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ABSTRACT

A model for the scattering of a continental shelf wave by a small, isolated and smooth topographic
irregularity is developed. It is found that a wave of frequency w, incident on a bump of a sufficiently
small horizontal extent such that the solution for a delta-function bump will apply, will trigger all other
allowable modes of the same frequency with the highest modes having the largest amplitudes. Further,
the higher the mode of the incoming wave, the more strongly will it be scattered. Thus, for a
continuous spectrum of continental shelf waves propagating over complicated and extended topography,
one would expect a net cascading process toward the higher wavenumber end of the spectrum due
solely to the effects of topography. It is noted, however, that if the solution is integrated over a bump
of large horizontal extent, the behavior of the forward-scattered and backscattered waves could be entirely

different from that of a delta function bump.

1. Introduction

The effect of topographic irregularities on the
propagation of continental shelf waves (CSW’s)
has been of considerable recent interest. Allen
(1976) investigated the effect of a longshore topo-
graphic irregularity on barotropic long CSW’s by
considering small variations in lateral and bottom
topography. Buchwald (1977) addressed the prob-
lem of the diffraction of CSW’s due to the presence
of an irregular coastline; no longwave approxima-
tion was used in the model. Further, Odulo (1975)
and Huthnance (1975) have shown that for a conti-
nental margin characterized by a bottom depth 4,
which varies only in the cross-shelf direction x, if
the quantity s,/ remains bounded, then the group
velocities of all CSW modes can be both posi-
tive and negative. Moreover, the resultant disper-
sion relation indicates that both forward- and back-
ward scattering of wave energy can occur whenever
a CSW encounters a topographic irregularity.

The case of an extremum in the group velocity of
CSW’s can be characterized as an Airy phase (Light-
hill, 1965). For the particular case of zero-group
speed (ZGS) waves the Airy phase does not propa-
gate, and LeBlond and Mysak (1977) suggest that
there should then be enhanced amplified persistance
of phenomena locally generated at the appropriate
wavelengths. Buchwald’s theoretical results essen-
tially confirm LeBlond and Mysak’s contention
and observational evidence presented by Cutchin
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and Smith (1973) and Hamon (1976) seemingly
lends support to the argument.

In this paper, we consider the effects of a small,
smooth and isolated topographic irregularity on
CSW propagation along a continental shelf, the
depth of which increases exponentially in the off-
shore direction; no longwave approximation is
invoked. In comparison to the cited work of Allen,
this work considers the entire dispersion curve.
Moreover, this effort examines the effects of a small,
isolated topographic irregularity on the shelf proper,
in deference to the referenced work of Buchwald,
which assumes the coast to be irregular. Although
this paper essentially deals with a topographic
irregularity of smalil horizontal extent, the analysis
can be extended to a bump of large horizontal ex-
tent by integrating our solution over the extended
topography.

Section 2 provides the details of the mathematical
formulation and the solution. Numerical results are
given in Section 3, and a discussion of model re-
sults, as well as conclusions, are presented in Sec-
tion 4.

2. Analysis

We consider a barotropic, essentially inviscid,
coastal ocean on a constant f-plane of the Northern
Hemisphere. The continental shelf zone is bounded
on the west by a coast at x’ = 0, and on the east
at x’ = L. The water depth beyond the shelf zone
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is a constant H,. A rigid lid on the surface of the
water extended from the coastline to the edge of
the shelf is also assumed initially. Let f~! be the
time scale, H, the depth scale, L the horizontal
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length scale, and fL2H, the streamfunction scale.
The dimensionless, vertically integrated, linear
vorticity equation and boundary conditions for the
coastal trapped waves are (see, e.g., Allen, 1976;
Buchwald, 1977)

