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ABSTRACT

A model for the effect of a localized topographic irregularity on a barotropic sheared current flowing
along a continental margin with shallow water to the left of the current is developed. The topographic
. irregularity is assumed to be small and smooth compared to the background water depth and the back-
ground bottom slope, respectively. It is shown that the amplitude of the disturbance depends on the
volume of the irregularity and its location on the margin. For a certain class of velocity and topographic
profiles a closed form solution is obtained. The results show that the current is defiected seaward down-
stream of the disturbance with the maximum deflection occurring one-fourth of a wavelength downstream
of the irregularity. Closed eddies are formed in shallow water and sometimes in deep water. If the ratio of
relative shear to the speed of the approaching current is large at the continental margin, a simple analytical
solution is applicable. The model is applied to the Gulf Stream flowing off the Carolina Coast in the region
north of Charleston, South Carolina, and the results of Gulf Stream deflection and wavelengths of the
leewaves are in modest agreement with observations.

1. Introduction

Recent satellite imagery (Legeckis (1978)) has
shown that short waves and eddies on the length
scale of 100-200 km frequently occur over the
continental shelf and slope off the Carolina coast
north of Charleston, South Carolina. Most of the
published work which might explain these phe-
nomena deals with the barotropic and baroclinic
instabilities of a sheared current flowing over a
sloping bottom in a rotating coordinate system. It
is generally found that short shelf waves are more
unstable than long shelf waves. Niiler and Mysak
(1971) used a triangular current profile and a step-
like bottom topography and found that barotropic
shelf waves were most unstable for wavelengths
on the order of 150 km and periods on the order of
10 days. Orlanski (1969) studied the influence of
bottom slope on the baroclinic instability of the Gulf
Stream using a two-layer model and found that south
of Cape Romain, the maximum growth rate of un-
stable waves occurred at a wavelength of 220 km
and a period of 10 days. While instabilities may
well be the explanation for the existence of these
short waves and small eddies, it is also possible that
a topographic ridge off Charleston, known as the
*‘Charleston bump’’, may be responsible for them.
Fig. 1 shows the bathymetric map off the Carolina
coast along with the location of the Charleston bump.
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While analytical work on the steady flow over a
topography in a rotating fluid has been extensive
(e.g., Vaziri and Boyer, 1971; Hogg, 1973; McCart-
ney, 1975; Janowitz, 1975; Johnson, 1978), most of
them are concerned with upstream flows which are
horizontally unsheared. Cottrell (1971) showed that
the inclusion of a small upstream shear could
affect flow patterns significantly. In this paper, we
present a model for the barotropic flow of a hori-
zontally sheared current flowing over a bump
superimposed on a sloping bottom topography in a
rotating fluid. While the current work was inspired
by the observed seaward deflection of the Gulf
Stream north of the Charleston bump, the results
may be more applicable to other boundary currents
flowing over a continental margin which varies little
in the longshore direction except at isolated bumps.
In Section 2a we give the general formulation of
the problem leading to a linearized vorticity equa-
tion, and in Section 2b we present the general solu-
tion of the problem by applying a Fourier transform
in the longshore direction and using a Green’s func-
tion technique in the cross-shelf direction. In Sec-
tion 2c we consider a special class of topography
and sheared current profiles which yield an explicit
solution. In Section 2d an approximate solution
for the disturbance streamfunction by placing a
rigid-wall boundary condition at the outer edge
of the continental rise is given. It will be seen that
this approximation is good if V..L/V' is large at the
continental rise, where V" is the undisturbed sheared
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current, x’ the cross-shelf distance from the coast
and L the width of the shelf zone. Numerical results
and the resultant streamline patterns are presented
and discussed in Section 3. In Section 4 we sum-
marize and discuss the possible applications as well
as the shortcomings of this approach.

2. Analysis
a. Formulation

We consider a homogeneous fluid flowing steadily
northward, with undisturbed upstream sheared cur-
rent V'(x') in the positive y’ direction, where x’ is the
coordinate in the offshore direction; the origin is
placed at the coast with y’ axis corresponding to
the shoreline. The current flows over a bottom
depth hz(x',y’) = h'(x') — h'(x’,y') composed of
a depth profile 2’ which does not vary in the long-
shore direction and a bump 4’ of maximum height
hy localized near y' = 0 and x’ = x{. We let L be
the width of the continental margin, 4, be the depth
of the flat bottom ocean interior beyond the edge of
the shelf zone and £, be the constant Coriolis param-
eter (see Fig. 2 for the configuration). We apply the
rigid-lid and hydrostatic approximations and, in the
absence of dissipation and baroclinicity and up-
stream vertical shear, take the horizontal velocity
to be independent of the depth. We then nondimen-
sionalize the horizontal velocities by f,L, the re-
duced pressure (p' — pogz') by pofolL?, the horizon-

