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ABSTRACT

It is shown that the oceanic internal wave field is too energetic by roughly two orders of magnitude
to be treated theoretically as an assemblage of weakly interacting waves. This may be seen both from
recent weak wave theoretical calculations which contradict their premises and also from inspection of
magnitudes of advection and wave propagation terms. Thus, much recent discussion of results of impli-
cations of weak wave theory should be questioned critically. Scaling arguments based on buoyant turbu-
lence are reviewed briefly. The role of vertical mass flux as distinguishing weak wave interactions from
stronger turbulence is discussed. Possible progress by renormalization of wave interaction equations is

considered.

1. Observations

Spurred by a wide variety of observations of
oceanic temperature and velocity fields and by the
synthesis of these observations in the model vari-
ance spectra suggested by Garrett and Munk (1972,
1975) and by Cairns and Williams (1976) and
Desaubies (1976), several theoretical efforts have
attempted to account for the statistical state of the
internal wave field. For the model spectrum, or GM
spectrum, temperature fluctuations may be inter-
preted as vertical displacements which may be
related to horizontal displacements or velocities ac-
cording to the linear dynamics of internal gravity-
inertial waves of given frequency. The dependence
of total wave energy E on depth z due to variation
in stratification or Viisild-Brunt frequency N(z) is
assumed to follow WKBJ scaling, viz., nearly that
E « N(z), implying that wave trains propagate al-
most unimpeded through the depth of the ocean. Be-
cause free waves do not propagate at frequencies
o > N, frequency spectra are predicted to fall off
sharply near N. Thus the model spectrum is based
on an assumption of nearly linear wave dynamics.
Consistency of observations with linear internal
wave dynamics has been discussed by Fofonoff
(1969) and by Miiller et al. (1978). Overall, the
good fit between various observations and the model
spectrum suggests that the oceanic internal wave
field may be treated in first approximation as a
superposition of weakly interacting waves. None-
theless, the point of this paper will be to argue that
the oceanic internal wave field is too energetic by
roughly two orders of magnitude to be so treated.

In discussing the above observations, at least two
caveats are required. First, temperature fluctuations
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may represent not only internal wave displace-
ments on a smooth temperature profile but may be
due also to a variety of processes which generate
thermohaline finestructure. Confusion or con-
tamination of internal wave spectra by finestructure
has been discussed, e.g., by Joyce and Desaubies
(1977). A second remark is that relative nonlinearity
depends on the length scale considered. Usually
it is supposed that small-scale features (<1 m
vertical) are more aptly described as turbulent
rather than as wavelike. Thus, small-scale measure-
ment of temperature gradient or of shear are not
Gaussianly distributed but are more intermittent,
as in Osborn (1978). However, even the larger
internal wave scales (>10 m vertical, say) are
argued below to be highly nonlinear as well.

Although the GM spectral model supposes linear
dynamics, for example, to relate temperatures and
velocities, linear dynamics cannot account for the
distribution of energy among the waves, i.e., for the
shape of the spectrum. Moreover, the GM model
specifies the absolute amplitude as well as shape of
the spectrum but only as an empirical fit to ob-
servations. A theoretical goal is to account for that
empirical spectrum. There are three parts to the
problem: 1) energy sources, 2) energy dissipation
and 3) energy redistribution mechanisms. Energy
sources, such as discussed by Thorpe (1975), are
very irregularly distributed in space or time, and
hence do not readily account for the universality of
the GM spectrum. Rather, we focus on energy
redistribution and dissipation mechanisms as likely
to control the wave spectrum. Here there are three
theoretical approaches: 1) saturation control, 2)
weak wave-wave interactions and 3) turbulent
cascade.
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2. Saturation

