped equatorial waves and require a continuous energy source in the west at
ly] = o to balance the continuous energy sink in the east at |y| = ». Several examples of the new
type of standing mode are given, and it is shown that as the standing mode period becomes very long,
so the zonal scale becomes very short. The effect on the standing modes of bounding the basin
meridionally is also described; energy is recycled round the basin by boundary-trapped Kelvin waves
along the zonal walls. The amount of energy recycled in the new type of standing mode, however,
is exponentially small compared to that recycled in the previously described standing modes.

1. Introduction

The theory of free equatorially trapped waves
was first formulated in the mid-1960’s, and applied to
the equatorial stratosphere. Observational evi-
dence of the existence of Kelvin waves and mixed
Rossby-gravity, or Yanai, waves soon followed.
[See Holton (1972, Chap. 12) for a short review and
further references.]

An extension of equatorial wave theory to the
oceans, where the effects of a zonally bounded
basin have to be considered, was achieved by Moore
(1968). He showed that in a meridionally infinite
basin two standing modes exist for any values of the
frequency w and the ocean width L. The modes
consist of an infinite sum of either the Kelvin and
all odd m waves or the Yanai and ail even m waves.
For discrete sets of the frequency w these standing
modes consist of just the infinite sum of waves of
order m + 2M for M = 0, 1,2, . . . The achieve-
ment of Moore (1968) was to show that, near the
boundaries and far from the equator, these standing
modes can be represented by meridionally propagat-
ing Kelvin waves. Thus, in order to maintain these
standing modes, energy must be supplied from in-
finity along the western boundary because energy is
lost to infinity along the eastern boundary. Moore
went on to show that, in a bounded basin with
zonal walls at y = =/, in which energy cannot be
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lost, the energy can be recycled by boundary
trapped Kelvin waves propagating along y = */
from east to west. These Kelvin waves must have
the proper phase so that everything matches up
smoothly, and this means that Moore’s (1968) stand-
ing modes in a bounded basin only exist for a dis-
crete set of frequencies.

Section 2 shows that another type of standing
mode exists in a zonally bounded, but meridionally
unbounded basin. These modes consist of a finite
sum of either the Kelvin and odd m or the Yanai
and even m waves. The modes themselves are
equatorially trapped, contain no meridionaily propa-
gating Kelvin waves, and thus have no energy sinks
and need no energy sources at infinity. However,
this type of standing mode does not exist for all
ocean zonal widths L, but only for a discrete set of
pairs of the frequency w and L. Examples of these
new standing modes are given in Sections 3 and 4.
In a bounded basin, no standing mode exists in
which no energy is carried along the zonal walls at
y = =/ by Kelvin waves. Section 5 shows, how-
ever, that if / is large enough, a small modifica-
tion to the meridionally infinite standing mode
ensures that it recycles the least possible amount of
energy. The amount of energy is exponentially
small compared to that carried round the walls in
Moore’s (1968) bounded basin modes, so that the
coastal Kelvin waves play virtually no role in
these new bounded basin standing modes.

There is some observational evidence of trapped
equatorial waves in the ocean, but their exact role
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in the tropical oceanic circulation is presently un-
certain. The possible relevance of these new stand-
ing modes to the ocean is briefly discussed in Sec-
tion 6.

2. Standing equatorial wave modes in a zonally
bounded basin

Moore and Philander (1976) show that the linear,
inviscid, Boussinesq and hydrostatic equations of
motion on an equatorial beta plane can be written
in the form

Uy ~yv + py

ve+yu +pyt =0. 2.1

D+ Uy + vy,

The equations are nondimensionalized using a
time scale of 8~V2(gH,) 4, and a length scale of
B~ V3(gH )%, and have had the vertical modal struc-
ture separated out in the variables u, v and p.
H, is the equivalent depth of the nth vertical baro-
clinic mode. Eqs. (2.1) can be combined into a single
equation for the meridional velocity, viz.,

2.2)