Savannah , "

Fi1G. 1. The bathymetric map off the Carolina .Coast, along
with the location of the ‘‘Charleston bump’’.
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F1G. 2. Geometry of the flow field.

tal coordinates by L, the total depth by 4., and the
bump topography by 4. The governing equations
are then .
UUgz + DUy — V= — D,
UV, + V0, + U = —PD,

(hru); + (hpv), =0

where (#,v) and p are dimensionless (x,y) velocities
and pressure, respectively, and iy = h(x) — eh(x,y)
is the dimensionless total depth function. We shall
require that € = h,/h, is small compared to 1 so that
the bump causes a disturbance of order € to the
basic flow V(x). From the continuity equation in
(1), a volume transport streamfunction yr; can be de-
fined such that —yi;,, = hqv, Y, = hpu. The conser-
vation of potential vorticity can be written as

hr (e + D = F(Yyp),

, (1)

2

where

1
ir=-V- (h_r Vlllr)
is the relative vorticity of the local water column.
Eq. (2) is not tractable for the problem we consider
unless we make the following two approximations:

leh| < |h|, |eVA| < ||, (4)
F(Yr) = F(o) + F'(fo)ed  for dr = o + €, (5)

where in (4) we require that the topographic ir-
regularity be small and smooth, and in (5) that the
Y, is associated with the upstream sheared current
V(x), while ¢ is the perturbed streamfunction
generated by the bump. One notices that in making
these approximations, as long as |e¢| <1, Eq. (5)
is expected to be valid. The error in truncating the
Taylor series expansion after two terms is of order

3)
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F"(gro)(e)? which vanishes if F is a linear function
of . However, this argument will have to be
justified a posteriori. We also notice that |ey| does
not have to be smaller than |¢| in Eq. (5). In
the case that |y,| < 1 in some region, |ey| could
be comparable or even larger than || as long as
the error involved in truncating the expansion re-
mains small.

We also assume a priori that e vanishes far up-
stream (y — —o), thus it follows from (2) that

Fo) =h (1 +Vx)y=11 ©)

is the upstream potential vorticity. From (6) we can
determine that

II
F' = - _Z.
7y a
Substitution of Egs. (3)-(7) into (2) and neglecting
terms of order € and higher, we then obtain the
governing equation for the perturbed streamfunc-
tion ¢:

V2y — Hy, — (RIL/VY
= (1 + 2V, — HV)h + Vh,. (8)

For a typical boundary current such as the Gulf
Stream, V(x = 0) = V(x = ©) = 0. We therefore
require that boundary conditions for (8) be

P(x, —®) = §(%,y) = (0,y) = 0, ©®)

i.e., the disturbance decays far upstream, far away
from the coast, and there is no normal mass flux
across the impermeable coast (x = 0). It should be
remembered however, that the boundary conditions
(9) must be complemented by a radiation condition
as y — o to make the problem well posed.

)

b. Solution by a Green’s function technique

Tosolve Eq. (8), we first define Fourier transforms
of Y(x,y) and h(x,y) as

400

= _1_ iky
¢(x9k) - \/Z_ﬂ’ J’m ‘ll(an)e dy

. (10)
1 .
S(x,k) = — h(x,y)e®*vd
(x,k) ~/27L° (x,y)e™¥dy
We can readily show that
hIl
wx — Hby — [k + —=
b = Has ~ (k2 + 2 o
=(+2V,—-VH)S +VS,. (1)

The Green’s function solution for (11) is of the form

$Ox k) = [ G(x.L HRDL, (12)
0
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where R({) is the right-hand side of (11) and

1 9k 2 9k
HORBEH
h(Q)D(k)
G(x,{ k) = (13)
&1(8,k)a(x k)
_ X > c
h(Q)D(k)

where ¢,(x,k) and ¢,(x,k) are the homogeneous
solutions of equation (11) satisfying the boundary
conditions

61(0,k) = ¢y(,k) = 0 (14)
and where

h(x)Dk) = ¢z — P2y (15)

is the Wronskian of Eq. (11). The solution of (9)
can then be expressed as

Wxy) =-J;= [ ™ ke J "G,z HROAL (16)

0

—~00

The solution of (16) for large y is dominated by the
worst singularity of the integrand nearest to the real
axis of k. It can be shown by a residue calculation
that a real and simple zero of D(k) gives rise to a
wavelike solution e~#¥, Apart from zeal zeroes,
there are possibly some imaginary zeroes of D(k)
and branch cuts in the complex k-plane, which gives
rise to solutions decaying in y. The solution of (16)
of course, depends, on the specific topography and
sheared flow chosen, but a simple expression for
the wavelike part of the solution can be obtained
by a residue calculation.