Especially, the universal amplitude of the GM
spectrum suggests some saturation control whereby
one imagines that a variety of possible energy
sources pump energy into the wave field which
becomes so energetic that ‘‘breaking’’ occurs, lead-
ing to rapid dissipation of any excess energy. The
model is much as Phillips (1958) saturation hypothe-
sis for wind-generated surface gravity waves. How-
ever, for internal waves it is more difficult to define
the ‘‘breaking’’ process or even suitable criteria for
breaking. In simple cases one may recognize either
shear instability, as in Miles (1961) or Howard
(1961), or gravitational instability, as in Orlanski and
Bryan (1969). In fact, these mechanisms work to-
gether, as discussed by Thorpe (1978), while break-
ing in the open ocean, many-wave environment
may be of a more amorphous, unrecognizable kind.
Thus, while the absolute amplitude of the GM
spectrum suggests some saturation control, the
notion of internal wave breaking is vague and in
particular does not predict a shape for the wave
spectrum.

3. Weak wave interaction

Whereas saturation control is a suggestive but
vague idea, theories of weak wave interaction
are rich in detailed prediction. However, in their
presentations of weak wave calculations for the
internal wave field, Olbers (1976) and McComas and
Bretherton (1977) do not discuss extensively the
theoretical basis for these calculations which was
developed by Hasselmann (1962) or Benney and
Saffman (1966). It is important to review briefly that
basis in order to assess the subsequent calculations.

Let a physical space field ¢(x,7) have a Fourier
representation

s, = [ didlin) exptikn. (1)
Then suppose we have obtained a quadratically non-
linear equation of motion for ¢(k,?), i.e.,

(0 + IQI)&* = 8J dkmdknAlnmé’mé)ns 2

A

where subscripts /, m, n, denote both wave vector
k and an index s which labels distinct free wave
modes propagating for any k. The asterisk denotes
complex conjugation, while [, denotes integration
over wave vectors satisfying k; + k,, + k, = 0.
Apmn is a coupling coefficient whose form depends
on the kind of nonlinearity in the equation of mo-
tion of ¢(x,?), while § is included as a factor scaling
the strength of nonlinear coupling. The usual ob-
Ject is to predict the time evolution of the average
variance spectrum ®(/,7) = (¢df¢,), where angle
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brackets denote a hypothetical average over an en-
semble of similar but not identical initial conditions.

Weak wave or ‘‘weak turbulence’’ theory then
considers the case where § is small in some sense.
For very small 8, the system is close to free wave

propagation )
& = a,exp(iQy1), 3)

with a, a constant, complex amplitude. Nonlinearity
is included by expanding a; in a power series in
5, hence one may write ®(/,¢) = {aj*a,) as a power
series in 8 where the lowest order term @, is constant
and higher order terms 8"®, depend on ¢. For most
systems with guadratic nonlinearity, ®, contains
terms proportional to ¢z due to interactions among
triads of waves satisfying the frequency resonance

condition
0+ Q.+ Q,=0. 4

Thus, no matter how small the wave amplitude or,
equivalently, how small § is chosen, there comes a
time when 8®, > &, and the power series breaks
down. This difficulty is resolved by supposing that
&, which is constant in the ‘‘fast’’ time r may gradu-
ally vary over a “‘slow’’ time 7 = 8%. Then one ab-
sorbs the secular growth of @, into the slow varia-
tion of ®, as

0D,

or

= Cr®,, (5)
where C7®, denotes the coefficient of 7 in ®, in the
limit ¢ — . There remains a difficulty in evaluating
C7®d, which integrates over averages of four com-
plex wave amplitudes, say, (a,anapa,). This is re-
solved by the random phase approximation that the
phase of each wave is statistically independent of
all other waves and hence, e.g.,

(aamarpay,)
= Q,®,[3(] — p)d(m — q) + 8(1 — q)8(m —p)] (6)

for fixed [ and m. Substitution of (6) into (5) is also
called the quasi-gaussian approximation whose con-
sistency in the limit 8§ — 0 was demonstrated by
Benney and Newell (1969). The result is a transport
equation which usually has a form

oD,
or

=T, = J dk  dk y Bimy(Pp P,
A

- (Dld)n)ﬂls(ﬂt + Qm + Qn)a (7)
where B, are geometric coefficients obtained from
the A, in (2). For simplicity I also do not dis-
tinguish sum and difference interactions between
left- and right- going waves, a distinction which
formally is absorbed in the subscript indexing.
Strictly, Eq. (7) is valid as 8 — 0. One hopes that
(7) is approximate if & is small enough.

