SEPTEMBER 1979

A. E. GILL AND E. H. SCHUMANN

975

Topographically Induced Changes in the Structure of an Inertial Coastal Jet:
Application to the Agulhas Current

A. E. GiLL
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England

E. H. SCHUMANN

National Research Institute for Oceanology, Congella, South Africa

(Manuscript received 9 May 1978, in final form 7 February 1979)

ABSTRACT

Calculations are made of the changes in the structure of an inertial current which can be induced by
slow changes in the topography of the continental shelf and slope along which it flows. The particular
case of a uniform potential vorticity current over a shelf of uniform slope shows that smooth transitions
from subcritical to supercritical flow can occur at a minimum in the shelf width. Long-wave dis-
turbances travel away from such a point. Upstream there is a tendency for a countercurrent to occur
at the coast, while downstream there is a tendency for cold water to outcrop on the inshore side of a
front. Both these features occur along the path of the Agulhas Current.

A method developed for calculating the speed of long-wave disturbances in a flow with a given po-
tential vorticity distribution is applied to sections of the Agulhas Current about 150 km apart. In this
distance the shelf width is reduced, and a calculation using a current model with two active layers shows
the second mode is very close to critical at Port Edward. This result supports the notion that shelf
topography can hydraulically control an inertial boundary current.

1. Introduction

The situations to be considered in this paper in-
volve the flow of an inertial jet along a coastal
boundary, with the basic premise being the con-
servation of potential vorticity in various layers as
the current moves into different regimes. Thus,
changes in both the local vertical component of the
Coriolis parameter f and topographic changes can
alter the nature of the jet.

Of course such a concept is not new, but has
been used previously in two different kinds of ways
to study the behavior of intense narrow current
systems such as the Gulf Stream. One, which is not
adopted here, concentrates on the path of the jet
and has been used, for instance, to explain the me-
andering of the Gulf Stream (e.g., Warren 1963;
Niiler and Robinson, 1967).

The approach followed here concentrates on the
structure of the inertial current, where its path is
well defined because it is constrained to follow a
boundary. This approach is exemplified in Stommel
(1960, Chap. 8, hereafter referred to as Stommel),
where the theories of Morgan (1956) and Charney
(1955) are also discussed. These latter two authors
attempted to find a boundary current which could
be produced by a specified inflow. It was argued
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that this inflow would be determined by the Sverdrup
solution for the main part of the ocean gyre. Each
parcel of water entering the boundary current has
a predetermined potential vorticity, and the com-
bined effect of many parcels of different origins
then determines the structure of the stream.

In practice the potential vorticity of a fluid parcel
changes due to friction and mixing effects, so model-
ing by an ideal fluid can only be applied over
limited path lengths. In studying the variability of
western boundary currents, Niiler (1975) mentions
that vorticity tends to be conserved between two
sections across the Gulf Stream. Here the object is
to model changes in the structure of the Agulhas
Current caused by fairly large changes in shelf
topography over distances of the order of a few
hundred kilometers, so it is hoped that neglect of
friction effects is reasonable in these circumstances.

In all models considered, the f~plane approxima-
tion will be made, i.e., the Coriolis parameter will
be assumed constant over a given section. Since
these tend to be nearly parallel to lines of latitude,
little error can be introduced here; changes in f are
readily accommodated when moving to a new section.

The solutions for current structure are particularly
simple when the potential vorticity in a layer is
uniform, so modeling begins with cases which have
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this property. Stommel in fact argued that ‘‘the
potential vorticity in the upper layers of the Gulf
Stream is fairly uniform across the Stream’’, and
showed that the velocity profile could in large meas-
ure be ascribed to the narrowing of a vertical layer
of constant potential vorticity water across the flow
of the Stream. The initial models treated thus have
only one layer with uniform potential vorticity lying
above an inactive lower layer. Nonetheless, with a
variable shelf topography, results are obtained
which indicate that subcritical and supercritical flow
can occur around a control section where there is
a minimum shelf width, Long-wave disturbances
travel away from such a point, and associated
countercurrents and upwelling may occur in practice
where similar phenomena have been observed in
the Agulhas Current.

In later sections a multi-layer model with variable
potential vorticities is developed, and the structural
changes undergone by the Agulhas Current when
moving between two test sections simulated with
some degree of success. It also proves possible to
determine the speed of two baroclinic modes of the
long waves propagating in the system, with the re-
sults supporting the general conclusions reached
with the simpler models.

2. Equations

We suppose the system to be studied consists
of a narrow boundary current flowing along a straight
coastline. A right-handed co-ordinate system (x,y,z)
is chosen to specify position, with the x axis point-
ing seaward, the y axis parallel to the coast and the
z axis vertically upward. The Boussinesq and hydro-
static approximations will be made, and the width of
the current will be assumed small compared with
the scale of longshore variations. (The last assump-
tion means that the coast need not be perfectly
straight but can bend slowly on a scale which is
large compared with the width of the current with-
out altering the equations to first order.) Stratifica-
tion effects are incorporated by supposing the ocean
to be divided into a set of superposed layers each
of uniform density p;, where the index i starts with
1 in the upper layer, and increases downward. The
depth of layer i at a given (x,y,f) will be denoted
D; and the horizontal velocity (u;,v;). This velocity
will be assumed to be uniform over the depth.

We first consider the hydrostatic equation for
pressure p. Integrating downward from z = 0, and
requiring continuity at each interface z = —D,,
z = =D, — D,, etc., gives for a point in layer n,

n
p =p0) — p.gz + iE‘ (pi — pa)gDi.  (2.1)
Here g is the acceleration due to gravity, and
p(0) is the pressure due to variations in the surface
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elevation (the effect of atmospheric pressure being
neglected here). Now pressure appears in the mo-
mentum equations only in the form of horizontal
gradients, i.e., in terms such as

1 dp _ Opa
pn Ox  Ox ’
0
pn=P9 ( )gDi @.2)
Pa i=1 Pn

Hence the term in (2.1) involving z is not needed.
In fact, the p(0) term is not needed either since
subsequent analysis requires only knowledge of the
differences between p,,’s, for which (2.2) gives, after
use of the Boussinesq approximation

Pnt1 = Pn = —8n 21 Di’ (2-3)
where
n= g(pn+1 - pn)/pn (2.4)

is the reduced gravity between layers n and n + 1.