If we suppose k, is a real simple zero of D(k),
then the Wronskian of (9) is zero and it follows that
¢, is proportional to ¢, at k = k, [d; = Cod,, where
Co(ko) is independent of x]. Assuming that the wave-
like solution due to k, is a downstream wave, it
can be shown by the residue theorem that wavelike
solution is then

Yo = =2 Cyl

<] b RO e ke, (1)
o h(OD'(ko)

where D'(ko) = dD/dk |-y, Since ¢,(x,k,) satisfies
both boundary conditions at x = 0 and «, 5, is a
zero-frequency continental shelf wave trapped over
the shelf and slope region. Eq. (17) can be further
simplified if we consider a delta-function bump, i.e.,
keep the volume of the bump fixed but shrink the
size of the bump to zero. We then have

h(x,y) = Vid(x — x0)8(y)
Vs
Nora

where V, is the volume of the bump divided by
h, L% Thus the wavelike part of the streamfunction

(18)

S(x,k) = 8(x —xo) |’
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TaBLE 1. Typical current parameters for which the AI1,/V and H are constant over the shelf and slope region. All the quantities
are nondimensionalized by f,~! (time), L (horizontal length scale) and h, (height).

Case Mass transport
no. b = Yahx/h 0 C l]lo(w) @ Vmax Xmax
1 0.5 1.402 25.714 0.035 40.133 0.092 0.6
2 0.5 0.901 19.002 0.058 22.370 0.143 0.6
3 0.5 1.034 16.436 0.083 5.8 0.159 0.7
4 0.5 1.307 15.844 0.106 3.029 0.115 0.8
5 0.75 1.351 24.447 0.050 62.696 0.160 0.6
6 0.75 1.000 19.512 0.075 23.515 0.220 0.6
7 1.0 1.162 21.924 0.074 66.662 0.272 0.6
8 1.0 1.300 23.897 0.064 277.701 0.242 0.6
9 1.0 1.293 22.318 0.074 27.444 0.265 0.7
10 1.0 1.094 21.134 0.079 58.837 0.289 0.6
can be reduced to where C is a positive constant. It follows from the

definition of II that V¢(x) must satisfy
= — -1

o = =VoC™ TS Vee — HVse + CVs = H=2b,0<x <1, (22)
X [T, — Vro/hloei(x,ko)e=ikov. (19) along with the additional constraints that the current
k=Ko vanishes at the coast [V (0) = 0}, there is no coun-

Eq. (19) is a useful formula from which we can
compute the amplitude of the wavelike responses
only if the shelf and slope topography and sheared
current profile are specified. We further note from
Eq. (11) that if &k, is a singularity, then —k, is also a
singularity and the results add to yield a real result.

c. Solution for constant coefficient profiles

Since H and hIl./V, in general, are functions of
x, we cannot obtain explicit solutions. Therefore,
we choose h(x) and V(x) which lead to an equation
for ¢ with constant coefficients in x. We choose a
topography of the form

e2b(1'—1), 0 <x

h(x) = (20)

<
1, x = 1.

The sheared current profile over the shelf [ V (x)] is
chosen in such a way that

A _
Vv

e3y

Gz — Hp, + (C — k2)¢ = R(x),
bz — (@ + k*)d = R(x),

tercurrent [V(x) = 0 for all x = 0], and that the
sheared current is assumed to have only one maxi-
mum. It follows that

Vs(x)
= HC 1 + €°* sin(VC ~ b%x — 6)/sinf], (23)

where C and 6 are two constants to be chosen, con-
strained by the conditions that C > b2 (Vy is oscil-
latory for 0 <x < 1), Vg (0) >0, and VC — b?
< 27 (Vg has only one maximum). Beyond the shelf
and slope region, the sheared current V(x) is de-
fined by

Vo(x) = Vs(l)em=0, (24)

so that V is continuous across x = 1. The constant «
is chosen to be equal to —V,(1)/Vg(1) so that V,
is continuous across x = 1; the continuity of V and
V. requires that ¢ and ¢y, be continuous acrossx = 1.
Typical current profiles for different exponential
shelves are listed in Table 1 for reference.