An equation of motion of the form (2) for internal
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FiG. 1. Based on the model spectrum of Garrett and Munk
(1975), McComas (1977) has computed relaxation times for per-
turbations to that model spectrum by assuming the weak wave
or resonant interaction hypothesis. This hypothesis requires that
the ratio 8§ = 7,/7; be small compared to unity, where 7,
= 27/Q) is the wave period and 7, the wave interaction time.
Here 1 sketch approximately the curve 8 = 1 on McComas’
figures. Over most of the wavenumber-frequency space, weak
wave theory computes & > 1, contradicting its premises.

gravity-inertial waves has been obtained by Olbers
(1976) and by McComas and Bretherton (1977).
Their method considers the Lagrangian particle
displacement field £(¢) = x(f) — x,, where x, is a
rest position. The particle motion is governed by
a Hamiltonian H which is given by a power series
in the small displacement |¢£|. Retaining terms
up to cubic in Tgl, Hamilton’s" equations yield
(2). Then an equation of the form of (7) has been
numerically evaluated to give the evolution rate for
the wave action spectrum, i.e., the wave energy
divided by frequency.

Results of these numerical evaluations show that
the evolution time of the spectrum is longer than

1
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the wave period for frequencies < 0.3 N and ver-
tical scales = 10 m. It is then sometimes implied
that, since the spectral evolution time is longer than
the wave period, the weak wave premise is satisfied.
It is most important to realize that this certainly
is not true. For example, a theory of fully de-
veloped turbulence might predict a stationary spec-
trum, hence with an infinitely long evolution time
which is no indication of weak interaction.

Another numerical evaluation has been performed
by McComas (1977) who considered energy transfer
according to (7) for a smooth GM spectrum with a
small, narrow-band perturbation. Perturbations
could consist either of additional energy in a narrow
band or of an asymmetry between upward and
downward propagating waves. (The GM spectrum
is symmetric in the vertical.) McComas then
plotted the relaxation time for the perturbation
as afunction of frequency and vertical wavenumber.

In this context it becomes more nearly possible to
address the question of weakness of interaction.
Wave-wave interactions may be viewed as two com-
peting processes, one which forces or generates
wave variance at any scale and another which
scatters wave variance out of that scale. On a smooth
spectrum the two processes nearly cancel (exactly
cancel if stationary). By perturbing the spectrum in
a narrow band, McComas has enhanced the scatter-
ing process locally, thereby obtaining a relaxation
time for the perturbation which may be orders of
magnitude more rapid than the evolution time of the
smooth spectrum. As waves are destroyed and re-
generated by nonlinear interaction, it is this relaxa-
tion time of perturbations which may properly
measure the residence time of any particular wave
component. Thus, it is this relaxation time which
must be long compared to wave periods in order
to employ the weak wave theory leading to (7).
Confusion between this very short relaxation time
and the longer spectral evolution time figures, in
part, in Miiller’s (1976) erroneous estimate of a
possible wave-induced viscosity (see Ruddick and
Joyce, 1979). The same confusion is evident in
claims that the weak wave method is justified
when the spectral evolution time is longer than the
wave period. :

In Fig. 1 I have sketched on McComas (1977)
results a solid curve corresponding to relaxation
time equal to wave period, denoted 8 = 1. Then
one observes that over most of the GM spectrum,
i.e., over vertical wavelengths < 100 m and fre-
quencies > 2f, the relaxation time is shorter than
the wave period, i.e., 8 > 1. This suggests that
nonlinear interaction destroys and regenerates these
waves in a fraction of their wave period. In fact,
the result contradicts the premises of the calcula-
tion and so it is not reliable. However, the result
is a clear, indirect proof: the assumption that
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oceanic internal waves are weak waves leads to a
result which contradicts the assumption.