This equation possesses separable solutions of
the form

2, _ -
Ve ~ Vzat = Vyye + Y20, — vz = 0.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 9

where

Ym = Hin(y)e /(2" mtar'2)12, 2.4

and H, is the Hermite polynomial of degree m. The
Y,’s are a complete, orthonormal set of basis
functions, and k,, and k., are the roots of the
dispersion relation

erX _wramin=o,
@

2.5

viz.,

k l*-2+1 2+1”226
o =~ 5= ot s —am v 0| @6
where the 1 and 2 refer to the + and — signs, re-
spectively. We also note the special cases of the
dispersion relation (2.5): m =0, ko, = w — Vo,
Yanai or mixed Rossby-Gravity wave; m = ~1,
k_;, = w, Kelvin wave with v = 0. The second root
for k from (2.6) in these two cases yields unac-
ceptable solutions which are not bounded as
]y — oo, Matsuno (1966). The separable solutions
can be written in the form

v=Y [A,exp(ikn,X)
m=0

v = [A, exp(ikp, X) + B, expikp 2 X)Wm(y) exp(—~iwt), (2.7)
+ B, exp(ikm2X)]0n(y) exp(—iwt), (2.3) where .o
and
= [ 22 expi A crpliCo —
u(p) = {_\/_i— expiox)f(y) + 5 expli(w — Ve)x(y)
< Am . B, . m + 1\12
+ m};} [——w —— exp(ik,,1x) + — s exp(zk,,,,2x)]( > ) Ymsr(y)
+ i [ Am - exp(ik . x) + Bn — exp(iky, zX)J(mlz)ml,,m_l(y) }i exp(~iof), (2.8)
m=1 w + km,l ’ w + km,z 5

where the + and — signs refer tox andp, respectively.

We now consider the standing modes that are
possible in a semi-infinite ocean strip bounded by
meridional walls at x = 0, L. We must apply the
boundary conditions «(0) = «(L) = 0, and since the
Y,’s are orthonormal, this implies that the coef-
ficient of each i, must vanish at x = 0, L. The
standing modes are of three types:

a. Type one

For any frequency o, there exist two standing
modes, one with a meridional velocity consisting of
a Yanai wave and all even m waves, and another
consisting of all odd m waves in v plus a Kelvin
wave component in # and p. The relations between
wave amplitudes are easily obtained by imposing

Y, =0atx =0, L in Eq. (2.8). The existence of
these two standing modes was first shown by Moore
(1968), who also pointed out that for any given w
# 0, these standing modes contain a finite number
of waves with real zonal wavenumbers, plus an
infinite sum of boundary-trapped waves with imag-
inary zonal wavenumbers. These boundary-trapped
waves occur for all m =M, where 2M > (o
~ 12w)%. Moore (1968) went on to show that the
infinite sum of eastern (western) boundary-trapped
waves can be represented by outgoing (incoming)
meridionally propagating Kelvin waves within a dis-
tance of the boundary proportionaltoy'as |y | — .
Thus, in the absence of ocean boundaries to
the north and south, these standing modes need a
continual supply of energy from ] y! = » along the
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western boundary, which is balanced by an equal
energy loss to | y| = « along the eastern boundary.
b. Type two
For the countable set
o — 12w = =[2m + n?7*L?*)'2,

- where n is any integer, it is easy to show that

(2.9)

exp(ikn L) = exp(ikyL). (2.10)
Thus, if
Am Bn _ 0, (2.11)
w + km,l w + km’g

the coefficient of ¢,,—, in Eq. (2.8) vanishes at x
= 0, L. Then, for every m = 1, a standing mode
exists in which the meridional velocity is a combina-
tion of all waves of orderm + 2M, M =0,1,2,...,
and the recurrence relation on the amplitudes is
again easily obtained from (2.8). Moore (1968) also
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noted the existence of this type of standing mode.
With w given by Eq. (2.9), the k,,’s are real but
almost all the larger m wavenumbers are complex,
so that the infinite sum of waves again represents a
standing mode which requires an energy source
along the western boundary at |y| = « and a corre-
sponding energy sink along the eastern boundary.

c. Type three

For the countable set of pairs of @ and L, where
o still satisfies Eq. (2.9), but now