h hy

v, =0,
h

Y(x = 0,y,1) = ¥(x > @,y,1) =0,

where y is positive poleward, h(x,y) is the water
depth profile, and ¥ the mass transport streamfunc-
tion defined such that hu = ¥, and hv = —¥, for
" velocity components («,v) in the (x,y) directions.
A small divergence parameter 32 = f2/gH, is used
only for x = 1. The use of the small divergence
parameter is conceptual and helps us to complete
the contours of integration, as will be shown.
Eventually the limit of 82 — 0 will be required and a
rigid-lid result throughout the domain of interest will
be recovered. The small divergence parameter (32
was also introduced by Buchwald (1977) in the study
of the effect of an irregular coastline. The depth
profile h(x,y) is assumed to be A(x,y) = ho(x)
— €h(x,y) for a topographic irregularity —eh,(x,y)

h
<\PO.2'J: + \I’oyy - = q’o:)
hO t

Yoze + Yoyy — B¥e = 0,

+h—-‘I’0y=0,

superimposed on the shelf zone, where € = hy/
H, < 1, hyis the maximum height of the topographic
irregularity, and k, the exponential profile of Buch-
wald and Adams (1968), i.e.,

ezb(x—l)’

1
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1, x = 1.

i

ho(x) = 2
We also assume that ¥ can be expanded into a
power series of order € as follows:

\I’(x,y,t) = \I’O(x’y’t) + €‘P1(X,y,f) + 0(62)' (3)
Substituting (3) and the relation for 2(x,y) into (1)
and equating like powers of €, we obtain the O(e)
equation and related boundary conditions as follows:

hox O0=sx=1
0

x=1

4

\I'o(x =09y’t) =\I’0(x—)°°,y,t) =0

We further assume that the topographic irregularity is of a smooth type, i.e., if I'®, [*’ are length
scales of A, in the x, y directions, respectively, then €(/)! and e(I¥)"! < 1.

The O(e) equation and boundary conditions are

h hoy
(‘l,mz'*'q,lyy_—q“?‘ww) +—9“\I’1y

ho ¢ ho

hly (ho.rhl hlx) I
= ——= (Yot + Vo) + | — — — —= |(Your — Vo,), Osxs11| 5

ho( oyt 0) ho ho }20 ( oxt Oy) ()
‘Pl.m"*'q'lyy_ﬁhlfl =0, x=1
Vix=0)=¥(x >x) =0

These equations hold for a topographic irregularity
[h(x,¥) = hi(x,y)h,] confined to the shelf and slope
region. Assuming that 8% — 0, then the O(1) equa-
tion and boundary conditions (4) for ¥, are those
for the free shelf waves considered by Buchwald

and Adams (1968). The dispersion curves for b = 1
and b = 2 are shown in Fig. 1.

Assume that O(1) solution consists of only a free-
incident long wave with a group velocity to the south
in the same direction as its phase speed, which is

given by
‘PO - d)o(x)ei(koy—mt)’ (6)
where .
r gi =x <
e? sinM, exp[—(B% + ko2)V2(x — 1)], x =1,
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FiG. 1. Dispersion curves for (a)b = 1, (o) b = 2.

and M, = (—k? — b% — 2bky/w)'?. As can be seen To solve Eq. (5), we first take a Fourier transform
from (7), ¢, and ¢,, are continuous across x = 1, in the longshore direction and apply a Green’s func-
which is required for the continuity of onshore tiontechnique in the offshore direction. This method
mass flux and pressure and for the free wave to be has been used by Chao and Janowitz (1978) in a study
bounded in the Northern Hemisphere. For con- of horizontally sheared flow over an isolated topog-
sistency we choose w > 0 and k, < 0. raphy. We next define the Fourier transforms

[¢(x,k)]e_iw,=_l_j+°" {‘I’I(x,y,t)
S(x;k) \/2_7T — R(X,)’J)

where R(x,y,?) is the right-hand side of (5). We then have the following governing ordinary differential
equations for ¢:

}e—ikydy , (8)

hox hor k
rx — T Pxr — k2 + ——— =Sw, O0=sx<=1
bre = 5y ® ( ho w)"’ ¢ * ©)
¢1‘r—(32+k2)¢=0, x=1
The solution of (9) can be expressed as
s = [ GG 2 @0 4,
0 (0]
1 ® S(Z,k)
Y = — e"’“’"‘”"U G(x,; k) >~ d }dk, 10
== ]_w Gtk =y (10)
where G(x,{; k) is the Green’s function of (9) and can be written as
b1 (x,k)a(L,k) O<x<(
G iy = | M@PE) an
&1(L:k)Pa(x k) 0<<x

ho(DDk,w)
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The functions ¢,(x,k) and ¢,(x k) are the two homogenous solutions of (9), such that ¢,(0,k) =
and the Wronskian 4,D(k,w) can be expressed as

ho(x)D(k,w) = ¢ydyy — (3% P

In the particular case when D(k,w) = 0, for some (k,w), the Wronskian becomes zero, ¢, x ¢,, and ¢, and
¢, both satisfy the boundary conditions at x = 0 and x — » and thus become eigenfunctions of the
homogeneous part of (9). Therefore, D(k,w) = 0 is the dispersion relation of which the real zeroes (k,) of

¢2(°°9k) = 0’

D(k,w) yield the free wave solution of Buchwald and Adams.

It is straightforward to find ¢, as

e’ sinMx,
¢ = [ 2
a, exp[(B® +

where M = (—k*
= 1. It follows that

k*)'%] + a_ exp[—(8* +
— b? — 2bk/w)?, and a., a_ can be found by requiring ¢, and ¢,, continuous across

0sx=1

(12)
x=1,

k2)1/ ]

_ ) b sinM + M cosM
a. =Yaexplb ¥ (B2 + k2)1/2][51nM * BT k" ] (13)
Similarly,
bx(p, sinMx + b_ Mx), O0sxs=s1l
by = e (b, sinMx cosMx) X (14)
exp[—(B* + k*)'x], =1,
where
b, =expl—b — (B + k)2 {—[b + (8% + k*)V*) cosM + M sinM}/M} (15)
b_ = exp[—b — (B2 + kH)V2){[b + (B + k*)"?] sinM + M cosM}/M
Further, it is obvious that
D(k,w) = —explb — (8% + k)Y2[(b sinM + M cosM) + (8% + k?)'? sinM]. (16)
The O(e) streamfunction ¥, can then be expressed as
| I S(C, ) .
Wy (x,y,1) =-—-J [ G(x,; k) —=— d{e*v-df. an
‘ ) s ¢

The integral with respect to k is completed by con-
sidering k to be a complex variable. The integration
along the real k axis is computed via a residue type

ImK
branch cut

backscattering
(y>0)

> ReK

forward ~scattering
(y<0)
branch cut 2

F16. 2. Contours of integration-for forward scattering (y < 0)
and backscattering (y > 0).

calculation. It can be seen from relations (11)—-(16)
that the integrand of (17) is an even function of m
and, therefore, branch cuts of (17) in the k plane
come only from (8% + k*)"2. We take the branch k
to be the one for which k ~ |k|, as k — =, so that
the cuts are from if to i», and from —if to —x.

The real zeroes (k,) of D(k,w) yield a wavelike
part of ¥, in (17). Complex zeroes of D(k, w) and the
contribution due to an integration about the branch
cuts give solutions decaying in y, which are of no
concern here and will not be computed. In compli-
ance with the radiation condition we can include a
small positive imaginary part of w, i.e., o = w,
+ ig. The effect of o can be interpreted either as a
frictional effect (see, e.g., Noble, 1958), or a slow
turning-on of the forcing term (Lighthill 1965)
Once the small o is included, all the k,’s with posi-
tive group velocity (C = dw/dk] k=ky > 0) are
shifted to the upper half k-plane, those k,’s with
negative group velocity (C? = dw/dk |k_k+ < 0) will
be shifted to the lower half k-plane. The presence
of e in (17) suggests that one should close the
contour of integration in the upper half k-plane for
y > 0 (backscattering), and in the lower half k-
plane fory < 0 (forward scattering). Fig. 2 illustrates
the contours of integration for (17).