Therefore oceanic internal waves are not
weak waves.

The same question can be approached in terms
of the functional derivative of the transfer (7) with
respect to the action spectrum, i.e.,

m ==

89,
= J BlanmWS(QI + Q, + Qn)dkmdkn’ ®
A

where 7), is the relaxation rate discussed above. Ef-
fectively this is the operation carried out numeri-
cally by McComas (1977). Direct numerical evalua-
tions of (8) by Borchardt (private communication)
and by Pomphrey et al. (1980) are in rough agree-
ment with McComas. In particular, if the GM spec-
trum is substituted for @, in (8), then one obtains
n; !less than the wave period. However, we also see
in (8) that n « &. Thus, if we were to require that
the weak wave hypothesis be satisfied, i.e., that
nt > 2771, for waves of vertical scales > 10 m
and frequencies < 0.3 N, it would be necessary to
reduce the variance spectrum @ (i.e., the GM
energy level) by a factor of ~100. This estimate
may be seen from Fig. 1. Quantitatively,

The oceanic internal wave field is too
energetic by a factor of ~100 to be treated
as weakly interacting waves.

4. Interpretation

There is a reservation to be addressed: m; may
not be an altogether suitable measure of the inter-
"action strength. Indeed, m, almost certainly over-
estimates the interaction rate. The problem occurs
when [ denotes some high-wavenumber mode, while
the value of 7, is dominated by contributions from
&, where p denotes a low-wavenumber mode.
Just such interactions give rise to diffusion-like
terms in wavenumber space. As the ratio of wave
scales becomes very large, v, represents in part a
random Doppler shift in the random phase velocity
field due to low-wavenumber modes. Moreover, if
we consider interaction among a triad of high-wave-
number modes, the relative Doppler shift among
the three waves tends to vanishas k; + k,, + k, = 0.
Thus, one might hope to employ a resonant inter-
action formulation even if 7, > (). Quantitatively
the fraction of 7, associated with random Doppler
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Fic. 2. Contours of horizontal phase speed ¢ as function
of vertical wavenumber B and frequency €/f for N =6
X 1073871, f=7 x 1073571,

shifting is difficult to assess. In any case that frac-
tion only becomes large as the ratio of length scales
becomes large. For such high-wavenumber modes,
the ratio /€Y, is quite large (as computed by weak
wave theory from the GM spectrum) and so is ex-
pected to remain large even after discounting some
random Doppler shift.

Rather than attempting further to assess the weak
wave formalism a posteriori, we turn to an a priori
assessment by comparing horizontal phase speeds
of internal waves with horizontal fluid speeds asso-
ciated with quasi-inertial shear. For typical f2

< () < N2, horizontal phase speed may be
approximated ‘
O /N2 -2 1/2
C=2=_(____Q) N ©)
a  B\O2 -~ f? B

For N =6 x 103s™1, f=7 x 107® 571, the com- -
plete relations ¢({,8) is contoured in Fig. 2. The
approximationc = N/Bisreadily seen. Total kinetic
energy is. somewhat variable in near-inertial fre-
quencies. However, consistently with the GM
models or observations such as Sanford (1975) one
may take KE = 5N, where KE is in erg cm™ and
N in cph (cycles per hour). Then for N = 6 x 1078
s™! = 3.6 cph, the rms horizontal fluid speeds are

