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ABSTRACT

Over a deep barotropic ocean an isolated pressure cell, producing a wind stress curl, generates
topographic Rossby waves which are incident on a continental shelf with a simple exponentially varying
slope. It is shown that this energy appears as a distinct peak at low frequency on the energy spectrum
on the shelf. A peak at 0.05 cycles per day (cpd) in the spectrum from data of Smith (1974) for the Oregon
shelf is consistent with this effect. For the case where topography dominates the beta effect off the shelf,
general equations are found to estimate the frequency and dominant wavelength of the energy peak. An
interesting result of this analysis is that, for all parameters being equal, this frequency should be lower
on an eastern shelf than a western shelf in the Northern Hemisphere due to the beta effect. The variation
of the magnitude and frequency of this peak with the location on the shelf, the distance of the center of
forcing from the shelf, and the scale of the pressure cell is then investigated for the Oregon sheif

in particular.

1. Introduction

In a previous paper (Kroll and Niiler, 1976;
hereafter referred to as I) the transmission and decay
properties of topographic Rossby waves (T-R
waves) incident on an idealized exponential shelf
were investigated. Here we consider a realistic
meteorological forcing over the deep ocean gen-
erating long-period (much greater than the inertial
period) and long-wavelength [=0O(100 km)] waves
onto a continental shelf. The purpose of this study
is to show that this energy, produced completely off
the shelf, can have a magnitude and frequency
such as to appear distinctively in the energy spec-
trum on the shelf. To obtain general quantitative
results for all possible ranges of the parameters is
difficult and not done here. However, the case where
topography off the shelf dominates the beta effect is
found to be fairly easy to analyze using asymptotic
methods. Also the specific case of the Oregon shelf
is accurately analyzed using numericai means.

2. The model and equations of motion

As in I we assume the motion on the g-plane
is barotropic, nondivergent and sufficiently weak to
neglect nonlinear effects. Also, we again assume
that the topographic slope is uniform in the long-
shore direction with the depth increasing exponen-
tially away from shore. The right-handed coordinate
system is fixed in the topography with y parallel to
and x normal to the isobaths with positive x directed
away from shore. Thus, the Coriolis parameter is
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given by f = f, + B.y + B.x, where B, = B cosf
and 8, = B sind with f, and B being the usual quanti-
ties and 4 is the angle measured counterclockwise
between x and the eastward vector.

The constant slope parameter is defined by
S = h'(x)/h(x), where h(x) is the depth. Our model
consists of two exponential slopes with S, being the
slope parameter representing the shelf, while §,
< S, represents the slope off the shelf. At the shelf
break we define x = 0, and the depth there is de-
noted by H, (see Fig. 4 of I).

We assume that the ocean off the shelf is forced by
the wind while the shelf is not. The equations
from I governing the motion on the shelf and off the
shelf respectively are

Vz"’s, + Bc'z's, - Ss‘l/s,, + (fS, - B = 0 (2.1a)
and

V2o, + Betho, — SoWo,, + (FSo — Beo,
=78 — 20 4 SV (2.1b)

where the velocity components in x and y in terms of
the streamfunction { are given respectively by hu
= —y, and hv = ¢, and 72 and ¥ are the wind
stress components. The quantity S, can be
realistically neglected off the shelf in comparison to
the stress curl (¥ — (). [Typically the stress curl
is O(1077 dyn cm™®) and S¢r is O(10~2 dyn cm™3).]
At the shelf break, x = 0, we require the con-
tinuity of # and v. All other boundaries are open,
so that we have radiation conditions for x = *,
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We are neglecting reflections from shore by assum-
ing that, because of bottom friction, only the energy
of the incident wave to a point on the shelf is
important. This assumption is based on calculations
of the decay of long period and wavelength T-R
waves from I.

