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ABSTRACT

We consider the stability of a solitary wave packet of short gravity waves propagating in waters of
moderate depth. It is shown that such wave packets are unstable to long transverse disturbances. The
calculation indicates that steep swell may be more unstable to transverse disturbances when over the

continental shelves than in deep waters.

1. Introduction

The evolution of modulated wave systems has
generated considerable recent interest. For water
waves the evolution equations depend on the fluid
depth in two ways. First, a packet of waves forces
fluid motion on the length scale of the modulation
envelope. The amplitude of the forced wave in-
creases as depth decreases and the group velocity
of the carrier wave approaches the speed of a
long wave. Second, as the depth parameter kh (k
= wavenumber, 4 = water depth) diminishes and
crosses a critical value of kA = 1.363 (Hasimoto and
Ono, 1972) steep Stoke’s waves change from moving
faster to moving slower than linear gravity waves.
A value of k& = 1.363 makes a boundary between
two distinct modulation patterns for solitary wave
packets. Forkh > 1.363 there are envelope solitons.
These are one-dimensional modulations that move
in the same direction as the carrier wave crests.
For kh < 1.363 envelope solitons are replaced by
waveguide solitons. These propagate orthogonal to
the wave crests, independent of the coordinate in
the direction of propagation of the carrier wave.
In this paper we focus attention on envelope solitons
and the stability of these solitons to long transverse
perturbations. It is shown that envelope solitons are
more unstable in waters of moderate depth than their
deep water counterparts.

2. Stability Analysis

We study the stability of solitary wave packets
(kh > 1.363) to transverse disturbances. Previous
studies have been made for deep water solitons by
Vakhitov and Kolokolov (1973), Zakharov and
Rubenchik (1974) and Saffman and Yuen (1977). The
analysis we employ parallels that due to Zakharov
and Rubenchik (1974). This approach has been criti-
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cized by Infeld and Rowlands (1977) because the
perturbation quantities are not everywhere small
compared with the unperturbed state. The objection
has been discussed by Laedke and Spatschek (1978)
who showed that an expansion assuming the norm
of the perturbation quantities small compared with
the norm of the basic state yields the Zakharov and
Rubenchik (1974) results. Thus, in this discussion we
employ the direct perturbation scheme using the
analysis of Laedke and Spatshek to justify the
procedure.

The basis for the calculations is the Davey-
Stewartson equations for the behavior of the enve-
lope of a gravity wave of carrier frequency . These
equations are the leading terms in an expansion of |
the irrotational flow equations in wave slope
e(e = ak,a = wave amplitude) and are valid between
a deep water limit ek2 < 1 and a shoal water limit
€ < (kh)?. Consider a slowly varying wave train de-
pending on € = ex, 7 = ey and 7 = €. The co-
ordinate € is in the direction of propagation of the
carrier wave, 7 is a normal coordinate and 7 is time.

The equations are

A, + Mg + pAm =v|A|2A+ 1,40, (1)
?|A|?
MOQs + Q= K1 ‘—l‘—'— > 2
on?
and the free surface displacement is
gl = —iewA expli(kx — wt)] + c.c.
2 + 2kh(1 — o
4 gh — ¢/’

The sea level variations described by (3) may be
thought of as follows: On the left-hand side is the
observed sea level fluctuation associated with the
passage of a wave packet. It is composed of two
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parts. The last term in (3) is the plane wave radia-
tion stress contribution to sea level [see Eq. (16.99),
Whitham (1974)]. The Q contribution is a result of

1 o' (k) ¢,
A = _ k < 0’ = = =
5 @'k o T
s 2
, =k {9-—100‘2+904— al
4wo? gh — ¢4
k4
v = [2Cp + Cg(l - 02)],
wc,
1 —_
Ky = ghcg[ 2¢p + el — ) ] , o = tanhkh
gh - ng »

Larsen (1978) illustrates the general behavior of sta-
tionary one-dimensional soliton solutions of (1). Be-
cause the coefficient v approaches zero as kk ap-
proaches 1.363, solitons of fixed amplitude ap-
proaching this depth have ever increasing widths.