JuLy 1979

For large distances away from the bump (|y|
> 1), the decaying solutions vanish and only wave-
like solutions are taken into consideration; we then
let o — 0, 8 — 0. It can be seen that for all k,, such
that D(k,w) = 0, ¢; = b, ;. Eq. (17) can be re-
duced to

Wi(x,y.t)

- =AM S r[ bi(k) ¢:(L.k) S(Lk)
n JO

|,
oD /ok ho(C) k=ky
X ¢i(x,k3) explitksy — )], |y| > 1, (18)

for all possible k,, where the + and — represent
solutions for y < 0 and y > 0, respectively. It is
simpler and conceptually useful to consider only a
delta function bump, i.e., keep the dimensional vol-
ume of the bump V; fixed but shrink the size of
the bump to zero, so that

w

)
H,L*

The actual wave pattern over a realistic bump
can be found by integrating the delta-function solu-
tion over an extended topography. Eq. (18) can
then be further reduced to

eh(x,y) = 8(x — x0)8(y).

(19)
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where upper and lower signs represents forward
scattering (y < 0) and backscattering (y > 0), respec-
tively. The term in braces gives the amplitude (A7)
of the scattered waves. We can see that if D(k, w(k))
= 0 is considered as the dispersion relation, then

dD = (a_D+__)dk ~0
Ak dw dk
and

oD
k7u = -
Ok k)

oD

™ cn. 21
It is immediately seen from (20) and (21) that, if the
incident shelf wave has frequency w at which there is
a ZGS in the highest possible mode, resonance
then occurs, consistent with the result of Buchwald
(1977). The implication of this resonance is that
there is a bandwidth Aw ~ O(€?) around each ZGS
for which the amplitudes of diffracted waves are
nearly of the same size as the incident wave
(Buchwald, 1977). We can also see from (20) that the
scattered wave (¥,) is =90° out of phase with the
incoming wave W,

3. Numerical results

. iVy X [ bik) 1 Fig. 3 shows the amplitudes of the backscattered
eVilx,y,t) = F TNE [ Dok oh’ (A;) and forward-scattered (A7) waves versus the
0= n=1 Who location of the bump which varies from x, = 0 to
xo = 1 for a first-mode, long incident wave with
X [k(wkopo + doz)b: + (Wi, + k¢o)¢1x]] . b =1and o = 0.1. It is interesting to see that for a
k2% first-mode incident wave scattered into the nth
mode, there are n + 1 nodal points of A¥ at which
X ¢(x,ky) explilkyy — wt)], (20) anisolated bump does not generate scattered waves
An b=t AR b=
A w=0.l A W= 0l
100}
1504
o} + Dxo
10
/ 100
n=l
-100{
n=2 %ot ne3
-2001 . 2\\
0 " —— /-\ P >
nET S Xo
ne3 05 1o
-300
~504
~400

(a)

(b)

Fi1c. 3. Amplitudes of (a) backscattered, and (b) forward-scattered shelf waves versus the location of the
bump (x,) for a first-mode, long incident wave with b = 1, © = 0.1.
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FiG. 4. Amplitudes of forward-scattered (dashed line) and
backscattered (solid line) waves versus x, for a first-mode,
long incident wave with b = [; o = 0.2, 0.3. Only first-mode
wave is possible.
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at all. The amplitude of scattered waves for a near-
shore bump tends to be larger than that for an off-
shore bump. In general, that is, for most values of
xo the amplitude is the largest for n = 3 mode and
the smallest for n = 1. Thus a long shelf wave is
likely to be scattered by an isolated bump into the
highest mode. It is also true that backscattered
waves are more intense than forward-scattered
waves. :

Fig. 4 shows Ay vs x, for a first-mode, long
incident wave withb = 1, v = 0.2 and 0.3. As can
be seen from Fig. 1, only first-mode waves exist
at these higher frequencies. Comparisons can only
be made for the first-mode waves. A combination of
Figs. 3 and 4 shows that for the first-mode scat-
tered waves, the higher the frequency of the inci-
dent wave, the higher the amplitude of the forward-
scattered wave and the lower the amplitude of the
backscattered wave.