3. The solution for a point source

In I we showed that wave solutions of the form

Y= Aexp[( 230 7)x

+iux +ily — iat] 3.1

are approximate solutions to the homogeneous parts
of (2.1), where o is frequency, [ is the longshore
wavenumber and

we = h- g - (3] + (£

20

Here we let the wind stress curl in (2.1a) be given
by 8(x — x4)8(y ~ yo)e~"*, Dirac delta functions
centered at (x,,y,) and sinusoidal in time. We then
assume a solution of the form

¢ = ex [ UG + S x]e""”‘—l—-
p( 20 2) 27

xj&mmwu

) . (32)

(3.3)

where ¢ is the Fourier transform in y. Letting f be
constant in (2.1), we obtain the following equations
for ¢ on and off the shelf, respectively:

¢s" + ps ¢s =0,
—(1/o)

(3.4a)
a’on + ;1.02650 =

200 2

where u,® and u,? are found from (3.2) using S, and
S, Tespectively.

Using the continuity conditions at x = 0 and the
condition that no energy (i.e., group velocity) is
coming from x = *o, the solution for the stream-
function on the shelf in terms of convenient di-
mensionless quantities can be shown to be

e ex [zB So 7 i 5 ‘]
e — — %y — [iB, — = |x
2o p( R)o ( R)

X exp[( B _ ﬁ)x,,]e‘"’"’&(x ~ Xx), (3.4b)

Y =

y J"" exp{—ialé(J — Jo) — fisX + fofo] £, (3.5)
— (Ss - SO)/R + l(’“”s - IJ'O)
where ﬁ‘g,s = §2 + Zf(SO,s - Bx) + BcZ - -%.s/RZ and

o = Ryx’. The new dimensionless quantities are
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gwen by ¢ = —Il[Ry, 7 = ylx', yo = yolx', X = xIx’,
xD - xolx aﬂd (S07SS’BS9BC) = (1/27)(509 s’Bs/fO’ﬁL‘/.fO
where R = folo, ¥y = YI(S, — Bslfo)? + (Bclfo)’1'2,
and x' is the distance from the shelf break to the
center of the forcing which will be applied later.

We denote the branch points associated with f,
=0 and @, =0 as &. and &, respectively,
and write

fos = (€ — &oor)os- — O, (3.6)
where
Eosx = (So,s - Bs)
= [(Ss,o - Bs)z + Bcz - S%,S/R2]1I2~

We note that (S, — Bs) + B2 = 1, s0 we can write
Eo= =80 — Bs = (1 — SRV, If R < 8§, & are
not real and there are no waves from the source.
However, we are interested in long-period waves
(R > 1), so that &, are always real since Sy < 1
From now on we will assume (S,/R)* < 1 implying
that &. =~ S, — B; = 1. The branch cuts must be
such that the integrand of (3.5) decays for ¢ in-
creasing from &, ,, and decreasing from &, ,_. So the
branch cuts from ¢, must start upward and those
from £, downward on the z = ¢ + iy plane.

For a realistic shelf we have S, > |B.|, |B:l.
Hence the beta effect can be neglected from the
shelf, but the $¥R? term can be significant and is
retained in (3.6). So we have £,. = $[1 = (1 — I/R%)]¥2
and hence for R > 1, .

§s+ = 253: fs-— = SS/ZRZ' (37)

It can be shown that because S; > §,, we always
have &, > &, and £, > &,

The integrand is oscillatory for values of & such
that ¢, < & < &, which corresponds to the wave-
number ‘‘window’’ for waves to penetrate onto the
shelf. The integrand decays for all values of ¢ out-
side of this interval. If we set ¢&_ = &, we obtain a
minimum value for R, R, = (5,/2£,:)"2, below
which no wave can come onto the shelf. Assum-
ing S, > So, |B:|, |Bs|, we have & > &. and
the integrand will have essentially vanished before
£ ever reaches &;,. Thus the ¢ values of interest
are such that £ < &, and we can simplify g, in
(3.6) to

fis ~ V285 — €12, (3.8)

where from now on £ = £,_. Also it can be shown
that the branch from ¢, can be bent to eliminate
any possibility of a pole. In fact, if §; > RS, a
vertical cut from ¢, will eliminate the posmblhty
of a pole.

We can find properties of the solution without
integrating (3.5). The stationary points of the integral
can be found by setting the ¢ derivative of the
eiconal part to zero. This yields
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S s}? —f + S'o - Bs
a5(é) Ho(8)

We can show that the solution &,, which is real and
for which both g, and &, are real and positive,
corresponds to the longshore wavenumber [,
= —Rwvy¢,, which for a given frequency o defines
the group velocity path (or ray of energy flux) from
the source point (x4,y,) in the outer ocean to the
point (x,y) on the shelf.