We simplify our calculations by restricting atten-
tion to stationary solitons. This defines a basic state
which is a solution of (1) and (2) given by

A = P(£e 1, (%)
0 =0, (6)
where
Mg + Vb — vd? = 0, @)
yielding the solution
2 1/2 _1 1/2
oo a5
v A

We consider a perturbation of the basic soliton
of the form .

A = [§(é) + u + iv] exp(—¥*7) ®)

and, furthermore, let u, v and Q be proportional
to expli(ilm — Q7)]. Substitution into Egs. (1) and (2)
neglecting quadratic terms in the perturbed quan-
tities yields

(L, — pl®u = Qv + 1n¢Q, (10
(Lo — wi®)v = Qu, (11)
MO — mi2Q = —2k,Pu. (12)

This eigenvalue .problem is to be solved sﬁbject to
vanishing u, v and Q as ]§ | — o, The operators
L, and L, are defined ’

. 92 ,
Lo—)\:??JrYZ—th (13)
Lo=2Z (14)

o v: — 3udl. |
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two-dimensional patterns of surface wave modula-
tion. The equations are in a coordinate system sta-
tionary with respect to the group velocity ¢, of the
carrier wave. The coefficients are’

S

0 B

- ©)

py = gh

)

The basic soliton is a solution of Ly¢ = 0. Consider-
ing the auxiliary functions

ug = ¢y, ug'—“—(—?g,
9y’ (15)
vy = —&d, v = ¢,
it follows from (13) and (14) that
Lovg =0, Lgvg = 2Aug, (16)

Lyuy =0, and L,ui = vg.

Thus, LoLius = 0 and L,Lyv, = 0, where u, and
v, are linear combinations of the even and odd parity
auxiliary functions defined in (15). It also follows
that u, is a solution of the eigenvalue equation

(Lo — pl*)(Ly — pl®)u
= Qu + w(Lo — p)pQ, (I7)
in the limiting case where
piz2—0; 2=0, Q =0.

On expanding the dependent variables in a power
series in ul/? (ul? small compared with y?)

v =v + i, + ...
u=uo+M12u1+...

, (18)
O = ul2Q2 + ...
Q = pl?Q; + . .
we find
LoLlul = (Lo + Ll)uo + Q%uo + V1L0¢Q1. (19)

Eq. (19) will have a solution only if the right-hand
side is orthogonal to the conjugate equation L,L,v,

! A misprint omitting the w in the expression for v, in the '
Davey-Stewartson paper is corrected in the above.
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Fic. 1. The unstable eigenvalue as a function of kh.
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= 0. It follows that
ot = _ -t
(v |ut)
X {(v§ [(Ly + Lo)udy + vi(vi|LopQ1)}. (20)
-1
W=
Y (oy|ug)

X {(vg|[(Ly + Lo)ug) + vi{v5| Lo Q7)}, (1)

since inner products of functions of opposite parity
‘vanish. Inner products are defined (a |b) = {rabdl.
The inner products may be readily evaluated (de-
tails are in Appendix A) with the result

I= r H*dé, 22)

ay2

for the symmetric stability eigenvalue. This is an
identical result to the deep water soliton equation
(Q = 0); thus, there is no depth influence on the
symmetric perturbation eigenvalues. The situation
is different for the asymmetric perturbation. Here
we find

~272 4 2 2
o = __{-w - __i‘illvl] . @)
I 3 3 }\1 I.L ,V
It is convenient to rewrite the unperturbed soliton
¢ = a sechB¢, (24)
where
2 1/2 v
=y(Z) , B=|— —|a, 25
“ 7(9) ( 2A )a 22)

in order to fix the soliton amplitude and allow its

width to vary as the depth diminishes (v — 0). This
yields for the unstable asymmetric mode
2 4 )\
QZ_ = - = lezaz + - — f(,v,lzaz < O.
‘ 3 3N