In addition to the set of equations (2.3), there are
three equations for each layer, viz., the two hori-
zontal components of the momentum equation and
the continuity equation. Because of the scale as-
sumptions a quasi-geostrophic situation exists, i.e.,
the longshore component of velocity is in geo-
strophic balance with the offshore pressure gradient,
and so for layer i the equations are

ap;
fo = - 24 2.9)
ox
d F) .
o i_vi+ .61), +fu,=——q1—’—', (2.6)
ot ox ay
aD; - aD; aD;
+ u; + v;
ot ax ay
i a i
+D (a” _”) 0. @7
ox oy

It often proves useful to replace (2.6) and (2.7) by
two equations which can be derived from them. The
first of these is the potential vorticity equation
which is obtained by subtracting (f + dv,/0x)/D?
times (2.7) from D;! times the x derivative of (2.6).

This gives
a + dv;/a
(i a2t L )(f———”/ ") =0 28
at ox ady D;

and expresses the conservation of potential vorticity
(f + 0v;/6x)/D; by a particle moving with the fluid.
Smce fis assumed constant, the ‘‘potential depth’’

D;, defined by
f+oviox f

— , 2.9
D, 5) 2.9
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is also conserved for a material particle.
The second of the two derived equations is merely
a rearrangement of (2.6), viz.,

dB;

ov; ov;
— + (f+—)ui= -—,
Ox ay

5 (2.10)
where

B,' =p; + 1/21);2 (2.11)

is the Bernoulli function for the layer (since v; > u;).
The above manipulations are fairly standard and are
given for a single layer by Stommel. Note that if
(2.9) is used in (2.10), it can be written as

D,-(av, 6Bl
—D,-ui = —|— + ——‘)
fior oy
D_i a i i i
= —(—” ;o dY ai) 2.12)
flor dy oy

and regarded as an equation for the onshore trans-
port —D;u; in the ith layer.

3. A two-layer model without topography

The first model to be considered is that of a
homogeneous layer of uniform potential vorticity
overlying a very deep bottom layer. The approach
for a steady system follows that of Stommel, who
found that it gives a reasonable representation of
a section across the Gulf Stream. Here the model
is also applied for a time-varying boundary cur-
rent adjacent to a straight vertical boundary, and is
similar to a model of Bennett (1973) for large-
amplitude Kelvin waves. In the next sections, this
model will be modified by having a sloping boundary
region, so that topographic effects can be con-
sidered.

The bottom layer (i = 2)is supposed to be so deep
that currents in it (but not necessarily transports)
are effectively zero and hence pressure gradients
are zero. Thus p, may be taken zero, and so (2.3)

with n = 1 gives
p: = g1D:. (3.1

Since only layer 1 is active, there is no need for
subscripts and these will be dropped (subscript 1 is
implied when none is given).

Now using the potential vorticity equation (2.9),
the geostrophic balance equation (2.5), and (3.1) to
eliminate p and v for this layer gives

#D D-D
ox? a?

where a (a positive number) is the Rossby radius of
deformation defined by

, (3.2

3.3)
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Note that a depends on the potential depth D (a con-
stant here), rather than on any local depth which
might be considered typical of the current.

It is convenient to write these equations in a
nondimensional form using D as the unit of depth,
a as the unit of horizontal distance and af as the
unit of velocity. If an asterisk is used temporarily
to denote the nondimensional quantities, the defini-
tions are

D* = DID, t*=ft, p* =plg,D } (3.4)
(x*,y%) = (x,)la, @*0*) = @,v)af| =

If the asterisks are now dropped, the nondimen-
sional form of the equations is

~

p=D
1+ 2 _p
ox
I L
ox , (3.5)
2
8*D _Dp-1
ox?
._Du = .a_v v _a_v_ + Ep_
a ay dy
with a solution _
p=D=1+ Q- De™7, (3.6)
v=_~1~ Ae?, GB.7

where A is defined as the value of D at the vertical
boundary at x = 0. This solution was used by
Stommel as a model of the Gulf Stream. It can also
be used (cf. Bennett 1973) to model time-dependent
currents because A can vary with y and ¢.

The equation for A comes from applying the last
of (3.5) at x = 0 where u vanishes, with the result

, 3-8

For small perturbations (for which A is close to
unity), this represents a Kelvin wave moving at unit
speed in the —y direction, i.e., equatorward at a
western boundary and poleward at an eastern
boundary. For large perturbations, waves still move
in this direction, but at a speed A which depends
on the amplitude. In dimensional terms this speed is

A gl 1/2
- —_ = = A.
o (D)

Note that the speed drops to zero as A — 0.
When A = 0, the coastal boundary is irrelevant and
the line where the interface breaks the surface repre-
sents a front. Since ¢ = 0, distortions of such a uni-

3.9
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FIG. la. Geometry of the model designed to show the effects
of shelf topography on an inertial boundary current. The four
different positions of the interface treated in the text are shown;
initially an arbitrary shelf profile is considered, but the drawing
here is for the special case of a linear shelf with unit slope
(in nondimensional units) and a width of 1.2.

FiG. 1b. Velocity profiles for the upper layer for the special
case shown in 1a. Values are given in nondimensional units. On
each curve, the total flux Q for the upper layer is given, and
also the speed ¢ of long-wave disturbances.

form potential vorticity front do not propagate but
remain stationary.

4. Effects of variable topography: Cases with an
offshore front

The aim of these next two sections is to incliude
a variable shelf topography into the simple two-layer
model of the previous section and to examine its
effect on the inertial current. This more realistic
geometry is illustrated in Fig. 1. The region x > 0
has a deep lower layer so as to retain the features
already developed, but the shelf topography for
x < Ois arbitrary with the depth given by H = H(x,y).
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The coast is at x = w (where w is negative) and
details are complicated somewhat by the different
possible configurations of the interface relative to
the topography. In this section two cases [(a) and
(b)] with an offshore front will be treated, while
two other cases [(c) and (d)] will be left for the next
section.