This is shown schematically in Fig. 1. Here we
have superimposed wavenumber space (k is the
wavenumber in x) onto real space with the center of
the dispersion circle for the T-R wave for a given
frequency coinciding with the source point. We can
do this because the angle 6 is the same in each
space. Part of the dispersion circle representing the
shelf is drawn in the same (k,/) space as was done in
I from which we can obtain the group velocity
direction in real space for on the shelf. Thus, for
a given point (x,y) on the shelf, a point of forcing
(x4,y,) off the shelf and a frequency o, the wave-
number [/, will define the ray going from (x,,y,) to
(x,y). Hence for one given frequency and the whole
spectrum of wavenumbers which the delta functions
will produce, the observed energy of the motion at
a particular point on the shelf will be centered at
the wavenumber /. -

On the other hand, since we are more interested
in frequency spectra, let us conceive of a point
source of forcing with one dominant wavenumber
and the whole spectrum of frequencies. In this case

Yy — Yo~ =0.

3.9

vy
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for given values of (x,y) and (x,,y,) we have a
given value of [, from which we must calculate the
frequency defining the ray. In Fig. 2 we show sche-
matically the resulting rays for four different fre-
quencies with a fixed wavenumber. In wavenumber
space the dispersion circle decreases in radius and
its center moves closer to the origin as frequency
increases. Therefore, we have to superimpose the
four wavenumber coordinates as shown with [,
measured with respect to each.

We conclude from this figure that at a given point
on the shelf there is one frequency o, of all the
frequencies of waves produced at which the energy
will be a maximum. This frequency is the one
associated with /, producing the ray that goes to the
point. If we move toward shore, say, on line A,
o, will increase. If we move along shore in the
positive y direction, say, on the line B, o, will also
increase. Thus, we would expect to find an energy
peak in the frequency spectrum at a frequency which
depends on location.

Of course, (3.9) has other solutions also. A com-
plex solution may be important in the vicinity of the
shelf break (x near 0). In fact, for a given frequency,
we can show that this complex solution becomes
real for x = 0if, in terms of dimensional quantities,

—xo[2le + o7 (foSo — By)]
2po(le)

where [, = —~Ry&, = —S,/4R is the critical wave-
number where u, = 0. No wavenumber greater than
I, gets onto the shelf.

=Y Sy.— Yo =

b

l

(x,v)

F1G6. 1. Wavenumber space (k,/) superimposed on real space (x,y) as explained in the text.
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Fic. 2. Dispersion circles for various frequencies o, > 0, > 03 > 0, in
wavenumber space superimposed onto real space as explained in the text.

This is illustrated in Fig. 3. We see that it is
possible for two different rays to go to a point on
the shelf break. Even if the point is up the slope
somewhat, the ray denoted by 2 in Fig. 3 may have
a significant effect if the point is sufficiently close
to the break. The ray denoted by 1 is the limiting
ray from the solution & = & to (3.9) correspond-
ing to the wavenumber /.. It follows the break for
Y = Yo SYe ~ Yo

We will use some of the qualitative notions in this
section to interpret results from the application of
realistic forcing which follows.

4. The solution for realistic forcing
Welch (1972) used an equation of the form
R2C)
Paf?

to relate the surface wind stress to the surface
variation of atmospheric pressure, where p, is the air
density, C, the drag coefficient, R, the shrinking
constant and A the veering angle. We want to de-
scribe the pressure field in a realistic manner,
while at the same time obtaining a mathematically
convenient wind stress curl. One such isolated
pressure field is in terms of the incomplete gamma
function

|Vp|(k X Vp cosh — Vp sin\) 4.1)

= Do

34 p'2 *
06rt) _ 20 [* ey,
r(%ao) r(%) v

where p, is the maximum pressure difference at the
center, r’ =r/L and r = [(x — x')? + y2]¥2. The
field is centered at (x',0) and the length L will be
the measure of the radial scale of the pressure field.