With the topography and sheared current chosen,
the governing equation (11) can be reduced to

x =1,

O0sx=1

x=1

(25)

Eq. (25) is a constant coefficient differential equation and thus has simple homogeneous solutions. The

homogeneous solution ¢,(x,k) defined in (14) is

dixdy = (€7 0V 7

a- exp[—(a® + k'] + a, expl(a? + k?)'%x],

<1
x (26)
x=1

where 82 = C — b2, and where a_ and a, are determined by matching ¢, and ¢,, across x = 1:

a. = Y explb T (o + k2)”2][(1 +

b .
—————| sin
Vo? + k“’)

VE B
o + k2

B — k% x cosVg? — k2] . @D
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Similarly, ¢, is
e®®(b_ sinVRB®: — k% + b, cosVB? — k2 x), <1
Bol k) = { ¢ A + COSVE ki), 28)
exp[~(a? + k?)'%], x=1
where
b+ 2 +
b, = expl-b — (o® + kz)”z][cos\/ﬁz——ﬁ + otk invg: — k2]
: VB -k
b+ Va? + k?
b_ = expl—b — (a® + kz)”z][sin B — k% — ——\—/_E—Z;_“:Fi cosVg: - kz] 29

The Wronskian of Eq. (25) can be computed from (15), and it follows that

D) =

—exp[b — (o + k2)2)[(Va® + k% + b) sin V% — k2 + VB2 — k? cos VB — k.

Thus the eigenvalues (wavenumbers of the zero-frequency shelf waves) exist at k = k,, where

tanVET kg = -

The mass transport streamfunction can be found
by substituting (26), (28) and (30) into (16). It is
easily seen that the Green’s function G(x,{; k) is an
even function of (82 — k%", Therefore, branch cuts
in the complex k-plane come only from (a? + k2)V2,
We define two branch cuts on the imaginary axis
of the k-plane from i« to i, and from —ia to —i%
(see Fig. 3). It can also be shown that the real eigen-
values are shifted to the lower half of the complex
k-plane if we include some friction in the formula-
tion. The term e~*¥ in the integrand of (16) requires
that one should close the contour of integration on
the lower half of the k-plane for a downstream
solution (y > 0). Therefore, wavelike responses ap-
pear only downstream of the bump, justifying our
a priori assumption that the disturbance decays far
upstream. We also note that Eq: (31) has a pair of
trivial eigenvalues k, = =8 for which the corre-
sponding eigenfunctions are zero and have no con-
tribution to y(x,y). Apart from +g8, numerical cal-
culation suggests that there is only one pair of +k,

(30)
VE=&F o
b+ Va2 + ki’

which satisfy (31); these eigenvalues belong to the
first-mode stationary shelf waves. Comparing to the
result of Brooks (1978), who show that only second-
and third-mode shelf waves can be stationary for the
Cape Fear section, one may wonder if our model is
realistic. However, the dispersion diagram is in
general highly dependent on local waveguide char-
acteristics, such as shelf slopes and sheared current
profiles. Considering the fact that waveguide char-
acteristics change rapidly from Cape Romain to
Cape Hatteras, what applies at Cape Fear may not
apply upstream of Charleston, which is at least 300
km from Cape Fear. Apart from the real eigenvalues
+k,, there are a number of imaginary eigenvalues
k; of (31), depending on the magnitude of «, which
give rise to a decaying response.

It is sufficient for our purpose to consider only
the delta-function bump. The actual flow pattern
over a realistic bump can be found by integrating
the delta-function solution over an extended topog-
raphy. It is found for the isolated bump that

=2V N \% .
P(x,y) = —-D,—(k‘;)—[nd’l _h_ ¢1IL=I0¢1(X,/<0) sinkoy
K=o
. b_ | %
-3 { [ M, - ~ m] ] Bi00k) expl- | +Ixry), ¥ >0,  (32)
D (k) x=x0 ) k=—k;
\%
Plx,y) =iV, Z [ [ b — — d’ 1] } o,(x,k;) eXp(,kjl)’)"'I(X, =¥), y <0, (33)
D'ky) -

where k, > 0, the k;’s are the positive imaginary eigenvalues, and

k

D,(k) = —-exp[b - (a2 + k2)1[2] [(W

VE—F

+ )sm B =k

£ (1 + Va? + k* + b) cosVp? — kz} (34)
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and I(x,y) is the integral of (16) around the branch cuts and can be expressed as