However, before dealing with each of the four
cases separately, a general expression for the total
volume flux Q will first be derived. This applies
only to the upper layer; thus using the second and
third of (3.5) and the x derivative of the Benoulli
function, it follows that

OB _ dp ov (

V— =0

- 1+ fﬂ) = Dv. (4.1)
ox ox ax 0.

X

Hence the nondimensional volume flux Q in the layer
is given by

Q= JDvdx = B, — B,, 4.2
where the integration takes place over the x extent
of the layer, B, is the value of B at x = » and
B, is the value where the layer depth vanishes. Now
atx =0, v =0and p, =D, =1, so B, =1 and
(4.2) becomes

Q=1-By=1~=p,— Y2 (4.3

Case (a)

Here the interface breaks the surface at a point
x ='¢ > (0 where the ocean is infinitely deep. The
topography has no effect in this case, the wave
speed ¢ is zero (as discussed in the last section)
and the equation for ¢ is simply

43
—_— = 4
ot 0 @4

Case (b)

In this case the front is situated at a point over
the shelf region where x = ¢ < 0. The very deep
lower layer with zero potential vorticity has been
squeezed onto the shelf, and thus the currents here
are no longer negligible. From the nondimensional
forms of (2.9), for this layer

1492 .5)
ax
The geostrophic relation is
0
v, = 22 4.6)
ox

and the hydrostatic equation (2.3) becomes

pi1 —p2=D. 4.7)
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Egs. (4.5) and (4.6) can be integrated immediately
using continuity of v, and p, at x = 0 to give

vy = —X, py=~¥x? for x <0. (4.8)
Substituting in (4.7) and using the geostrophic rela-

tion for the upper layer gives

D
v=——x for x<0.
Ox

p =D — ¥x?, (4.9)

An equation for D now follows by eliminating v
between the second of (3.5) and (4.9), viz.,

8D

ox?

The solutions which p, D and v are continuous with
the solutions given by (3.6) and 3.7) at x = 0 is

D = sinhx + Ae

=D. (4.10)

coshx — Ae ™ — x

sinhx + Ae™* — V2x?

v (4.11)

p:

Furthermore, since D vanishes at x = ¢, (4.11) re-
quires that
sinh¢ + Ae~¢ = 0, 4.12)

which gives the relationship between A and £. The
dynamic condition comes from applying (2.12), i.e.,
i) o
Sv 00 % _,
ot dy 9y

at x = £. Substituting from (4.11) and then putting
x = ¢(the partial derivatives in (4.13) are derivatives
keeping x constant, not keeping ¢ constant) gives

6A _,  0A
—— e+ —e¢
ot gy
X (1 —coshé + £+ Ae™ ) =0. (4.14
Using (4.12) for A, this reduces to

% e

(4.13)

—¢

— =0, (4.15)

where

c=ef—1-¢ (4.16)

Thus ¢ is constant for an observer moving with
speed ¢ given by (4.16). Since ¢ is negative ¢ is
positive, i.e., waves move the opposite way to a
normal Kelvin wave (poleward on a western
boundary).

Another form of (4.16) is

c=v,— 1, “.17)
where

(4.18)

is by (4.11) the velocity at the point where the layer
depth vanishes. The speed v, of the current is greater

1’0:35"5
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than the wave speed (unity) in the absence of the
current, so disturbances are swept in the direction
of the stream and against the direction they would
have in the absence of currents. The flow in this
case will be called supercritical.

The flux Q of the current can be calculated from
(4.3) and (4.11) and using (4.12) to give

0 =1+ et — Voe*. 4.19)

Since ¢ < 0, Q can only have values between 0.5
and 1, with the higher value occurring with the front
closer inshore. Q is a function of ¢ only, and there-
fore (4.15) implies

L2
at ay

and Q is constant along a characteristic, i.e., along
a curve defined by

(4.20)

dy
— =. 4.21
dt ¢ ( )

5. Cases where the interface strikes bottom

The remaining two cases shown in Fig. 1 will now
be considered.

Case (c)

Here the interface strikes the sloping shelf topog-
raphy at a point x = b, say (where b < 0). For
x > b the solution is given by (4.11), while atx = b
the depth of the upper layer equals the given ocean
depth H(b,y). Hence (4.11) gives the following rela-
tion between b and A:

Ae™® = H(b,y) — sinh b. ¢S.1)

Using this in the remaining equations (4.11) gives
values of v and p atx = b, viz.,

v=e’~b — H(b,y)
p = H(b,y) — V2b®

The potential vorticity equation [second of Egs.
(3.5)] in the region x < b now takes the form

] at x=b. (5.2

1+ 2% _ HGy (5.3)
ox '
and this can be integrated to give
v = V(b,x,y)
&
=¢® —x — H(b,y) + J H(x',y)dx', (5.4)
b

with use being made of the value (5.2) at x = b.
The function V of b, x and y is defined by (5.4).
The way v depends on x, y and ¢ can be determined
once b is found as a function of y and ¢. Similarly,
p can be found by integrating the geostrophic re-
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lationship [third of Egs. (3.5)] and using the value
(5.2) atx = b. The result is ,

p =P(b,x,y)

= H(b,y) — %4b* + J Vib,x',y)dx'. (5.5)

b

To find the equation satisfied by b, (2.12) can be
applied at the coastx = w, where D will be assumed
to vanish so that

oB

ov

—+—=0 at x=w.

or dy

The derivatives should be calculated from (5.4)

and (5.5) before putting x = w, but it will be shown
below that the equation is still true if the order of
operations is reversed, i.e., if v and p are evaluated
at x = w before (5.6) is applied. We first consider
the case where the derivatives are calculated and
then x is put equal to w. Use of (5.4) and (5.5) in
(5.6) gives

(5.6)

oV ab
ob ot

0B ab

oB

— =0,

ob oy . oy
B =P + V2

5.7

where
(5.8)

If, on the other hand, v and p are first given their
values 4
vy = V(b,w,y), By = B(b,w,y) 5.9

at the coast (which is also the place where the layer
depth vanishes) and the equation

9, 9B _ (5.10)
ot oy
is applied, the result is
Wb B 0Bow 9B _ o o
ob ot ab dy ox 98y dy

This reduces to (5.7) because dB/0x .vanishes at the
coast where D = 0 by (4.4).