Assuming f is constant, the wind stress curl re-
sulting from this pressure field is given by

7 =k'V X 7=17)l—2r?e
where the maximum curl at r’ = 0 is
~8R2Cpp,? cOSA

Pafo?L3T%(3/4)

For the purpose of calculation, we let 7y = 7oy Ly%/L3,
where 7oy is a2 nominal value of the maximum curl
for a nominal scale of the pressure Ly. Welch noted
that the maximum curl that he calculated from pres-
sure data was rarely greater than 5 X 10~8dyncm™3.
So we choose this value for our nominal curl maxi-
mum and choose Ly = 500 km for the nominal scale.
Fig. 4 shows the distribution of p/p, and 7'/r{ with
r'. The curl in terms of dimensional quantities is

L.}
T = TN
13

4.3)

To =

(1 ~ 2rYL2)e—2rite, 4.4

The streamfunction on the shelf for this forcing off
the shelf is

Ps(x,y 1)
TS
0 —

dyOTI(xo,yO)\bsp(x’y Jsxo»)’o)’ (4'5)
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Fic. 3. Hlustration that a point on the shelf break (0,y) can
have two different rays to it—one direct and the other along the
break. /. and y, are defined in the text.

1.0

.8
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where Y, is the point source solution (3.5) in
dimensional variables and 7' is the curl from (4.4).
Assuming that we can change the order of integra-
tion, Eq. (4.5) becomes in terms of dimensionless
variables '

U, = Woemiot exp[ai(%— - ch)] CXP[a(iBC - %)]

y j ® d€ exp[—ia(¢y — % + fio)]
o (S5 — So)R + i(jxg — fio)

X J dx exp[&(iﬁc _ S ip.(,)fc - 2)%2]
~2IL R

x f A1 - 232 + 3] exp(~25? + iaeP),
- (4.6)

= (X() hd x,)/L

where V¥, = (Rao)r(Ly*/L), %
= (x'/L)y, and &

= (xX'[LYXXy ~— 1), § = yo/L
= alL/x' = RyL.

The integral over § is a tabulated Fourier cosine
integral. The subsequent integral over X can also be
found exactly, but a much simpler form can be
found if we assume that the forcing is sufficiently
concentrated and its center is sufficiently far from
the shelf break that the lower limit can be assumed
to be essentially —o. Based on the assumption that

' 1 § 1

o 2 P2 0 .8

— +
10 1.2

—+ + + 4
1.4 1.6 1.8 2.0

Fi1c. 4. The magnitude of p/p, (solid line) and 7/7, (dashed line) plotted versus the dimensionless radius r'.
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the integrand associated with the integration over £ has
essentially vanished for ¢ such that &f— i %(£))2
= 5 and that the complementary error function,
erfc(z), has essentially vanished for Re[(z)?] = 3,
we can show that this approximation varies only
slightly in comparison with the exact integral if

X, 85 3 + [E + (a_Bc)T’z-
L 4R 4 2 4
For realistic parameters &S,/R and &B, are small,
thus this condition is approximately x'/L = 2.5.
We desire to calculate the kinetic energy which
in this case means finding the longshore velocity
component v since the magnitude of the cross-slope
component |u| is such that [u|%|v|2 = £&/25, < 1
and hence is negligible for large period and wave-
length waves. Using

_ Yo _ expl(-28J/R)X]
HeS* x'H, i
and integrating (4.6) twice, we find
v =Voe " expla(iB. —S,/R)] exp[—ax(S,/R +iB.)]

v

xJA@W+9nwmm®w+¥n

X expl—ialdy — % + fc)ldé, (4.9)

where
A(®) = (8, —iRB. +iRpHNS, — S + iR(jis — 30)],
g = B. — o) + iSy/R,

o . ,
o o i 7y
Vo =¥,

16 Hox' 32 Hdf,

If S, > Sy, RB. implying 1 > 1, A(£) is approx-
imately 1 except when £ — £, (I — 1.). Evaluating
g* in the exponential, an equivalent form of (4.9) is

LPLR*y®.

v = Ve explaliB, — So/R)] exp[—ai(S,/R +iB.)]
— & 2 _ _S‘_O2_ ; SO A
X exp[ n (ﬁc R + i E BC)]

x f expl—ialy* — fiaf + fiox*)]

N X A(E)q® + £)dE, (4.10)
winere
jA2
Y =5 - (S, - B,
a .
&2 So .=
L —_— -
X =1 - (R :m) .