(€L))

[ Vo [RO) (7 {V(x0) VB + 1* cos(VB® + 1xg) = [1 + Val(xo) = bV(xo)] sin( VB + 1%x0)}
m V h(x,) L (VB + tEcosVB + t2 + b sinVB? + 12)2 + (2 — of) sinV @2 + 1*
X V2 — o sin(VS? + t2x)e~dt, O0sx=s1
I(x,y) = < X?f-_v_hli_}—;—; E {sin[V? — o®(1 — x)[(VB® + 2 cosVR + 2 — b sin V@ + 12) °
- V2 — a®sinVB? + 2 cos[VEE — (1 — x)]}
{[1+ Va(xo) — bV(xo)I sin(VEE + 13x0) — V(xo) VB + 2 cos(VBE + x0)}

X - - et x = 1.

L (VB + P cosVBE + 1% + b sinVBE + %) + (1 — of) sin* VB + 12

It is easily seen from (35) that I(x,y) = I(x, —y). The
decaying part of streamfunction is therefore an even
function of y. Before turning to a numerical calcula-
tion of (32)—(35), we turn to a channel analogue of
the current problem which be valid if o (= IVI/V|I=,)
is large.

d. Channel flow analogue

For a laterally sheared stream well-contained in
the shelf and slope region, the value of « is usually
large. In those cases the solution can be approxi-
mated by that of a channel with the same topog-
raphy and sheared current profiles but adding the
impermeable sidewall boundary condition at x = 1.
The boundary condition as x — o is then replaced
by ¢(x = 1) = 0. In fact, it will be shown below that
the channel flow analogue is exact in the limit of
a — . A similar approximation for long shelf waves
without a mean current to separate the flow over
the shelf from the flow beyond the shelf was found
by Buchwald and Adams (1968) and proven to be a
very useful approximation for the study of wave
diffraction problems. Therefore the channel flow
analogue to be discussed below could be very use-
ful in the future if other kinds of inhomogeneities
of the continental shelf waveguide are included.

We can understand this channel approximation as
follows. Let us assume that « is large and that the
bump is located at x, < 1. We first solve for ¢ for
x = 1, subject to yi(0,y) = y(1,y) = 0 and Eq. (9).
We call this solution 5. The solution over the flat
bottom is of the form

1

00 —

L
+®
|
The function F(k,x) is determined by requiring that
Yoo(1,Y) = Ygex(1,y) or that

400
J Vao? + k2F(k,x)e *vdk.

—c0

exp[—(a® + k*)Y(x ~ 1) — iky:F(k,x)dk.

‘bso:(la)’) = -

V27

It is clear that F(k,x) = O(1/a) and hence i
= O(l/a); this must be matched to (and forces) a
correction to Y5, say, yig,. Hence, the correction
to Y5, would be O(l/e) or smaller except for |y|
< 1/a. We now have determined the streamfunction
continuous across x = 1 through order 1/« and ¢,
continuous through order 1. We could then use gy,
to determine s, [=0(1/a%)] and so on. The original
solution, 5, is then a reasonable representation
for ¢ forx < 1.

We now obtain the solution for the channel flow
case, i.e., i5o. Consider the equation

“Yzz + Yy — Hp + C
= V,l(1 + 2V, — VH)3(x — x¢)
+ V&'(x — x0)18(y), (36)
with the boundary conditions (0,y) =0 and

Im K

Branch cut

upstream

Vaz+k2 = -jvt2-a? VaZ+K? = ivie-a2

va2+K2 = V12-a?

VETIRE » - Vi

downstream

Branch cut

Fi1G. 3. Contours of integrations for the upstream and down-
stream in the complex k-plane, and the definition of the
branch.
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FiG. 4. Wavenumber of the lee wave (k) versus the total
mass transport (M) for different values of b. All quantities
are dimensionless.