Am By

w = km,l w — km,g

=0, 2.12)
then the coefficient of ¢+, in (2.8) vanishes at
x =0, L. When m is an even integer, let v be a
combination of the Yanai wave and all even waves
up to and including the mth wave. From (2.8),
imposing # = 0 at x = 0, L requires

M”Z[ Au Bu ] + (M - 1)”2{ Ave Buus } =0, (2.13)
o + ki, o + kyz ® — ky 9, © ~ Kyz,2
An , By .
MY2| ———— exp(iky, L) + ————— explikyL
|  expikiL) + o explits )]
Ay . By .
+ (M — 1)”2[——-——— exp(iky o L) + exp(tkM_2,2L)] =0, 2.149)
W — Ky—g,1 ® — Kpy-2,2

with M taking the values of all even integers be-
tween 4 and m. Finally, the coefficient of y, in the
expression for ¥ must vanish at x = 0, L, requiring

Aow A2 B2
+
\/i w + kz,l w + k2,2

=0, (2.15

Aow . A2 .
explilw — l/w)L] + —————— ¢ ko L
N pli(w w)L] P xp(iks, L)

B,
+ ———— exp(ik, . L) = 0. (2.16
o T kol plik;.L) (2.16)

Eqs. (2.12)~(2.16) comprise m + 1 relations be-
tween the m + 1 coefficients A,, A;, B,, ...,
A, By, so that the system is singular. In order for
a nontrivial solution to exist, the determinant of the
matrix multiplying the column vector of the wave
amplitudes must vanish, and this puts a necessary
condition on the ocean width L for which this
standing mode can exist. This condition is tedious to
evaluate for general m but examples when m is small
are given in the next sections. If m is odd, a
comparable standing mode is possible, with v being a
combination of all odd waves up to and including the
mth wave, and 4 and p having a Kelvin wave
component. The equations to be satisfied are (2.9)
and (2.12), (2.13) and (2.14) for M all odd integers

between 3 and m, but with (2.15) and (2.16)
replaced by
Al Bl

A, + + =0,
w + kl,l w + kl’g

(2.17)

A
A_, exp(ioL) + ——‘k— exp(ik, L)

W+ Ky

B, .

+ R exp(ik,.L) = 0. (2.18)
Note that Eq. (2.9) implies that the £,,’s in these
solutions are real, and the dispersion relation [Eq.
(2.6)] then shows that all the zonal wavenumbers
in these standing modes are real. Thus these stand-
ing modes contain no boundary trapped waves, and
consist entirely of waves that are purely equatorially
trapped, so that no energy sources or sinks at |y|
= o are required for these standing modes once
they are excited. However, it must be emphasized
that these equatorially trapped standing modes
only exist for a countable set of pairs of discrete

values of the frequency w and the ocean width L.
Rattray and Charnell (1966) found some trapped
standing modes consisting of a finite sum of equa-
torial waves for any ocean width and a countable
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set of frequencies. Moore (1968) pointed out that
these solutions are incorrect because of the un-
justified neglect of some terms in the expressions
for u and p.

3. Examples of the simplest trapped standing modes

The standing modes naturally divide into those in-
volving odd m waves and the Kelvin wave, and
those involving even m waves and the Yanai wave.
In these examples the arbitrary amplitude of these
two groups will be specified by setting either A_,
or A, equal to 1. The simplest trapped standing
mode involves only two first waves and the Kelvin
wave. In this case we require

exp(ik, L) = exp(ik,,L) (3.1
or
kl,l - kl,g = 2n7T/L, n = 1, 2, 3.... (3.2)
This gives
2,.-271/2
w+1/2w=:[4+””} : (3.3)
L2
We also require
A .
B 0, (3.4
w — kl,l w — k1,2
1+ Ay B, =0, (3.5)
w + k1,1 w + k1,2
B
iwL) + L+ ! }
exp(lw ) l: w + kl,l w + k1,2
x exp(ik,,L) = 0. (3.6)

In this case it is very easy to see that (3.5) and (3.6)
are the same equation, thus giving two equations to
determine A, and B,, if and only if

exp(iwl) = exp(ik,,;L) 3.7

“1

3+

GRAVITY
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or
o=k, =2pw/L, p=1,2,3.... (3.8

Using (2.6), (3.3) and (3.8), it can be shown that the
necessary restriction on the ocean width is

L =[p(p + n)]"*m (3.9

for any nonzero integers n and p.