Fig. 5 shows the amplitude (A}) vs x, for a first-
mode, long incoming wave with b = 2, o = 0.2.
The figure indicates essentially the same trend as in
Fig. 3. In addition, the effect of a larger b is in general
to produce larger amplitudes of both forward-
scattered and backscattered waves for the same
mode and frequency. We also computed A, at higher
frequencies for b = 2. Results show a similar be-
havior to those in Fig. 4, and hence are not pre-
sented here.

4004

200

100

-100

-2004

{b)

F16. 5. Amplitudes of (a) backscattered, (b) forward-scattered shelf waves versus x, for a
first mode, long incident wave with b = 2, o = 0.2.
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FI1G. 6. As in Fig. 3 except for a second-mode, long incident wave withb = 1, o = 0.1.

Figs. 6 and 7 show the wave amplitude versus
xo for second-mode (m = 2) and third-mode (m
= 3), long incident waves, respectively, for &t = 1
and @ = 0.1. There are n + m nodal points of
Aj for an mth mode wave scattered into ar nth
mode wave as expected. Combining with Fig. 3, one

3P
7 at

500

-500

-1000

{a)

can see that, in general, the highest mode incom-
ing wave has the strongest tendency to be scattered
by an isolated bump. For a first-mode incoming
wave, the largest amplitude peak of scattered
waves usually occurs for xo < 0.2 and as x, gets
larger, subsequent peaks decay rather quickly. This

~500

(b)

Fi1G. 7. As in Fig. 3 except for a third-mode, long incident wave with b = 1, @ = 0.1,
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F1G. 8. The scattered amplitudes (A%) for an extended
topographic irregularity [Eq. 25)} forb = 1, w = 0.1.

last statement remains true for the forward-scattered
waves of a higher mode incoming wave. However,
the situation becomes quite different when we con-
sider backscattered waves. As the incident mode be-
comes higher and as x, increases, successive ampli-
tude peaks decays more slowly. Furthermore, other
than the first amplitude peak (x, < 0.2), incident
wave energy is more evenly scattered into all possi-
ble modes for a higher incoming mode. The implica-
tion is that ‘as far as the backscattering is con-
cerned, an offshore bump becomes more effective
for a higher, incoming mode and higher scattered
modes. However, it is always true that the forward-
scattering and backscattering processes favor the
highest mode because C3, and hence 8D/dk for
n = 3, is the smallest. In the case of a third-mode
incident wave, Az is only slightly favored for
Xo > 0.2 as shown in Fig. 7a.

The model developed in Section 2 essentially
deals with a small and smooth topographic irregu-
larity with a delta-function bump having been used
to complete the analysis. The validity of extending
the delta-function results to the smooth bump case
will now be addressed. Note that for a delta func-
tion located at point x,, yo, the Green’s function
solution for the streamfunction can be written as

W (x,%0,¥:¥0) = 2 Vixo,y0)B(x0.kn)bs(x ,k»)

X exp{ilkn(y — yo) — wt]}. (22)

For a small and smooth bump of horizontal extent

[® and [ in the x and y directions, respectively,

€V, can be obtained by integrating (22) over the
extended topographic irregularity, i.e.,
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Vi(x.yt) = [

de j dyo\Py(anO’y ’yo)- (23)
6] 0% )

It can be seen from (23) that if k,J/® < 1 and
I® Max{M,M} < 1, then all of the variables save
for Vi(xo,ye) can be legitimately removed from
within the double integral, so that the delta-function
solution given by (20) is approximately applicable.
For the delta-function solution to be more than
approximately valid, it is required that the in-
equalities expressed as

Min{M,}, M~} > |'® » e]

ky P> 1V > € @4
be satisfied. As the bump widens, cancellation of
waves occurs over point pairs on the bump and the
delta-function results- begins to gradually lose
meaning.