Y(l,y) = 0. The perturbation streamfunction ¢ is
then expanded as

P(x,y) = €% ¥ A (y) sinnmx. 37
n=1

Substitution of (37) into (36) leads, after application

of the orthogonality property of sinnmx, to

Anyy + (B — n*m)A,

= [2v,, Jl [+ 2V, — VH)S(x — x,)
] A

+ V& (x — xo)le " sinnmx {8(y). (38)

Therefore A,(y) satisfies the homogeneous part of
equation (38) for all |y| > 0, together with the
condition

A5y (0%) — Any(07) = 2Vie 722{[1 + Vi(xo)

~ bV(xy)] sinnwx, — nwV(xy) cosnmxy}. (39)

Eq. (39) is obtained by integrating (38) with respect
toy from 0~ to 0+. :

As a — «[V(1) = 0], one can easily show from
(23) and associated constraints that 7 < 8= 27.
Therefore, only the n = 1 component in (38) is a
wavelike mode and modes higher than » = 1 are
all decaying modes. Inclusion of some friction will
place the wavelike mode downstream. It follows
that the » = 1 mode is downstream solution, while
all the higher modes exist both downstream and
upstream. Since (38) is even in y, the decaying
modes are therefore symmetric with respect to
y = 0. We can also easily show that

SR/
— wV(x,)e™%% cosmx,}eb® sinmx sinV 2 — w2y, (40)

and forn =1,

V(xo) — bV (xy)le % sinmx,
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llin V € ”1 ‘ ("CO) b I (‘ro)]
A /nZ,n.Z BZ T

X sinnwxy — hwV(x,) cosnmx, e’
X sinnmx exp[—(n*m® — B2)2|y|]. (41)
The ,’s are defined such that fory > 0,

¢=w1+ gz'wbn
and fory < 0,

v=3 v
n=2

The proof of equivalence between the result of
Section 2¢ (as a — ») and that of this section is
immediate. Notice that from (31), k> = 8% — 7?
(if @ — =), and accordingly from (29) and (34)

b_ e—2b

Dk) VE-= T

Therefore 1, is equivalent to the downstream wave-
like part of Eq. (32). For the decaying solutions,
k? = B2 — n?q* (recall that k;’s are positive imag-
inary, and hence k;* < 0), it also follows that

b_ = -

D'(k;) ivnin® — B
Therefore, s, in (41) is equivalent to the nth decay-
ing solution in (32) and (33). The branch cuts disap-
pear as « — o, as does the integral I(x,y) in (32).
Thus our proof of channel flow analogue is com-
pleted. For a > 10, the streamline patterns obtained

by using (40) and (41) are virtually identical to the
exact result.

e —2b

, Q@ —> ™,

3. Numerical results

The analysis of horizontally sheared flow over a
bump on a sloping topography in the last section
was based on a specific class of sheared current
and topographic profiles. However, some interesting
qualitative conclusions can still be extracted from it.
Our objective is to explore the qualitative behavior
when the Gulf Stream flows over the Charleston
bump. Therefore, the profiles listed in Table 1 con-
stitute only a narrow range of the complete spectrum
of the constant coefficient profiles, those which have
the same order of magnitude of shelf slopes and
total mass transports of the Gulf Stream off the
Charleston bump.

Fig. 4 shows the dimensionless wavenumber of
the lee wave versus the total mass transport for
different values of b. The position where V is a
maximum is fixed at x,.x = 0.6 so that the shape
of the sheared current profiles for the same b are
similar, The wavenumbers are determined by the
transcendental relation (31). It turns out that the
wavenumber increases with increasing b or decreas-
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ing mass transport M. For an unsheared barotropic
flow of speed U over a bottom sloping downward
to the right with angle 6,, we would expect the
wavenumber to be proportional to (6,/U)"%. In our
case b is a measure of §;, while M is a measure of
U, so that k, = (b/M)'2, which is in agreement with
Fig. 4. Physically, a larger mass transport tends
to sweep the disturbance downstream faster and
thus elongate the wavelength, while a steeper
bottom slope acts as a stronger restoring force and
thus shortens the wavelength. We also notice that
if L = 100 km and A, = 1 km, then f,L%, = 1000
Sv. Thus M'[f,L%*h, = 0.05 corresponds to a volume
flux of 50 Sv.

If the bottom topography and sheared current
profile are specified, the amplitude of the lee wave
can be easily computed from (32). Figs. 5a—5¢ show
the amplitude of the lee wave versus the position
of the delta function bump, together with the V(x)
profile for three cases in Table 1 (cases 2, 4 and 7,
respectively). The amplitude A of the lee wave is
defined such that wavelike part of the solution is

J’w = €, = A€V ,,dy(x,ko) sinkyy.

The channel analogue has

A= ~ bV)ebxe

2
—_—— (1 + V,
,———BZ = I(
X sinwx, — wV(xq) COSTX,].