This standing mode can be thought of in the follow-
ing way. There is one wave carrying energy west-
ward, as shown by the dispersion relation in Fig. 1.
At a western boundary it is reflected by two waves
carrying energy eastward, whose amplitudes are
known compared to the amplitude of the incoming
wave. Individually each wave carrying energy east-
ward would be reflected at an eastern boundary by
an infinite series of odd m waves. For specific
values of w and L, however, the reflection of the
sum of the two waves is accomplished by a single
wave carrying energy westward whose amplitude
is equal to that of the original wave, so that a stand-
ing mode exists. The u velocity of the sum of the
waves carrying energy eastward has nonzero com-
ponents for only two of the meridional basis set,
the same two components as the single mode carry-
ing energy westward. Thus making # vanish at the
eastern boundary requires two conditions: those on
o and L. For this simplest mode the conditions on
o and L are that the relative phase of the two first
waves has n complete wavelengths across the basin
[Eq. (3.2)], and the relative phase of the Kelvin and
first wave with larger wavenumber has p complete
wavelengths across the basin [Eq. (3.8)].

A similar argument shows that (3.9) is also the con-
dition on L for the existence of the standing mode
in which v is a combination of the Yanai and two

‘'second waves. In this case, however, w, A, and B,

are given by

o — 12w = =[4 + nzﬂz/Lz]”Z, (3.10)

ROSSBY

w=1.85
2 Gravity
and Kelvin waves

KELVIN

w =027
2 Rossby and

| Kelvin wuv?s
i

! 2 ;3

Re k

Fi1G. 1. Dispersion relation (2.5) for m = 1, showing the two values of o corre-
sponding to the standing modes consisting of two first gravity or two first Rossby

waves plus the Kelvin wave, n =

= 1.
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B
A, i_ =0, (3.11)
® = ky,y . 0= ko
@y A L By G
V2 w + ko, o+ kyp

It is only for these m = 1 and 2 modes that the
necessary condition on the ocean width L is the same;
for higher values of m it is different.

The gravest standing mode consists of first waves
and the Kelvin wave with n =p = 1. Then L
=V2m, o=0G= V52V2 and ki = —120
+ 1/V2. When the plus sign is taken in the expres-
sion for w, the mode consists of the Kelvin and
two first gravity waves, whereas with the minus sign
it consists of the Kelvin and two first Rossby
waves; see Fig. 1 which is a plot of the dispersion
relation (2.5) form = 1. Withw = 0.27, 4, vand p at
times 7 = 0 and 7/2w are shown in Fig. 2 as func-
tions of x and y. Note that ¥ and p are symmetric,
and v is antisymmetric about the equator. This is
one of the most equatorially confined of these
trapped standing modes.

Fig. 3 shows a time sequence of the zonal velocity
at the equator in time increments of #/6w for ¢
between 0 and 5#/6w. Each node can be traced
through the solution, seen to be propagating west-
ward, and crosses the ocean in a transit time of
10.8/w. However, the propagation is not spatially
uniform in the sense that the phase speed of a
node is larger near the center and boundaries of the
ocean than it is near x = L/4 and 3L/4. For this
standing mode the ratio of phase speed at x = L/2
tothat atx = L/4,and 3L/4is about 1.5. The average
phase speed is 0.11 that of the Kelvin wave, or

(a) u, wt=0 (b) v, wt=0
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0.47 that of the long Rossby wave which carries
energy westward. Fig. 3 shows that the nodal ampli-
tude also varies with x.