Urms = 2KE)'? = 6 cm 572,

Now the condition ¢ = u,,, defines a transition
wavenumber 8, = Nfuys = 1072 cm™, correspond-
ing to a vertical wavelength of over 60 m. The resuit
for N = 6 x 107® s~1is that waves of vertical wave-
length < 60 m propagate more slowly than typical
fluid velocities. If one chooses smaller N to repre-
sent the main thermocline or deeper water, the
transition wavelength increases as N~12,
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Turning to the question of the relative vertical
length scales of buoyancy waves and of inertial
shear we are confronted by velocity spectra which
are continuous and red in vertical wavenumber.
However, we see from observations such as Sanford
(1975) that velocity differences of 6 cm s™! are
encountered over vertical separations of ~60 m at
N = 3.6 cph. Thus, there is no disparity between
the vertical length scale of buoyancy waves and
the vertical scale of the shear with which the waves
strongly interact. If we considered buoyancy waves
of still higher vertical wavenumber, their horizontal
phase speeds would be proportionately less and
they would encounter critical velocity differences
over still shorter distances.

This a priori assessment is altogether consistent
with the a posteriori self-contradiction of the weak
wave calculations.

Most oceanic internal waves encounter
fluid velocity differences greater than
their phase speeds over distances of their
own vertical wavelengths.

Quantitatively, to reduce the wavelength of these
strongly affected waves by an order of magnitude,
i.e., to increase 3., one should reduce u,,, by an
order, thus reducing energy levels by a factor of
~100 as we have seen previously.

Two further remarks: The absence of a scale sepa-
ration between waves and shear ought to dissuade
proponents of critical level mechanisms, especially
if those mechanisms are understood from the view-
point of ray tracing. It would remain possible to
consider singular modes of a Taylor-Goldstein
problem but this would still be troubled by time-
dependent ‘‘mean’ motion and the presence of a
broad spectrum of finite perturbations. ’

The second remark is that our discussion above
may be cast as a Richardson number condition.
Velocity variance which yields differences of 6
cm s~! over 60 m vertical is dominated by some-
what larger scale waves for which a representative
wavenumber could be 58, say. Shear variance
is then S? =~ V4B umms. With B, = Nlums the
Richardson number is :

. N?
Ri = 3 = 4, 10
Here the value of 4 is obviously only approximate
and (10) should be read 1 < Ri < 10. This suggests

a novel kind of saturation hypothesis. Perhaps

oceanic energy levels are limited not by transition
to three-dimensional turbulence near the classical
Ri = ¥ but rather by a transition from weak to
strong wave-wave interactions nearer Ri = 4.
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5. Turbulence

The indicated failure of weak wave theories may
prompt more attention to rather simpler kinds of
dimensional scaling arguments which are usually
associated with turbulent cascades. On vertical
scales of tens to hundreds of meters, the ocean is
manifestly not ‘‘turbulent,”’ i.e., neither overturning
nor nearly isotropic nor strongly dissipative. Tem-
perature-velocity correlations seem consistent with
internal wave relations rather than turbulence.
Nonetheless, one might expect to realize turbulence
scaling in smaller vertical scales. Moreover from
the very limited dynamical basis for such scalings,
one cannot easily define their limits (if any!) of
validity. In this section 1 try to bring together a
couple of different scaling arguments in order to
round out a picture.

Dimensional scaling arguments for stably strati-
fied turbulence predate observations of the GM
spectrum, having originally developed around the
problem of radio wave propagation in the stably
stratified upper atmosphere. A common starting
point for turbulent cascade theories is Kolmogorov’s
(1941) theory for the structure of unstratified, high
Reynolds number turbulence. Assuming an inertial
subrange in which details of the large eddy field
are erased yet the direct effect of very small
viscosity is not felt, only the rate e(k) = ¢, at
which Kinetic energy passes from larger to smaller
scales is important. Then, dimensionally, a spectrum
of kinetic energy can only have the form

K(k) = cre?™k %, (1

with ¢; an empirical constant. If a stable mean
stratification is present, it becomes possible to ex-
change kinetic and potential energy by doing work
against the stratification, i.e., against gravity. Then
e(k) + €, and Eq. (11) is not valid. Bolgiano (1959,
1962) argued that in larger scales of motion, the
rate of working against gravity becomes more
important then ¢,. This rate of working depends on
the rate of production of density variance
=W dp
X=pP 7’

where p’ is the fluctuation about mean density p
and w’ is vertical velocity. It may be argued that
g, p and x must appear in a group

(12)

2 ! !
r:%ng_e_"_’_Nz, (13)
P p
whence
K(k) = 02r2,‘5k—1115’ (14)

with ¢, another empirical constant.