It would be nice if we could evaluate the integral
of (4.9) using asymptotic techniques, but the param-
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eter a[<O(10) realistically] would not seem to be
sufficiently large to do this accurately. Thus nu-
merical means must be employed for an accurate
solution. However, we will still employ the saddle-
point method assuming that the parameter « is
large. We will see that the asymptotic result will
compare poorly with the numerical result for the
amplitude of v but fairly well in finding frequency
maxima. We interpret this to mean that the func-
tional character of the asymptotic solution is a better
approximation than its amplitude and is therefore
useful in deriving some general results with greatly
less effort than numerical integration.

The form (4.10) is used for the numerical inte-
gration. To lessen the effect of rapid oscillations, a
path of steepest descent through a saddle point
should be used. However, the numerical calculation
of this path is not economical. A compromise path,
where the iafx term is excluded from the eiconal
determining the saddle point and path, and a Gauss-
ian quadrature routine using many points is much
more economical.

It would be best to use the form (4.10) also for
the asymptotic solution. But if the forcing is suf-
ficiently concentrated, we can use only that part of
the eiconal of (4.9) which is like that of the integral
for the point source (3.5) and assume the rest of the
integrand varies slowly in comparison.

Thus we define the phase function

E(§) = —il&y — pl&)F + 1o(6)]
and let

F(§) = A& + &] expl(—a*8)(q® + &), (4.12)

where we assume F changes slowly compared to
e®®_The integral of (4.9) is then of the form

(4.11)

1= J " e, (4.13)

Setting E'(¢) = 0 we find the equation for the sad-
dle points is the same as (3.9) for the point source
if y — y, is replaced by y:

5 4 _%(25‘8)1/2)2- + _§ + (SO - Bs)
(& — £ [(&or — ENE— &)1

where &. =~ S, ~ B, * 1 and & =~ S,/2R%. A com-
parison of (4.14) with the similar equation developed
using the whole eiconal part of (4.10) shows that
for the worst case where ¥ =y = (0, we must have
&Y4e < 1 (or L% < 4x'/Ry) to be able to use (4.11)
rather than the whole eiconal of (4.10).

The integral (4.13) has the same branch points and
cuts as (3.5) and similarly has no poles. As with
the point source it can be shown that besides the
primary root &,, where & < & < &, correspond-
ing to &, for (3.9), there is a secondary root which

=0, (4.14)
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is complex below (except at x = 0) and real above a
certain curve that begins at £ = 0,7 =y. = (¢, — S,
+ B (&) going to ¥ — —oo, § — —x. The branch
from ¢, must lie to the right of this root for this root
to exist.

Remembering that &, < &, < &4, 0 < &, = S,/2R?
and noting that &, — & = 2, we consider two ex-
treme cases. The first case is &, =2 and &_ =0
which means for 0 < ¢, < 2, corresponding to
($,)12/2 < R < =, we have waves onto the shelf.
This is the case where the ‘“‘window’ onto the
shelf is fully open. The second case is &, = 0 and
&~ = —2 which means there are no waves at any R
onto the shelf. The window is closed. The first case
is approached for S, — B,/f, > |B./fs|, the second
for By/fo > S,, |Belfo|, which can be true only for
x directed to the north. The halfway case is &, = 1
and £, = —1 which means 0 < ¢, < 1 correspond-
ing to (5,/2)'? < R < «. This third case is ap-
proached for |B./fy] > |S, — Bs/fs| and can only
occur for x directed mainly east or west.

It can be shown that the secondary root is not
important for |[§| = O(1) in the contour integration
of (4.13) for the first case and a fairly simple ap-
proximation can be found. This is not true for the
other cases. Fortunately, the first case is quite
realistic since small topographic changes dominate
the beta effect. So we will consider Sy — B:s/fo
> | B./f,| from now on but not totally neglect the
beta effect.