Fig. 4 shows u4, v and p as functions of x and y
for the standing mode with second Rossby waves
and the Yanai wave at times ¢ = 0 and #/2w for
n=p=1. Again, L = V27, but w = 0.214, k,,
= ~1.63, k;, = —3.04, and the Yanai wavenumber
w — l/w = —4.46. For this mode, « and p are anti-
symmetric and » is symmetric about the equator,
but the zonal structure is similar to the first Rossby
and Kelvin wave mode. This mode also propagates
spatially nonuniformly to the west in the manner
described above, with an average phase speed of
about 1.5 that of the Yanai wave, or 0.55 that of the
long Rossby wave.

These standing modes were found when consider-
ing the response of the Pacific Ocean to forcing on
very long space and time scales. We now give an
example of a mode with a long x scale, but which
has a relatively short time scale; and then show that
as the period of these modes increases, their spatial
scale decreases. Thus there are no trapped modes
with very long space and time scales. If we take the
equivalent depth of the first vertical baroclinic
mode as 40 cm, which is typical of the Pacific
Ocean, then using g = 10% cm? s, the phase speed
of the corresponding Kelvin wave is 2 m s~!. Using
B at the equator equal to 2 X 107 cm™! 57! gives,
for the first baroclinic mode, a time scale of 1.83
days and a length scale of 316 km. Thus, for the
first Rossby and Kelvin wave mode with p = 8,
n = 10, we obtain L = 12, so that the ocean width
is almost 12 000 km, similar to the Pacific. The
meridional width —4 < y < 4in Figs. 2 and 4 corre-

(c)p,wt=0

ST

20N

NN
QLRSS

F1G. 2. Mode consisting of first Rossby and Kelvin waves, n = p = 1. Plots of 4, v and p at times of = 0 and #/2.
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v, wt=w/3

[

AMPLITUDE

r . u, wt=n/2 ]

L

il .

vywt=27/3 1

U, wt=5r/6 1

L/2

L/2

OCEAN WIDTH

Fld. 3. Same mode as Fig. 2. Time sequence of « at the equator for wt = 0, #/6, #/3, #/2, 27/3 and 57/6.

sponds to 2530 km; with @ = 0.263 the mode time
scale is 7 days. For this mode &k, = —1.07 and
k., = —2.74, and a time sequence of the zonal veloc-
ity at the equator in time increments of 7/6w for ¢

between 0 and 57/6w is shown in Fig. 5. As is to be
expected from the larger values of » and p, this
mode has many more nodes than the n = p =1
modes. It still propagates westward, however, in

{a) v, wt=0 (b)v,wt=0 {c)p,wt=0
’0’::? ;‘:‘ .,:?71 ‘\" 7
=SSO e ll\o78
o 25N ‘.g’ X

{

0
'0'££2§::§:’
A

\%;

Y

LRSI
L

Nz

/ ‘\\‘\‘\025'3230
N

i ”o‘t‘t@

253
I,lz £

<>
S5

//

Fi1G. 4. Mode consisting of second Rossby and Yanai waves, n = p = 1. Plots of «, v and p at times w? = 0 and #/2.
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a spatially nonuniform manner since the nodes are
not equally spaced in Fig. 5. The average phase
velocity is about 0.1 that of the Kelvin wave, or 0.4
that of the long Rossby wave.

If we consider the very low frequency limit as
w — 0, then

w— xL/2nw sothat L/ina — 0. (3.13)

Thus for finite L/m, n — %, so the zonal mode
scale tends to zero. For the standing mode consisting
of first Rossby and then Kelvin wave

L?zw* = p(p + n), so pm—0. (3.14)

As
=0,k ;> 30w and k;; —> —lw.(3.15)
In this limit

A, — 4w and B,—> —lw. (3.16)
so that A,/B, — 0, but A,/(w = k,,) and B,/(w
+ k, ) are of the same order of magnitude. Thus,
in the zonal velocity and pressure, the low-wave-
number components exp(iax) and exp(ik, x) and the
high-wavenumber component exp(ik, ,x) have com-
parable magnitudes, but in the meridional velocity

8 Ty

PETER R. GENT

659

the high-wavenumber component dominates the
low-wavenumber component. The same is true of
the standing mode consisting of second Rossby
waves and the Yani wave. To try to match long
time-scale variations in the Pacific, we put p = 1
and n = 100. Then L = V1017 and o = 0.05,
corresponding to an ocean width of about 10 000
km and a mode period of 230 days. The mode zonal
length scale will be 100 km, decreasing further if
the period increases. In this example the amplitude
of the high-wavenumber component of v is 100
times that of the low-wavenumber component.