It can be seen from Fig. 5 that the locaticn of the
bump where it generates the maximum amglitude of
the lee wave occurs to the onshore side of the posi-
tion of maximum V(x), and the maximium lee
wave amplitude and location of the maximum
amplitude vary only slightly with velocity profile.
There are essentially two reasons which prohibit
us from considering realistic topographic features
off the Carolina coast in detail. First, the shelf
narrows gradually northward from Charleston to
Cape Hatteras, which differs from the uniform long-
shore shelf with an isolated topographic irregularity
that we consider here. Second, the cross-shelf
topographic profile in the vicinity of Charleston is
not an exponential shelf. However, an exponential
shelf of the Buchwald-Adams type does give us
relatively simple analytical solutions which, con-
ceivably, will shed some light on similar problems
with a different cross-shelf topography. As -a first
example, we choose b = 0.5, 6 = 0.9, C = 19.0,
corresponding to case 2 in Table 1. The dimension-
less mass transport corresponds to a dimensional
value of 58 Sv if we take f, = 0.8 x 107* s, L
= 125 km, ho =1 km. The velocity maximum
(Vmax) 18 then 143 cm s™'. We also choose the
dimensionless volume of the bump (¢V,) 20 be 0.03
and place the singularity at x, = 0.5. The resulting
streamline pattern is shown in Fig. 6a. The stream
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F16. 5. The sheared current profile V(x) over the sheif and slope
region (solid line), and the amplitude A of the lee wave as a
function of the position of the delta function bump (x) (dashed
line) for (a) case 2, (b) case 4 and (c) case 7 of Table 1.

is' deflected approximately 60 km from the coast,
40 km north of the singularity. The wavelength (A)
of the lee wave is approximately 165 km. Eddies
exist near the coast centered at distances of
approximately 40 + n\ km (n =0, 1, 2..))
downstream of the singularity. Weak eddies on the
seaward side of the stream also exist. Large de-
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x=1F

-.058

Fi1G. 6. Resultant streamline patterns for (a) case 2, x, = 0.5 and (b) case 2,
xo = 0.7. The dimensionless volume of the bump (eV,) is chosen to be 0.03.

flections near the coast are consistent with observa-
tions from satellite-borne infrared photography
that billowlike undulations of the Gulf Stream fre-
quently occur on its inshore side (Rhines, 1977).
These large deflections can be understood as fol-
lows. Let x, be the upstream location of a streamline
and n = x — x, be the deflection of a streamline.
The equation of a streamline, i.e., xo, = f(x,y),
can be determined from

Yo(xo) = Yo(x) + eP(x,y) + O(e?)

PYolx — M) = Po(x) + eP(x,y) + O(e?).

For small n we can expand the left-hand side in a
Taylor series

or

— Fly) + Flyey
—--- Flyy)

0 1 2 3 4 5 6 T y. -

F1G. 7. F(r) and F(yo) + F'(o)ed versus || across
section A—B of Fig. 6a.

W(x) = Moz + Yen*Poze = Polx) + eP(x,y) + O(e?).

In general, n = O(e) except near the coast where
Yo — 0. In this region n = O(e'?). Orlanski’s
(1969) calculations with two-layer model also showed
baroclinic waves near shore in the upper layers of
the Florida Current which quite easily can be ex-
cited by a “‘bump”’.

In Fig. 6b, the topography and velocity field are
the same as in Fig. 6a, but the singularity is located
at xo = 0.7. As expected, streamline deflections
are somewhat less because the amplitude of the
wave is smaller. At first sight Figs. 6a and 6b do
not seem to be small perturbed solutions. One
may question whether our approximation [Eq.
(5)] can still be valid for such a large-amplitude
perturbation. To answer this problem, we compute
F(yr) and the two-term Taylor’'s expansion of
F(yr) along one of the worst cross sections in Fig.
6a (the cross section A-B). The results are shown
in Fig. 7, which justifies our a priori assumption,
i.e., the two-term Taylor’s expansion is a good
approximation of F(i);), even for a dimensionless
volume of the bump as large as 0.03. Further, from
the formulation in Section 2a, we also notice that the
existence of the reversed flow in the eddy regions
is allowable and does not upset our perturbation
scheme.