We then want to integrate over a path of steepest
descent through the saddle point &,. This path will
be the locus of all points z = £ + in such that
from (4.11)

E(z) — E(&) = —u?, (4.15)

where u is always real. Using contour integration
around a closed contour we can show that (4.13)
becomes

o

= —Ze“E‘f")J H@)e *du, (4.16)

where H(u) = uF[z(W)|/E ’[z(u)].A Then expanding
H(u) in a Maclaurin series and integrating (4.16)
term by term, we obtain

I= -—2e"‘E‘€°’H(O)‘/E[1 +~f—1-”-(2)—-
o 4aH(0)

where we calculate H(0) = F(&,)/[—-2E"(£)]'?, the
proper branch of the radical determined by the path
(4.15) for z — &,. H"(0) and higher derivatives are
considerably more complicated and not reproduced
here because we will use only the lowest order
approximation.

The lowest order approximation of / is then

+ ] , (4.17)

T oE(&o)

1/2 e
1~ -2(Z) S A0

X exp[—(&*/8)Q(&y)]e* ™, (4.18)
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where

Q(fo) = qz(fo) + 502,
(&) = —'41 QS,)3(E, — &)

L o= B &
[(fo - §0+)(§0- - 50)13/2
+ L .
[(¢0 — &0 ) (&0~ — EQIM2

Then the square of the velocity amplitude from (4.9),

evaluating o and & to show the dependence on R,
is given by

] v ‘ 9 277' TN’zLNSLZ')’s

(32)? Hofo’x' p(&o)

X | Q)| *R” exp(—y’L*Q'R*4), (4.19)

where Q' = Re{Q} = &7 + (B. — j)*. To find &,
we must numerically solve (4.14). If R,,, the value
of R at which |v|? is a maximum, is sufficiently
large such that ¢, > ¢ = S/2R,2, the solution ¢,
of (4.14) will be essentially independent of R,, and
so will p(&).

The value for R which maximizes |v|2 can then
be found from (4.19) assuming &, and p are essen-
tially independent of R. We thus obtain

exp(—2ySsx — 2ySox’)

So V14
R, = —= , 4.20
o LV (4.20)

where Q' is defined after (4.19). In comparison with
the more accurate numerical integration we will find
that (4.20) is much better than (4.19). o, will be the
dominant frequency at a given point on the shelf.
It is the frequency at which |v|? is a maximum for
given values of x, y, x’ and L. The wavenumber
l,, = —R,v&,, where ¢, is evaluated from (4.14) for
the given values of x, y, and x' will be the
dominant wavenumber at that given point on the
shelf. The dominant wavelength is defined by
Am = 27/ |In].

The easiest way to estimate the frequency of the
energy peak which might be expected on a given
shelf is to let  and y vanish, implying & = S, — B;
and so Q@ = 2(1 — B.), and use (4.20) to obtain

(4.21a)

e R e e,

An estimate of the associated wavelength is then
2 2wL(l — B2
llml \/7(5‘0 - Bs)

In the Northern Hemisphere since B. > 0 for an

Am = (4.21b)

. east coast shelf and B, < 0 for a west coast shelf,

we would expect a lower frequency on the former.
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We must remember that (4.20) and (4.21) are
valid only for S, — B/fe > IBc/fO| , which implies
1> |B.|, and for & > $,/2R,?. The comparison
with numerical results, however, shows that (4.20)
is quite accurate for |B.| approaching 0.4 and
So/2R ,%&, approaching 0.33. So there is some lati-
tude in these conditions.

5. Numerical results and comparison with data

We will apply the model to the Oregon shelf at
45°N assuming the following values for the associ-
ated parameters: S, = 0.35 X 107® cm™, §; = 0.3
X 10 em™, B, = ~1.3 x 107 cm™! s71, B, = 0,
Jo=1.03 x 10™* st Hy=2.4 X 10° cm. The
parameters associated with the forcing are 7y
=5 x 10 dyn cm™® and Ly = 500 km.

Results using numerical integration are shown on
Fig. 5. Here the square of the longshore velocity
|sz at a particular point on the shelf is plotted
versus frequency. In this case the pressure cell

10'

(vi*

i0
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has a scale L. = Ly and is centered a distance (x’)
2000 km west of the shelf break. The location on
the shelf with respect to our coordinate system is
y = —2000 km (2000 km north of the center of
forcing) and x = —106 km corresponding to the
100 m isobath.