4. Example of the next simplest trapped standing
modes

The next simplest standing mode has v consisting
of first and third waves, and # and p having a
Kelvin wave component. In this case

o+ 12w ==x[8 +n*7¥L*"?, n=1,2,3...,(4.1)
A3 B3

+ = (,
® — ks, ® — k3,

4.2)

plus four more equations relating A,, B;, A; and
B,. The condition on L can be reduced to the form

1

[ (b)

| (a)

e

(=]
=

TR winy g © SO U SR S

-
E.c
€
[l
o
t . S —

| (¢

—

———
> 4

o o
]

AMPLITUDE

1 (e)

5 u, wt=7/2 ywt=2w/3 U, wt=57/6
o L/2 Lt O L/2 L O L/2 L
OCEAN WIDTH

FiG. 5. Mode consisting of first Rossby and Kelvin waves, n = 10, p = 8. Time sequence of u at the equator for wt = 0,
/6, w/3, w/2, 27/3 and 57/6.
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(0 — ky )@ + ky)lexp(ik, L) — exp(iks,L)]
X [exp(ik, L) — exp(iwLl)]
(0 — ky N w + kyp)lexp(iky L)
— exp(iksL)]lexp(ik, L) — exp(iwL)]. (4.3)

After some algebra, this can be written in the form

T tan(wY/2) + S tan(wZ/2) = 0, ifnis odd
or “4.49)
S tan(#Y/2) + T tan(wZ/2) = 0, if n is even,
where

S = (8 + n2zLY)V6 + n2m?L?)V2

+ 4 + nPm¥L?, (4.5)
T = (4 + n272LY)2(8 + n2m?L2)12

+ (6 + n*m¥L2)12], (4.6)
Y = (n? + 8L%Yn?)12, 4.7
Z = (n* + 4Lm?)12. (4.8)

For the standing mode where v consists of a Yanai
wave and second and fourth waves, w is given by

® — 120 = =[8 + n2a¥L2"",
n=1,2,3... 4.9

and the condition on L is again given by Eq. (4.4),
but with (6 + n2x%L?) replaced by (10 + n?n¥L?)
in the definition of S and T. It can be shown that
7/S is a monotonically increasing function of n2m%/12
varying in the range 0.966 < T/S < 1 for the mode
which includes the Kelvin wave, and 0.926 < 7/S
= 1 for the mode which includes the Yanai wave as
n?mw?L? increases from zero to infinity. Therefore, a
good approximation to the condition on L is

(a)u, wt=0 (blv,wt=0

S

SR
'(;.,.\:.0:,‘ > ®,
=4 R,

SS9

O

RIS
% 7 0:0’.‘
’ !// 52
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tan(wY/2) + tan(nZ/2) = 0 (4.10)
or

Y + Z = 2p for any integer p > n. (4.11)

A little algebra gives this approximate condition on
L as

LYz = 3p? — p8p? + n)¥2.  (4.12)

These standing modes have two waves carrying
energy westward. At a western boundary they are
reflected by three waves carrying energy eastward,
whose amplitudes are known relative to the ampli-
tudes of the incoming waves. At an eastern boundary
the reflection of these three waves need not be an
infinite series of waves, but can be accomplished
by two waves carrying energy westward whose
amplitudes equal those of the original waves. This
occurs for specific values of w, L and the amplitude
ratio of the two waves carrying energy westward.
These three conditions are used to make u# = 0 at
the eastern boundary, because, in these modes, u
has three nonzero components in the meridional
basis set. Egs. (4.1) and (4.9) show that the relative
phase of the two highest order waves has n com-
plete wavelengths across the basin. Eq. (4.3) does
not have such a simple interpretation but relates
the relative phases of the waves to their u velocity
amplitudes. Higher order standing modes can be
viewed in a similar way. .