It is noted that the amplitudes of scattered waves
can be different from those depicted by the Green’s
function solution if an extended topographic irregu-
larity were considered. For example, we consider
the effect of a topographic ridge described by the
expression

ehi(x,y) = 1TZTE expl—a%y? + 2b(x — 2)]

O0=sx=<1. (29

X sinmx,

The ridge extends from x = 0 tox = 1 and is Gaus-
sian in the alongshore direction. The parameter a is
inversely proportional to the alongshore scale of the
bump, i.e., a « (I’)"'. The volume of the bump re-
mains fixed throughout. Invoking relation (23) to
compute the amplitudes of forward and backward
scattered waves, A} and A;, for b =1, w = 0.1
leads to the results depicted in Fig. 8. From the re-
sult it is obvious that as the alongshore scale of
the bump is diminished, the magnitudes of the scat-
tered wave amplitudes approach those which re-
sult from imposing a delta-function bump in y, i.e.,
8(y). For an increase in wavenumber of a scat-
tered wave, it is required that /'’ or a~* be corre-
spondingly diminished, consistent with relation (24),
in order that a delta-function solution be approached.
The secondary backscattered wave mode, repre-
sented by A7, has greatest amplitude when the along-
shore structure of the ridge approaches a delta
function. If the size of the bump is reduced in the
cross-shelf direction sufficient to justify the condi-
tion that /' < 1, then the results depicted in Fig. 3
may once again be applied.

4. Conclusions

We briefly summarize what has been accomplished
in this paper. For an incoming, long CSW over a
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small smooth bump of small /**¥’ superimposed on
an exponential shelf:

1) The amplitudes of scattered waves are in
general a function of the offshore location of the
bump, and are larger for a bump nearer to the shore.

2) The scattering process always favors the higher
incoming mode and higher scattered mode.

3) An offshore bump (x, > 0.2 in general) back-
scatters a higher incoming mode wave more effec-
tively and more evenly into all possible modes.

4) Backscattered shelf waves are in general more
intense than forward-scattered shelf waves, but a
higher frequency incident wave will strengthen
the forward scattering and weaken the backscatter-
ing, thus making the scattering process mcre ‘‘long-
shorely isotropic.”’

5) The effect of a larger b is in general to pro-
duce larger amplitudes of scattered waves.

6) The scattered shelf waves are £90° out of phase
with the incident wave.

7) There are n + m nodes where the bump does
not scatter waves for an mth mode incoming wave
scattered into an nth mode.

A long shelf wave propagating along a complicated
and extended longshore topography is more likely to
be scattered into the highest possible mode, which
in turn has the strongest tendency to be scattered,
but still favors the higher modes. Therefore, we
would expect that eventually some of the wave
energy will be transferred to higher wavenumber
shelf waves. If we have a continuous spectrum of
long shelf waves incident on an extended topog-
raphy, there will be a net cascading process which
transfers the low-wavenumber spectrura into a
higher wavenumber spectrum due to topographic
effects alone.

In the case of an ‘‘extended’’ topographic irregu-
larity, relation (23) can be used to compute the
amplitudes of the scattered waves and these ampli-
tudes can, and most likely will, vary as the irregu-
larity is increased in size.
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The model developed herein can be further
generalized for arbitrary continental shelf and slope
topography and melded with a flat bottom ocean
interior region, with the operational constraint that
¢, and 0D/dk in relation (20) must be evaluated
numerically for all allowable &;’s.
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