This figure is typical for any location on the
shelf with |v]? having a single maximum at some
frequency o, |4|? will also have a maximum at
o but will be over two orders of magnitude less
than |v|%. That |v|? has a maximum is consistent
with our notions in Section 3. From Fig. 5 we see
that the energy lv | 2 peaks at around o, = 0.05 cpd.
The data of Smith (1974), from a 48-day record from
current meters over the 100 m isobath off Oregon,
show a definite peak around this frequency. Since
the record is 48 days and the peak has a period of
20 days, there is a question about its statistical
significance. However, it would seem to be possible
that the peak is real.

.06

8
Qq (cpd)

F16. 5. Numerical calculations of the square of the amplitude of the longshore
velocity lv{z (cm? s7%), as a function of the frequency o (cpd) for y = —2000 km,

x" = 2000 km, L = 500 km and 2 = 100

m.
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FIG. 6. |v|? from the numerical calculations for off the shelf
(solid line) and on the shelf [(long dashes) for a flat wind
spectrum, (dotted line) for a local wind spectrum] compared to
the data of Smith (short dashes). The parameters are given in
the text.

Fig. 6 shows the energy data, the calculated
energy produced by a pressure cell off the shelf,
and the calculated energy produced by a longshore
wind on the shelf. The model describing the mo-
tion on the shelf is similar to that of Adams and
Buchwald (1969). This model, of course, has a shore
boundary. We assume that the wind stress is uni-
form across the 120 km wide shelf and decays
exponentially in opposite directions along shore
fromy = 0. The calculation consists of adding shelf
modes which, for frequencies of the order of 0.05
cpd, necessitates adding up to 50 modes. The mag-
nitude of the wind stress used is 0.3 (cm s7')® which
is the same as the maximum stress associated
with the magnitude of the curl used off the shelf.
The e-folding length of the forcing along the shelf
is the same as L, 500 km.

The forcing on the shelf is included to show that
it does not have a peak near 0.05 cpd. We show this
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calculation for the stress independent of frequency
and also with the frequency variation of the wind
spectrum data from Smith. The peak at 0.14 cpd
correlates strongly with the wind, but the peak at
0.05 cpd does not. The addition of the energy from
off the shelf with that from on the shelf would give
us the double peak observed in the data. In choosing
x' = 500 km the energy from off the shelf seems to
have a realistic magnitude.

6. Properties of results and discussion

We now examine the properties of the energy
generated off the shelf, concentrating on |v|2. We
use the parameters for the Oregon shelf to investi-
gate the variation of the maximum energy |v, |2 and
the frequency o, of that maximum with the loca-

F1G. 7. The maximum amplitude squared |v,|? (cm? s~?) and
the frequency of the maximum o, (cpd) versus the longshore
location y (km). The solid line is the numerical integration and
the dashed is the saddle-point calculation. The higher pair of
curves in each plot is for £ = 100 m, while the lower pair is
for the shelf break (2 = 2400 m). x' = 2000 km, and L = 500 km.
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tion on the shelf (x,y), the distance of the center of
forcing from the shelf x' and the scale of forcing
L. Also, the results from the numerical integration
are compared to those of the saddle-point method,
and the dominant wavelength A, associated with
o, is calculated.

Fig. 7 shows ]v,,i|2 and o, as functions of the
longshore location y at the shelf break (x = 0) and
the 100 m isobath (x = —106 km) for fixed values
of x’ = 2000 km and L = 500 km. We see that the
energy is a maximum around y = —2000 km for
x = —106 km and y = —1000 km for x = 0. The
frequency behaves according to our notions in
Section 3, increasing with increasing y. In other
words, the frequency decreases as you move along
shore with the shore on your right in the Northern
Hemisphere.

Over a distance of 10 000 km along shore, the
frequency changes from about 0.03 to 0.07 cpd. The
value for o, given by (4.21a) is 0.057 ¢pd. In the
cross-shelf direction the frequency increases toward
shore, consistent with our notions in Section 3.
However, the frequency change over the shelf width
of O(100 km) is small, being negligible for y large
and increasing to the order 0.01 cpd at y = —2000
km. As the center of forcing gets closer to the shelf,
however, this difference should increase.
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The comparison of the saddle-point calculation
for ]vm|2 with the numerically integrated result,
which we consider accurate, is fair for |v,|? and
very good for o, for bothx = —106 km and x = 0.