(26)

The leading term in Eq. (26) is directly related to
the Stokes correction for the phase speed of the
wave. The second term comes from the Q contribu-
tion to sea level. This term relates to that portion of
the sea level fluctuation not resulting from the plane-
wave radiation stress. The relative contributions of
each of these terms to the total instability is depicted
in Fig. 1. In this figure we show the nondimensional
quantity *7/K*a® as a function of kh. The Stokes
term is labeled § and the O contribution is labeled
L. The curve labeled T illustrates the total growth
rate. For kh values <2.7 the instability is dominated
by the two-dimensional contribution Q. The asymp-
tote, kh large, yields the results of Zakharov and
Rubenchik (1974).

In deep water the stability diagram for envelope
solitons indicates both a maximum growth rate and
a cutoff wavenumber above which solitons are stable
(Saffman and Yuen, 1977). Presumably, there is a
similar behavior for the Davey-Stewartson model.
The presence of the terms in the eigenvalue equa-
tion proportional to Q complicates the study. Thus,
we have not determined that there exists a maximum
growth rate nor have we established a cutoff wave-
number for the instability. Nevertheless, for suf-
ficiently small depths, instability is dominated by
interaction with the two-dimensional structure of the
induced sea level fluctuations and for long transverse
disturbances it grows more rapidly than in deep
water.
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Note in Proof: After this paper was accepted a
paper was published by Mark J. Ablowitz and
Harvey Segur (On the evolution of packets of water
waves. J. Fluid Mech., 92, 691-716). This paper
treats the problem discussed in this paper and a shoal
water wave system. They arrive at an identical sta-
bility criteria to that in this paper. However, the
details of the soliton stability as a function of depth
are unique to this paper.
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APPENDIX
Details of the Stability Calculations

The evaluation of the eigenvalues () requires the
determination of a number of inner products. We
consider these inner products in the Appendix.

The term (v{|ui). This term is by definition

ol a6
which has the value
' 8l
(v |ug) = - el (A1)

with

- r g,

The term (vg |45 ). This term is by definition

- j " thbeds
which has the value
I
olug) == A2
(vg|ug) 5 (A2)

The term (v¢|(L, + Lo)us). We note that L,
=L, — 2v¢? and that L,u§ = ¢, then we calculate

(0§ |(Ly + Loyui)

= r (2¢2 + 2p¢? j’:)dg =1. -(‘A3)

—0
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The term (vgl(L1 + Lo)ug). Since Liug =0, we
have

(o7 [(Ly + Lo)ug) = 2(v5 |dous) = %yl (Ad)

The term (vg |L0¢Q+ ». We note that the operator
L, may be written

L-il(ptl)
¢ 9 of ¢
then it follows that the inner product is
+ +\ = 2__ + =
(58| Lo Q1) AL a§(¢ o Q1 Jdé = 0. 49

The term vy |Lo¢Q,). The solution of Eq. (12)
may be written

Ky
pal \2
"*‘(1‘)
£
X [ j expl(uIA)VHx ~ )]bebedx

- j exp(p, /M) 12 (¢ — x)]¢¢xdx} :

&

Using the differential expression for the operator
Lo we find

(v | Lo Q7)
o0 6 2 _ _ -]
= ~Aj f——a§ (¢?07)d¢ xf

N -~ -

$*07dé.
The derivative of Q7 has the value,

- _ _[ K
QIE (ﬂ)\l )

£
X [ j expl—(slHA)EE ~ X)]bbrdx

- J " expl—(u i) ¥(x ~ E)bbedx
£

and because ¢? vanishes at +o we may take the limit
as ul? — 0 before integration. Thus, we have

}\Kl

“-Ta3v @9

(v | Lo Q7 )
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