Now since w is a function of y but not of ¢, (5.9)
gives

B B 0b :
@i’.:ﬁa_b_, o 0 =_‘?__2__ (5.12)
an ab ot ot ab gt
and hence (5.10) may be written
B .
9By | 9B _ 0, (5.13)
ot ay
where
= 0B ,/0b
8v,/0b
= vy + polob _ vo+w—~1=b, (514
Av,/0b
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the last expression being obtained when the expres-
sions (5.4) and (5.5) for p and v are used. Using
(5.4) again, an altemative is

c={e"—1->b} — H(b,y)

+ Jw H(x',y)dx'. (5.15)

b

The term in braces [cf. Eq. (4.16)] is positive
but the remaining terms are negative. When b = w,
the expression coincides with (4.16), as required,
and c is positive. When b = 0, the-expression in
braces vanishes and c is negative. Thus, for some
value of b, ¢ vanishes and there is a change from
supercritical flow (poleward moving disturbances on
the western boundary) to subcritical flow, where
disturbances move equatorward, i.e., in the same
direction as Kelvin waves. (This is then in the di-
rection disturbances travel in the absence of cur-
rents.) Note that because of (4.3), Eq. (5.13) is the
same equation [(4.20)] as obtained in case (b), i.e.,
Q is again constant along a characteristic.

There is a consistency condition which must be
satisfied if the above expressions are to be valid.
This condition is that the slope dD/dx of the inter-
face just seaward of x = b (see Fig. 1) has to be
less than that of the ocean bottom. If (4.11) is used
to calculate dD/0x and (5.1) used to substitute for
A, the condition becomes

oH

e <H+— at x=b. (5.16)
ox
By (5.4), this is the same as
v,
— < 0. 5.17
ob SR

If this condition is not satisfied, the interface
configuration is not one of the cases shown in Fig. 1,
but water from the lower layer on the shelf be-
comes separated from the rest of the lower layer
(which is the region x > 0).

Case (d)

Here the interface strikes the vertical cliff at
x = 0 below the shelf level. As before, if A is de-
fined as the interface depth at the shelf edge, it is
necessary that

A > H(0,y) (5.18)

for this case to apply [H(0,y) being the shelf depth at
x = 0]. The values of v and p at x = 0 are given by
(3.6) and (3.7), viz.,

v=1-4, p=A. (5.19)

The calculations on the shelf are the same as for
case (c), except for the matching conditions to apply
at x = 0. Thus, the integral of (5.3) is now
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v=V(Ax,y)=A+ J V(a,x",y)dx' (5.20)

4]
and the integral of the geostrophic equation [third
of Egs. (3.5)] is

p = P(Ax,y)

=]-A-x+ J H(x',y)dx'. (5.21)

0

Eq. (4.20) is satisfied as before, i.e., Q is constant
along characteristics, and the wave speed [cf. (5.14)
and (5.15)] is given by

Opo/oA
Ove/6A

vy +

=p+tw~—-1=-A+ [ H(x',y)dx'. (5.22)

(]

Both terms in the last expression are negative,
so ¢ < 0 and the flow is subcritical. Whenw = 0,
(5.22) gives ¢ = —A which reproduces the result of
Section 3.

6. Calculations for a shelf with constant slope and
variable width

We now consider a special case where the shelf
has constant slope s, with the depth H given by

H=s(x—-w), w<x<0. 6.1)
Then for case (c¢), (5.4) gives
vo=e" —w+Vs{l —(b+1~-w2} (6.2
and (5.5) gives
Do = e¥(w — b) — Van?
- Was{l — (b +1—w)P} (6.3)

The corresponding results for case (d) come from
(5.20) and (5.21), respectively, i.c.,

v=1—-A—-w— Vasw?,

Po=A+ (1 — Aw — Vaw? — Yasws,

(6.4)
(6.5)

These results may then be used to calculate Q
using (4.3) and ¢ using (5.14) or (5.22).

Fig. 2 shows contours of ¢ and Fig. 3 shows con-
tours of Q for s = 1, chosen because the con-
sistency condition (5.17) is always satisfied if s = 1.
The vertical axis in these figures is

W= —-w, (6.6)

the width of the shelf, while the horizontal axis X
is defined by

w—§¢ if w < ¢[cases (a) and (b)]
b-w if w<b <0 [case (c)]
A if A > —w [case (d)].

X = 6.7)
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In cases (a) and (b), —X is the distance of the
front (where the interface strikes the surface) from
the coast. In case (c), X is the distance from the
coast where the interface strikes bottom and since
s = 1, it is also the depth at this point. Similarly
for case (d), X is the depth of the interface where
it abuts the vertical cliff.

The contour ¢ = 0 divides the region of super-
critical flow (¢ > Q) to the left from the region of
subcritical flow (¢ < 0) to the right. The line ¢ = 0
is also the line where 8Q/dx = 0, i.e., where Q is
a maximum for a given shelf width W. The region
Q > 0is where the flow is poleward on the western
boundary (against the direction Kelvin waves propa-
gate), while Q < 0 signifies equatorward flow. The
curves drawn in Fig. 1 correspond to this example
with W = 1.2, i

To give an idea of magnitude, D in the Durban
area (see Section 10) has a value of about 300 m
for the upper layer of the Agulhas Current, and
the corresponding Rossby radius a is about 9 km.
The corresponding unit of velocity is about 0.6 m s™*
and the unit of transport is fa2D = 1.7 X 105m3s™.
The shelf slope is about %o, or %2 in nondimen-
sional units.

We now consider some consequences of these
results. One property of long waves that can be
calculated is the wave steepening effect. Thus con-
sider first the case of an offshore front at x = £,
over the shelf region. The furthest offshore part of
a wavy front can be taken as the ‘‘crest’’, and
from Fig. 2 since dc/d¢ = ~ac/dX is negative in the
present example, it means that for a shelf of constant
width W a trough at a different y will move faster
in the positive y direction than the crest. (Note that
the volume flux Q at the trough position is also
correspondingly greater.) The result is that for this
supercritical case, the wave will steepen in the sense
shown in Fig. 4a.