The preceding two cases have « large so that
¥(1,y) = 0. Therefore, in Fig. 8 we choose » = 0.5,
c = 15.8, 8 = 1.31 (case 4), and x, = 0.7, which
has o = 3.03 and M = 106 Sv. Comparing Figs.
6a with 6b we see that the wavelength is longer
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Fi1G. 8. Resultant streamline pattern for case 4, x, = 0.5. The dimensionless
volume of the bump (eV,) is chosen to be 0.03.

for M larger, a weak disturbance does extend
beyond x = 1, and the weak offshore eddies disap-
pear. We note that in all the above cases there is a
decrease in velocity just upstream and slightly
seaward of the topography, and there is some
splitting of the stream as it passes over the topog-
raphy. The velocity shear and bottom slope are not
the cause of this phenomenon, since it is present in
uniform flows over isolated topographic features as
shown in the work of Vaziri and Boyer (1971). To
justify our a priori assumption that the two-term
Taylor’s expansion is a valid approximation, we
again compute F(y;) and F(§) + F'(P)e across
one of the worst section (cross section A’-B’) in
Fig. 8. The result justifying that the approxima-
tion [Eq. (5)] is valid is shown in Fig. 9.

Our numerical work shows that 1) there is a sea-
ward deflection of the current downstream of the
singularity; 2) there are a series of lee waves and
associated eddies on the inshore side of the stream;
3) if « is large there are offshore eddies one-half
a wavelength downstream of the inshore eddies; 4)
if « is large the rigid-wall approximation is valid
and the results of Eqgs. (40) and (41) may be applied;
and 5) lee shelf waves near shore usually have
larger amplitudes of deflection than those off shore.

4. Conclusions

This model was initially developed in an attempt
to explain the seaward deflection and presence of
waves and eddies downstream (north) of the
Charleston bump. It is clear, given the nature of the
topography in this region (i.e., the northward
narrowing of the shelf region), that the model is at
best qualitatively applicable to this region. How-
ever, the amplitude of the seaward deflection and
the wavelengths generated are quite reasonable
when compared to satellite imagery. A more realistic
model of this region would include the narrowing

shelf. This model may be applicable to other situa-
tions when a coastal jet flows over a more uniform
continental margin. The result for large « is that the
boundary condition yi(1,y) = 0 may also be appli-
cable to other problems.

We also notice that the approximation [Eq. (5)]
works only for some special classes of sheared
current profiles (in our case we assume hlL./V
= constant). For an arbitrarily chosen sheared
current profile such that V(x = 0) = 0 and AIl.(x
= 0) # 0, the coastline (x = 0) is then a critical
layer, which usually makes our Taylor’s expansion
[Eq. (5)] invalid. A more cumbersome analysis is
then needed.

Although we consider only a Green’s function
solution by shrinking the size of the bump to zero
and keeping the volume of the bump fixed in this
paper, the result can easily be adapted to an ex-
tended topographic irregularity by intergrating the
Green'’s function solution over the extended region.

— Flyo) + F'lyp)ey
- F ()

o I 2 3 4 5 6 1 8 9 10 il

F1G. 9. F(y) and F(fo) + F'(o)ey versus |¢r| across
section A’'-B’ of Fig. 8.
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If we identify the Green’s function solution for
the perturbed streamfunction as Y [i.e., Egs. (32)
and (33) for a delta-function bump placed at (x,,y,)]
and let the topographic irregularity extend over a
region of longshore scale /, and cross-shelf scale
I, the total perturbed streamfunction ¢ is then

w(x,y)=j j
y, i,

One can easily see from (32) and (33) that if /,
< ko ! and [, < (8% — k,®)7V2, then the Green’s
function solution is approximately valid for regions
away from the bump. As [, and [/, get larger, the
oscillations of y; in both the x and y directions
when we perform the integration (42) must then be
taken into consideration, and the Green’s function
solution gradually loses its meaning. However, for
topographies which I, < 1L the error involved in
using a point simulation is less than 10% away from
the singularity.

It has long been suggested that Gulf Stream
meanders and eddies are important to the shelf
water circulation off the Carolina coast. Abbe
(1895) suggested that ‘‘back-set eddies’” on the
inshore side of the Gulf Stream were responsible
for the formation of the cusplike Carolina coastal
boundary. Mysak and Hamon (1969) found south-
ward propagation of sea level disturbances in
Onslow Bay. Based on the crude model we have
developed, one might suspect that the Charleston
bump is the possible cause. This suspicion is some-
what justified by the fact that the cuspate coastal
boundary of the Carolinas appears only north of
Charleston bump, and that the length of the bays is
of the order of 150 km, comparable to the wave-
length of lee waves downstream of Charleston.
However, the above speculation is suggestive rather
than conclusive.

h(x0,y )X, X03 ¥, Yo)dXody,.  (42)
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