We have computed one example of a standing
mode in which v has first and third gravity wave
components, and « and p have a Kelvin wave com-
ponent. When n = 1 and p = 2, o = 2.99 corre-
sponding to L = 0.7167, which compares with the
estimate of 0.7157 from (4.12). Fig. 6 shows u, v
and p as functions of x and y at times 0 and 7/2w
for this mode; « and p are symmetric and v is anti-

(c)p,wt=0

FI1G. 6. Mode consisting of third and first gravity and Kelvin waves, n = 1, p = 2. Plots of 4, v and p at times wr = 0 and #/2.
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symmetric about the equator. Modes of this type are
less equatorially confined than those shown in Figs.
2 and 4, but this is not apparent from Fig. 6 be-
cause, in this particular mode, the amplitudes of the
Kelvin wave and the first gravity wave associated
with wavenumber k&, , are much larger than the re-
maining amplitudes. This mode propagates eastward
in the spatially nonuniform manner described for the
first Rossby and Kelvin n = p = 1 mode, but the
nonuniformity of the propagation is much more
pronounced.

For the examples given in this paper, the stand-
ing modes containing Rossby waves propagate west-
ward, and the mode containing gravity waves east-
ward. For the simplest modes it can be shown that as
w — 0 the standing modes propagate slowly west-
ward, so that this rule may be true, in general.

5. Standing equatorial wave modes in a bounded
basin

In this section the effect of bounding the basin
on the standing modes described in Sections 2-4
will be examined. v = 0 is imposed on the zonal
boundaries at y = =/, and this means that the
dispersion relation (2.5) becomes

K+ klo — @ + 2un + 1 =0. 5.1

In this section we shall only consider basins sym-
metric about the equator, and which have large [ in
the sense that

1> Quy + D2, (5.2)

where the /| — « standing mode consists of waves
of order M or less. This implies that / is much
larger than the turning latitudes of all the waves in
the standing mode. When this criterion is satisfied,
Moore (1968) showed that the energy flowing north
and south along the eastern boundary in his merid-
ionally infinite standing modes can be recycled
around the basin by means of boundary-trapped
Kelvin waves propagating westward along y = *I.
He calculated the order 1 solution because the
amount of energy recycled around the basin is of
order 1. For everything to match up smoothly re-
quires that these Kelvin waves have the correct
phase, and this implies a discrete set of frequencies
for Moore’s standing modes in a bounded basin.
When [ satisfies (5.2), Cane and Sarachik (1979)
show that u,, can be approximated by
2m+1,—12
s ~ m + N7 @)7['_8_ _

m+e 53)

The complete orthogonal basis set ¢,,  is given by
bu, = Un + bV, (5.9

where U,(V,,) is exponentially decreasing (increas-
ing) away from equator and b, =~ ~wem!/2. If
vx ¢, , u can be expressed in terms of ¢, .,,
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but these are not equal to ¢,, ., since u,, is no longer
an integer. Thus, «# is now not a simple sum of just
two of the basis functions, but is an infinite sum
over all the basis functions. Thus, if v is a finite
sum of the ¢, ’s, there are an infinite number of
coefficients to be set to zero to satisfy # = 0 on
x = 0, L. This is impossible with only a finite num-
ber of wave amplitude ratios and conditions on w
and L at one’s disposal. This new type of standing
mode in a meridionally infinite basin depends cru-
cially for its existence on u being expressed as the
sum of just two basis functions. Thus, in a bounded
basin, no standing modes exist in which v is a
finite sum of ¢, 's, which implies there are no
standing modes which recycle no energy around the
basin.

We define v, to be the form of a trapped standing
mode in a meridionally infinite basin, but  and k
satisfy the dispersion relation (5.1). In a bounded
basin we let the corresponding standing mode be
denoted by

Sue ”'} , (5.5

=U, +u’

where v’ represents the infinite sum which recycles
energy around the basin. Imposing

u, =0 at x=0,L forally (5.6)

ensures that the mode recycles the least amount of
energy because it makes u’ as small as possible at
y = 0. Itis O(e) there, and e must now be considered
as the maximum ¢ defined by (5.3) over all the m’s
contained in the v., standing mode. The amount of
recycled energy is O(e) because u = O(e¥?) on
y = =l, and is exponentially small compared to
that recycled in Moore’s (1968) bounded basin modes.
Boundary condition (5.6) implies an O(eY?) correc-
tion to w and L compared to the / — « solution
because by Eq. (5.1) the k’s are changed by
O(e'?). Leaving o and L as the [ — » values would
make u' = O(e'?) atx = 0, L, y = 0 so that more
energy would have to be recycled around the basin.