In the case where the interface strikes the bottom
at X = b the sign of the wave steepening depends
on dc/db = 8c/dX, which is also negative. The wavy
front is here defined as the variation in » with y,
and the steepening occurs.as shown in Fig. 4b. This
is the subcritical situation where the wave moves
in the opposite direction to the current (i.e., X > 0
and Q > 0 in Fig. 3) and thus the flux Q at the
crest is less than at the trough.

If wave steepening occurs on a surface front, and
is not balanced by some other effect such as dis-
persion, evidence for it could be found from a suit-
ably large sample of surface temperature pictures.
If topography is present, deviations from the mean
position of the front could indicate the wave steep-
ening. The effect should also show up in (x,?)
temperature sections across a front, e.g., in the
supercritical case shown in Fig. 4a the interface



982

JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 9
hi
_ &
\\0
‘No wave/
0000
propagation
/ X
=T T >
-3 ~2 -1 0 1 2 3

F1G. 2. Contours of the long-wave speed ¢ of disturbances to a uniform potential vorticity current over a shelf
of unit nondimensional slope. The vertical axis W is the shelf width and the horizontal coordinate X gives
the point where the interface strikes surface or bottom. Positive values correspond to supercritical flow, while
negative values denote subcritical fiow. Values are given in nondimensional units.

would tend to move onshore more rapidly than it
moves offshore.

In a practical situation both cases would also
show up in measurements taken at a level inter-
secting the front. Such measurements have been
made on consecutive days off Durban, and Pearce
(1977) depicts a ‘‘space-time’” map of temperature
and salinity with a front steepening in the manner
described. Unfortunately, with measurements along
a single section, it was not possible to determine
the direction of propagation.

Other deductions may be made by analogy with
hydraulics problems, and in particular, the flow over
a weir. Stommel drew attention to this analogy in
his book and results for flows in rotating fluids
are discussed by Whitehead et al. (1974) and by
Gill (1977). For steady flow, Q is constant; thus
the dependence of X on W is given by the appropri-
ate contour in Fig. 3. When Q is positive, that is,
the current flows in the opposite direction to Kelvin
waves, there are two possible values of X for a
given W, corresponding to the two cases of sub-
critical and supercritical flow. In these circum-
stances, a place where the shelf width is a minimum
can exert hydraulic control just as a weir does in a
nonrotating fluid, and determines the flow upstream
of this point. The flow rate corresponding to a partic-

ular case where the minimum width is W, can
be obtained from Fig. 3, the flow rate being the
maximum possible when W = W ..

An example of controlled flow in the neighbor-
hood of a control section is shown in Fig. 5. The
boundary current is coming poleward along a
western boundary toward the reader with a given
flux Q of 0.6. Upstream of the control section,
the flow is subcritical and the interface strikes bot-
tom on the outer part of the shelf. As the control
section is approached, the shoreward edge of the
dense water moves toward the coast, and continues
to do so beyond the control section where the flow
has become supercritical. The dense water then
reaches the surface forming a front, and this front
maintains its position relative to the shelf break for
as long as the flow remains supercritical. It is pos-
sible that a hydraulic jump to subcritical flow could
occur, with the outcrop of dense water at the sur-
face not occurring downstream of the jump. The
form a jump might take in practice is not clear, as
there seems no reason to suppose that the potential
vorticity distribution downstream of the jump would
be the same as it was upstream of the jump
Whether such jumps occur in boundary currents in
practice is also not known.

It should be borne in mind that the property of
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FiG. 3. Contours of the total volume flux Q in the upper layer for the same situation as for Fig. 2. Positive
values indicate the flux is in the opposite direction to normal Kelvin wave propagation. Note that the contours
have tangents parallel to the X axis on the line where the flow is critical (¢ = 0). Values are given in non-

dimensional units.

having transitions from subcritical to supercritical
flow at a minimum in shelf width is a property of
the particular case studied here. It does not follow
that the same is true with boundary currents with
different potential vorticity distributions flowing
over different types of topography.

The example in Fig. 5, however, does draw atten-
tion to one important point—and that is that changes
in shelf topography can cause dense water to be
brought to the surface along the inner edge of the
shelf. This is not a manifestation of ‘‘upwelling’’
- in the way this process is usually envisaged, as
the motion is mainly horizontal and alongshore.
However, individual fluid particles may slowly move
upward and shoreward in response to topographic
changes and so be forced to the surface without
any assistance from the wind or other such agency.
In the Agulhas Current system, such dense water
is found to outcrop at the surface near to the shore
south of 32°S (see, e.g., Bang, 1970), and it seems
quite likely that topographic effects of the type dis-
cussed here are important factors in causing this to
occur. In the above model, outcropping of dense
water at the surface only occurs when the flow has
become supercritical, but it does not follow that this
is necessarily the case for boundary currents with
different potential vorticity distributions.

Finally, and despite the words of caution about
the applicability of this model to the Agulhas
Current, the solution depicted in Fig. 5 does look
remarkably like the observed current near Durban.
In particular, the reversed flow on the wider shelf
to the north of Durban is found, with the above-
mentioned upwelling to the south. Later sections
describe attempts to model the observed current, at
the same time determining whether a transition to
supercritical flow can occur where the shelf is
narrow.

7. Method of solution for a steady multi-layer jet

The simple model introduced in Section 4 is use-
ful for illustrating the sort of behavior an inertial
jet can have when it is influenced by topography,
and suggests qualitative features which might be
looked for in observations. To apply the ideas in
quantitative fashion to a particular current, how-
ever, requires much more detailed modeling of the
current structure. The example used here to il-
lustrate what may be done is the Agulhas Current
in the region shown in Fig. 6. The current flows
strongly poleward across this region, and the shelf
width decreases considerably in the direction of
flow. The model of the previous sections predicts
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Fi6. 4. Wave steepening effects for a uniform potential
vorticity current over a shelf of constant slope. (a) Case where
the interface strikes the surface. If the line where the interface
meets the surface is initially sinusoidal, wave steepening tends
to distort it to the configuration shown. This is because crests,
that is, points of the front furthest from the shore, tend to move
poleward more slowly than the troughs. (b) Case where the inter-
face strikes bottom. In this case the crests, i.e., points on the
line of intersection furthest from the shore, tend to move
equatorward faster than the troughs.

an intensification of the current in such a region
and this, indeed, is found to occur. However, de-
tailed calculations of the changes require a better
representation of the way in which potential vor-
ticity and density vary across the section.