Fig. 8 shows the variation of |v,|? and o, with
the distance x’ of the center of forcing from the
shelf break. |v,|? is plotted for y = —2000 km and
o, fory = —2000, 0, 2000 km with the fixed param-
eters L = 500 km and x = —106 km. Of course,
|vn|? increases as the center of forcing nears the
shelf. o, may increase (y = —2000 km) or de-
crease (y = 0, 2000 km) with x’ depending on long-
shore location and somewhat less on the cross-shelf
location. The saddle-point result for |v,, |2 becomes
poorer as the center of forcing approaches the shelf
as expected. Again, however, the saddle-point result
for o, compares much better.

The saddle-point method allows us to calculate
the approximate dominate wavelength A, (or wave-
number!/,,) associated with o, using Eq. (4.14). Fig.
9 shows both A, and [, plotted versus o, for
the forcing scale L = 500 km. This figure actually
encompasses to a good approximation the variation
of all the other parameters except L. What we see
is the fact that this forcing cannot be considered
to be characterized by one single wavelength,
since A, varies with frequency. In fact, /,, is close

Y=2000 km.
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Fi1G. 8. |1),,,|z (cm? s7%) and o, (cpd) versus the location of the center of forcing x’ (10° km). Solid curves
represent numerical integration, dashed the saddle-point method. The bottom solid and dashed line are |v,,, | 2 for
¥y = 2000 km, 2 = 100 m and L = 500 km. The rest of curves are o,, for various y and the same 4 and L.
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FiG. 9. The dominant wavelength X,, (10* km, solid line) and
wavenumber, /, (km™!, dashed line), versus o, (cpd) for
L = 500 km.

to being a linear function of o,. Our notions in
Section 3 were based on [/, not changing with
o, but the qualitative results are the same. Con-
sidering this figure in conjunction with Fig. 7, if we
move along the shelf with the shore to our right,
we would expect the dominant wavelength to in-
crease, gradually at first for y = 0 and faster as
y became more negative. For the observed peak at
0.05 cpd, the dominant wavelength should be about
2000 km for the parameters we used. The estimate
given by Eq. (4.21b) is \,, = 1450 km for o, = 0.057
cpd from Eq. (4.21a).

Fig. 10 shows the variation of [v,,,[ and o, with
the scale L of the pressure cell generating the stress
curl with the fixed parameters x =
y = —2000 km and x’ = 2000 km. The tremendous
increase in |v,| as L decreases is due to the
reciprocal cubic variation of 7' with L as seen in
(4.3). This calculation represents holding the mag-
nitude of the pressure difference constant while
changing the scale of the pressure cell. This result
illustrates that to accurately calculate the magnitude
of the energy, the intensity and especially the scale
of the pressure cell must be accurate.

The frequency o,, increases approximately line-
arly with L. Fig. 9 cannot be used to find A,, for
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these values of o,,. In this case A, and o, are each
approximately linear functions of L and hence with
each other.

7. Conclusions

The low-frequency, long-wavelength energy gen-
erated by the wind stress curl off the shelf should
appear as a distinct peak at low frequency in the
energy spectrum on the shelf. All parameters being
equal, the peak should have a lower frequency on an
eastern shelf than a western shelf in the Northern
Hemisphere due to the beta effect. For the Oregon
shelf this peak should be between about 0.02 and
0.08 cpd, depending on the location on the shelf in
relation to the center of forcing and on the scale
of the forcing. The magnitude also depends on these
parameters, especially the forcing scale. It is plau-
sible that the peak at 0.05 cpd in the data of Smith
(1974) is not spurious but due to the energy from
off the shelf.

80t
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F16. 10. Maximum amplitude |v,| (cm s™), dominant wave-
length A, (10° km) and frequency of maximum o, (cpd) versus
the scale of the forcing L (10?> km) for y = —2000 km, & = 100
m and x’ = 2000 km.
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The quantitative results are open to question be-
cause of the oversimplified topography assumed.
The topography off the shelf is especially critical,
and our assumption that this slope is exponential
and varies in only one direction is poor. For this
reason it would not seem profitable to make more
elaborate calculations using this model. Certainly,
any refinement should consider the baroclinicity off
the shelf. However, the estimate of the frequency
and wavelength of the energy peak given by Eqgs.
(4.21a) and (4.21b) should still be useful ap-
proximations.
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