For the mode consisting of the Kelvin and two
first waves, boundary condition (5.6) implies

2p(p + n) V2
L= [——1—] -
Ha ot .7

o+ 12w = :[2(/.1.1 +

For the standing mode consisting of the ‘‘Yanai”’
and two second waves, the condition on L is slightly
different from (5.7), viz.,
1/2
L= [2p(p+n)} -
M2 — Mo (5 8)
w— 12w = -_*-[2;4,2 +

n2,n.2 1/2
L2
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TaBLE 1. Coefficients in Eq. (4.4) for bounded basin standing modes.

Kelvin plus two 1st and two 3rd waves

*“Yanai’’ plus two 2nd and two 4th waves

o+ 120 = =[2(uy + 1) + n®7*/L*]"?

S = [2us + 1) + a2 LA22p, + n2m/LAM + 2us — wy)
+ n2m?/L?

T = [2(us — po) + n?m®/LA{[2(us + 1) + 2?12
+ Rus + nPm2/LV2}

Y = [n® + 2 + DLY 772
Z = [n® + 2 ~ p)lm"

w — 12w = %[2u, + n?a?/L*)V?

S =204 + 1) + a2l 22, + n?m2ILAY + 2 — o)
+ nim2/L

T = 201 — pa) + 2w /L212{[2(pq + 1) + nn?/L272
+ [2ps + n2a?/L2V2}

Y = [n* + 2y — po)ll ¥/ w2
Z = [n* + 2y — p)L P/

and approximate values of wo, u; and u, can be
found from (5.3). ‘“‘Yanai’’ is put in quotes because,
in a bounded basin, this wave splits into a gravity
anti-Kelvin wave and a Rossby anti-Kelvin wave;
[see Cane and Sarachik (1979), their Fig. 1]. The
appropriate wave for each standing mode is obvious
from the meridionally infinite basin mode. For the
modes consisting of the Kelvin plus two first and two
third waves, and the ‘‘Yanai’’ plus two second and
two fourth waves, the condition on L is still given
by Eq. (4.4), and the appropriate values of , S, T,
Y and Z are given in Table 1.

6. Discussion

The trapped equatorial standing modes described
in this paper exist for a discrete, countable set of
pairs of values of w and L. Are they excited in the
real oceans? For a typical first vertical baroclinic
mode, 7 times the zonal length scale is ~1000 km
so that, for application to the equatorial Pacific,
[p(p + n)]V* must be between about 10 and 12, if
either of the gravest standing modes is to be ex-:
cited; [p(p + n)}"? lies within the range [10, 12} for 46
different pairs of (p,n) so that the values are fairly
dense. This does not include the values of L/ be-
tween 10 and 12 that are appropriate for the excita-
tion of more complicated modes, involving higher
order waves in the solution. The equivalent depths
of the higher vertical baroclinic modes are smaller
than for the first, so that the appropriate values of
L/7 for the Pacific will be larger than for the first

mode. At larger values of L/, the set of values of
L/m for which some standing mode exists is denser.
It is also likely that, if the value of L/ is very near
but not quite equal to the exact value for a stand-
ing mode, then the standing mode may well be
excited, but will be ‘‘leaky’’ in the sense that it will
lose energy at a rate depending upon how close
L/ is to the required exact value. One can argue,
therefore, that for any value of the ocean width L,
one or more of these trapped equatorial standing
modes will be excited, even if they are ‘‘leaky.’’ This
hypothesis can be tested using the results of Sec-
tion 5 and a numerical model. When this is done
the possibility that these trapped standing modes are
excited in the oceans can be assessed.
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