The density variations will be modeled by having
two active upper layers instead of one, and a deep
inactive layer off the shelf. It is not a good ap-
proximation to take a constant potential vorticity
in each layer for, as Gill (in Pearce, 1977) pointed
out, the potential vorticity in the 16—-20°C layer in-
creases by a factor of 3 as one moves toward the
shore. A look at the observations shows the high
potential vorticities are associated with a region of
cyclonic vorticity where the current decreases from
its maximum value toward zero at the coast (which
does not happen with the model profiles shown in
Fig. 1b). This decrease is presumably a cumulative
effect of friction over the whole of the distance in
which the current has been rubbing against the shelf,
and suggests that a purely inertial theory could not
be used to predict changes of current structure over
such a large distance. However, in a small distance
of the order of 150 km where large topographic
changes occur (as in the region of study), inertial
effects might be expected to dominate over friction
and so a purely inertial theory would be appropri-
ate. Indeed, the calculations by Gill (1977) show that
the potential vorticity distribution at the Port Ed-
ward section is very similar to that at Durban (see
Fig. 6), so the assumption of conservation of po-
tential vorticity over this distance seems justified.
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There are two sorts of calculations which will be
considered. The first is to calculate how slow geo-
metric changes with distance along the coast induce
changes in the current and density structure of a
steady flow, assuming potential vorticity is con-
served. The second is to calculate the effects of
these changes on the speed of long waves, with a
view to finding whether there are disturbances
which change from being subcritical to supercritical.

In this section, the calculation of the steady flow
of an inertial jet over topography will be con-
sidered. The properties of small disturbances will
be treated in a later section. The steady flow can
be studied in quite general terms by supposing the
current to consist of N homogeneous layers, each
having a constant density p;, wherei = 1,2, ...,
N refers to the number of the layer in order start-
ing at the top. Since the flow is steady, Eq. (2.7)
implies that a streamfunction y; can be specified in
each layer, where

_ o

Y,
Diui= , —_dl
Oy

Dy, = , 7.1
i . (7.1
and (2.8) implies that the potential vorticity (2.9)
in a given layer is a function only of the stream
function for that layer, i.e.,

Di = Di("’i)’ (7.2)

where the potential depth D; is a given function of ;.

The way v;, p;, D; and yy; vary with x at any given
section (y fixed) can be found by solving a set of
ordinary differential equations, viz.,

31)1 Di _

= - 1, 7.3
Ox f [D(tlfi) ] 73
o

Y= Do, 7.4
6x Dlvl’ ( )
op;

i f, 7.5
» Sui, (7.5)

[which are just rearrangements of Egs. (2.9) and
(7.2), (7.1) and (2.5)] and the hydrostatic equation
(2.3). In addition, there is the supplementary
condition

pv=10 (7.6)

where the bottom layer (see Section 3) is infinitely
deep. Otherwise the condition is simply that the total
depth of the layer is equal to the oceandepth H, i.e.,

3 D= H. 7.7

The integration can proceed inward from some
large value of x (the method of applying the con-
dition at x = » is discussed in Section 8) using
standard finite-difference methods (see, e.g., Mour-
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sund and Duris, 1967). At certain places, the depth
of one of the layers will vanish, and the integration
will continue from that point with one less layer. If
the convention is adopted that y; is measured from
zero at the inner edge of the layer and reaches a
value ¢, at x = «, then, of course, the integration
must give yy; = 0 where the layer depth vanishes. If
guessed values are used at infinity to start the inte-

gration, the conditions
¥; =0, where D; =0 (7.8)

will not in general be satisfied, and some interpola-

SEA_ SURFACE

SEA SURFACE

FiG. 5. An example of a boundary current whose flow is hy-
draulically controlled by the geometry. (a) Topography: The
boundary consists of a continental shelf with unit nondimen-
sional slope and a width which varies parabolically with down-
stream distance. At the shelf break there is a vertical cliff. (b)
Configuration of the interface. The current flux in the upper layer
is directed toward the reader, with control exerted by the section
where the shelf width is a minimum. Upstream of this control
section the flow is subcritical with the interface striking bottom
on the sloping boundary. The point of intersection rises with
distance downstream and reaches the surface a little down-
stream of the control section. From this point onward, the
interface meets the surface in a front which is in a fixed position
relative to the shelf break. Shoreward of the front, the cold
water of the lower layer outcrops the surface.
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Fi1c. 5¢.. Contours of the upper layer streamfunction. The total
flux is 0.6, with this value reached as x — c; the contour interval
is 0.1. Note the flow reversal upstream of the control section.

tion procedure must be used to find the correct
starting values.

8. The boundary condition at infinity —expansion
in normal modes

Suppose that, at a particular section, the value
Y; at x = @ is ys,, and the corresponding value of
D, is D, given by

Diw = D_i("’iw)- (81)
Then, as x — «, the solution satisfies the condition

D; — Dj., vi— 0, Ui = Yo, Di— Piw, (8.2)

" where the p;., can be calculated from (2.3) and the

supplementary condition (7.6).
For sufficiently large x, the solution will be a small
perturbation from the state given by (8.2) and thus
linear theory can be used. As a result the equations
to be satisfied are (2.3), (7.5) and the linearized
form of (7.3), viz.,
Gvi (Dl - Dioo)

e =f (8.3)

D

The solution representing perturbation from values
at infinity can be expressed as a sum of normal
modes of the form
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FiG. 6. Bottom topography between Durban and Port Edward after Goodlad (1978) and Moir (1975).
The lines along which the sections discussed in the text were measured are also shown.

D; — D; = A; exp(—AX)
v; = C; exp(—Ax) , (8.4)
Pi — Pin = C} exp(—Ax)
where by (7.5) and (8.3)
SA; Sf?A,
Ci = - = s C,=~——0 /. 8.5
AD;. LMDy ®-3)

Substitution from (8.4) and (8.5) in (2.3) gives a
matrix equation for-the vector A;, viz.,

A, A, "
B - ) = e 2
n=12,...,N -1, (8.6)
where by (7.6) and (8.5),
Ay =0. 8.7

The set of homogeneous equations (8.6) has a solu-
tion if and only if the determinant vanishes, and
this determines the possible eigenvalues A® (k = 1,2

. N — 1) and eigenfunctions A®* which can be

normalized in some way. Thus the condition at
infinity can be written

N

_ N~1
D; — Dy, = 2 biA®
) N-1
w=-L 5 %apl | @8
Dzoo k=1 Ak
2 N-1 bk
Pi = Piw = 2 AP
Dzw k=1 )\k

where the b, (k = 1,2 ... N — 1) are coefficients
which need to be adjusted from some initial guess
until the conditions (7.8) are satisfied for each layer

The only approximation used is to replace D; in
(7.3) by Dm, so Eqs. (8.8) can be applied at any x for
which D; is close to D;. for all larger values of x.
The value of y; can be found by using the pro-
portionality between changes of streamfunction and
changes of Bernoulli function which applies when
the potential vorticity is constant [see (4.4) and
(7.4)]. This relationship gives

f

e =) + %v,—z.' 8.9
Do y 4 (8.9)

W — iw) = B; — By = py



SEPTEMBER 1979

9. The wave speed of disturbances

We now consider small disturbances to the steady
flow of the type calculated above. Suppose that the
disturbance is long compared with the width of the
current, so that the boundary-layer assumptions still
apply, but is short compared with the alongshore
(y) scale on which the topography varies, so that
the disturbance sees only parallel flow with depth a
function of x only. There will be different possible
disturbances of this type, each with a different
structure and with a different speed c. If a circum-
flex is used to denote the undisturbed flow, the
slightly perturbed flow is assumed to have the form

D(x) + vi(x)e(y)
Pi = Pi(x) + pi(x)e(y)
D; = Di(x) + D'i(x)¢(y) ,

U;

.

d
Uy = u:-(x)éf—m

where ¢ is an arbitrary function and

y=y — ct. 9.2)

Substituting these in (2.3), (2.5), (2.6) and (2.7) yields
the following equations for the perturbation:

Prst — Pn = —8n _Z‘D’i, 8.3
dp’;

fo, =21 9.4)
dx

dv;
@ — o)} + (f + —”—)u; +pl =0, (9.5
dx

d . .
(3 — c)D; + o (D) + Div; = 0. (9.6)
An alternative to Egs. (9.4) to (9.6) can be ob-
tained by first using the expression for u given by
(9.5) in (9.6) and then using (9.5) to give v} in
terms of p;. The result may be written

d [+ dp; v dD,
_(Df ‘&) —prpy — Joi 4D
dx dx v; —c dx

where ﬁ,(x) is the undisturbed value of the ‘‘poten-
tial depth’’ (see Section 2), i.e., it is given by
[cf. Eq. (2.9)]

S.7

D-l—i(f + %) =5ii . 9.8)

The boundary condition of vanishing perturbation
as x — « can be used to express the p; as sums of
normal modes as outlined in the previous section.
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The relative contributions of each mode can then
be found by the requirement that the flux

Duy, =0, i=2,...N -1, (9.9)

at the inshore edge of each layer (whether this be
at the coast or at a point where the depth of the
layer becomes zero). In terms of p;, Eqs. (9.5) and
(9.4) show that the above condition may be written

ph+ b —¢) _dp_z
f dx
Finally, the possible values of ¢ are determined by

finding under what conditions the flux D ,u} in the top
layer vanishes at the coast.

=0. (9.10)

10. Application to the Agulhas Current

The region shown in Fig. 6 seems well suited for
applying the techniques discussed in previous sec-
tions. Thus, while the Agulhas Current flow at any
section is approximately parallel to the line of the
intermediate depth contours, there are considerable
changes in shelf topography over a distance small
enough for the conservation of potential vorticity to
seem a useful concept. The Current in this region is
quite strong, and the geostrophic assumption has
been applied with some success to describing the
broad flow patterns (Duncan, 1970). In this area the
Current sources are the Mozambique Channel
[though this is a sporadic source not operating at
times (Menaché, 1963)] and a movement of water
westward from south of Madagascar and also a re-
circulation of waters from the south. An inflow into
the main current stream south of Durban has also
been confirmed by satellite-tracked drifters reported
by Stavropoulos and Duncan (1974) and Griindlingh
(1977).

The topography off Durban shows a terrace-like
structure with the Current core lying some 40-50
km offshore (Pearce, 1977). Although considerable
variability in the position of the core is experi-
enced, the Current generally moves closer inshore
with the topography in its journey southward. An
analysis by Pearce et al. (1978) describes a pre-
dominantly northward flow close inshore off Dur-
ban, and a consequent semipermanent, cyclonic
gyre extending to south of Green Point.

The two sections to be used in an application of
the model are the ones shown in Fig. 6. Since the
currents in practice are not steady, as assumed in
the theory, but highly variable, mean sections will
be used in the hope that they will be more suitable
for applying the theory. The means are based on 42
transects off Durban and 17 off Port Edward which
were made in all seasons between 1972 and 1975
(Pearce, 1977). Data were collected on temperature,
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salinity and directly measured current velocity to
a maximum depth of 500 m. The current was de-
termined by using a hydrosonde lowered from the
R.V. Meiring Naudé with this reading added on to
ship’s drift to obtain the absolute current (Stavrop-
oulos, 1971). For present purposes, an average cur-
rent was computed for the upper 100 m, and with
this as a reference level, the geostrophic currents
were calculated for the lower 400 m. The average
sections of water properties agree well, though the
upper waters at Port Edward are slightly less dense.

The two velocity sections thus obtained are shown
in Fig. 7. It 'was decided to simulate these with a
three-layer model (N = 3) using the 26.20, surface
for the upper interface, and a value g, = 0.019 m
s~2. Fig. 7 shows the positions of the two interfaces
and also the layer velocities obtained during the
computations. The characteristics obtained from
isolated measurements of the deeper waters (M. L.
Griindlingh, private communication) indicate an ap-
propriate value for g, is 0.008 m s2.

The equations given in Section 7 were integrated
using a fourth-order Runge-Kutta procedure with an
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integration interval sufficiently small to ensure
negligible variation with smaller intervals. Func-
tions D,(y;) were chosen to fit the data shown in
Fig. 7. This was done independently for both sec-
tions and the results are shown in Fig. 8. It can
be seen that there is very good agreement between
the sections, showing that the principle of potential
vorticity conservation can be used with confidence
over such a distance. However, there is a difference
between the sections in that the total flux ¢, in
each layer is notably greater at Port Edward than
at Durban, in keeping with the aforementioned
westward moving waters joining the Agulhas Cur-
rent in this region. This is also in line with the
ocean interior flow problem discussed by Green-
span (1969).

Harris and van Foreest (1977) also postulate the
existence of a ‘“‘Mozambique Ridge Current’’, and

that about 107 m® s~! may join the Agulhas Current
from this source south of Durban. In addition, a
contribution is likely from the return Agulhas Cur-
rent; in any case the order of magnitude found here
appears to be right.
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Fic. 7a. The sections off Durban showing contours of longshore velocity obtained by direct measurements using
methods outlined in the text. There are also two lines showing the positions of the interfaces used in the model; the
upper one corresponds to the 26.20; isopleth, and does not differ from the measured value by more than 10 m at any point.
The upper panels show the layer velocities obtained in the course of the model computations. The bottom topography
was modeled by linear sections terminating at the points shown by circles.
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Fi1G. 7b. As in Fig. 7a except for Port Edward.

This inflow would represent a problem if it were
required to calculate the flow at Port Edward using
only the inflow data at Durban. This is not suf-
ficient by itself, as the properties of the fluid joining
the current from the interior of the ocean need to
be known as well. However, it remains true that the
method outlined in earlier sections could be used to
calculate the current between the two sections on the
assumption that the inflow from the ocean interior
was evenly distributed between the two sections.
Thus the boundary condition as x — « can be such
that the ;. can include given functions of y.

Fig. 8 also shows significant differences in the
potential depth in the nearshore region, this pre-
sumably being due to friction effects. The region
where the differences occur, however, represents
only a small fraction of the total flow.

Having modeled the mean flow properties, the
wave speeds of long-wave disturbances may then
be calculated by the method outlined in Section 9.
If there were no shelf (i.e., a vertical cliff at the
coast) and no mean current, there would be two
possible wave speeds. These correspond to the Kel-
vin-wave speeds which may be determined using the
procedure of Section 8. For the values of g; and
D;. used in the model, these two modes propagate
equatorward at speeds of 3.7 and 2.0 m s

If a poleward current (and topography) is intro-

duced, the speeds of the Kelvin modes tend to be
reduced, and the amount of reduction can be found
by doing the calculation outlined in Section 9. In
fact, the final step of this procedure (we are grate-
ful to Dr. Peter Killworth for doing this calculation
using a program he has developed for the purpose)
was to calculate the value of D,u; at the coast as
a function of ¢, and hence to find by interpolation
the values of ¢ for which D,u; vanished. An initial
rough calculation showed there are two such values,
with the amount of reduction at Port Edward greater
than that at Durban. This is in line with the compu-
tation from the model studied in Section 6.

Then a more detailed calculation was performed
for the Port Edward section using an analytic fit to
the velocity profiles shown in Fig. 7b, and approx-
imating the topography by a vertical cliff 10 km from
the coast. This gave the first-mode wave speed as
2.4 m s7' and the second-mode speed as 0.4 m s™.
There is, however, some uncertainty in these values
because of inaccuracies both in fitting the observa-
tions and in the analytic fit. To demonstrate the
closeness of the second-mode speed to zero, the
velocities were increased until the wavespeed be-
came zero. The increase required was only 15%. It
was concluded, therefore, that the second mode at
Port Edward was close to being critical and that
transition from flow which is second-mode sub-
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Fi16. 8. The potential depth D; as a function of y; obtained in the model simulation for Durban (solid line) and Port Edward (broken line).
The figures given at the end of the curves refer to the values of the streamfunction at x = <.

critical to second-mode supercritical could well oc-
cur in the vicinity of Port Edward. Confirmation
would require profiles further downstream but these
are not available.

It should be mentioned at this point that although
the number of modes for layers with constant
potential vorticity is the same as in the absence of
currents, new modes can arise when variable po-
tential vorticity is introduced [this makes the last
term in (9.7) nonzero]l. Examples are given, for
instance, in the review article of LeBlond and
Mysak (1977). With the Agulhas current model, only
two equatorward-propagating modes were found at
each section, and these seem to be the only ones
relevant to discussion of transition. It is possible
that poleward-propagating modes also exist, but
these are not easy to calculate because of the
existence of critical layers (i.e., of points where
D; = 0), and so the calculation was not attempted.

11. Discussion

Where large horizontal gradients occur, it is pos-
sible that the simple form of potential vorticity
given by (2.9) is no longer conserved. For instance,
Hoskins and Bretherton (1972) have used a more
complete expression for potential vorticity in their

analysis of atmospheric fronts. However, the
formulation used here is valid provided that
B0 00 9 d0 aLy
dx 0z 0z Ox

Measurements made at the two sections (Durban
and Port Edward) indicate that the left-hand side
of (11.1) is always at least an order of magnitude
greater than the right-hand side, so the formulation
used seems appropriate in these circumstances.

Another possible weakness of the simulation is
the assumption of no motion below depths of around
1000 m, whereas Duncan (1970) found significant
flow at such depths. His estimate of the total
transport was in excess of 80 x 10° m® s!, whereas
a more recent analysis by Griindlingh (1979) gives
70-80 x 10° m3 s~! as a reasonable value, but with
large tolerances on any individual measurement.
With allowance for the deeper flow, these seem
consistent with the estimates obtained here of 60—
70 x 108 m3 s™! in the two upper layers.

The main interest in the results is the demon-
stration that changes in shelf topography can cause
substantial changes in the structure of a boundary
current. In particular, the minimum in the shelf
width can exert a hydraulic control on the current,
and the example considered in Section 6 showed a
tendency for reversed flow upstream of this point
and for outcropping of cold water near the shore
downstream of this point. Both featurés are ob-
served with the Agulhas Current near Durban.
Computations of the long-wave speed using ob-
served potential vorticity profiles lends support to
this idea in that they indicate a tramsition from
flow which is subcritical with respect to the second
mode at Durban to flow which is supercritical with
respect to this mode downstream at Port Edward.
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