An alternative approach due to Shur (1962) and
Lumley (1964) considers that Kolmogorov scaling
(11) will hold even if e(k) varies slowly with k, i.e., if
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|8 Ine/d Ink| < 1. (15)

For a stationary spectrum, variations in e(k) will be
given by the buoyancy flux —gp'w’p~! which has
a spectrum N2B(k). Thus

Oe

— = N2B(k). 16
% (k) (16)

Assuming Kolmogorov scaling
B(k) = ¢33, a7

Eq..(16) may be solved for ¢, requiring € — ¢, at
large k. The resulting kinetic energy spectrum is

K(k) = c,€23[1 + (klky) *3]1k™53, (18)

where k, = c,(N3ey)"2. For k < k;, Eq. (18) has a
limiting form
K(k) < N%*%3, (19

although Lumley pointed out that on the subrange
(19), the assumption (15) is violated, viz.,

|0 Ine/d Ink| = 2. (20)
Indeed, both the wavenumber dependence and the
dependence on N(z) in (19) are inconsistent with the
GM model. On the other hand, the Bolgiano form
(14) is consistent with a GM model in both wave-
number dependence as k22 and in its depth depend-
ence as [N(z)]*® times some unknown [pw’(z)]?5.
This may not be far from WKBIJ scaling. Neither
is it clear to what extent Bolgiano’s model
implies ‘‘turbulence’’. Simply, the model implies
that the spectrum is governed by the rate at which
internal waves do work to raise the mass field. How-
ever, this is inconsistent with a random super-
position of free waves since individual free waves
do not provide vertical mass transport.

6. Conclusions

Recent efforts (Olbers, 1976; Miiller and Olbers,
1975; Miiller, 1976; McComas and Bretherton, 1977,
McComas, 1977; Pomphrey et al., 1980) to treat the
oceanic internal wave field as an assemblage of
weak, resonantly interacting waves have been
widely discussed, for example, in reviews by Gar-
rett and Munk (1979) or by Gregg and Briscoe
(1980) and in texts by LeBlond and Mysak (1978)
or by Lighthill (1978). Sometimes it is cautioned
that the predicted evolution time of the internal
wave spectrum is not longer than a wave period so
that the theories are only marginally valid. In this
paper it is seen that the spectral evolution time is
irrelevant and that the relevant interaction time is
much shorter. Indeed, for observed oceanic energy
levels the interaction time is computed to be typi-
cally much shorter than the wave period, hence
contradicting the weak wave premise. The same
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result can be obtained directly by comparing hori-
zontal phase speeds with fluid velocities. The re-
sult seems clear: oceanic internal waves are not
weak waves (in the sense of weak resonant inter-
action theories). It is further estimated that the
ocean is too energetic by nearly two orders of
magnitude to be treated as weak waves.

The nearly universal energy level of internal
waves (as distinct from the shape of spectral
distribution) suggests a possible saturation mecha-
nism. It is seen that a transition from weakly
to strongly interacting waves may provide such a
mechanism, implying Richardson numbers of
roughly Ri = 4. On smaller scales, motion might
be characterized as turbulent. With such a regime in
mind, dimensional scaling arguments by Bolgiano
(1959), Shur (1962) and Lumiey (1964) are reviewed.
It is seen that these scaling laws depend essen-
tially on the average vertical mass flux—a quantity
that vanishes identically in a field of weakly
interacting waves.

7. Speculation

The foregoing picture is a gloomy one from the
viewpoint of theoretical understanding. On the one
hand, appeal to the careful calculations of weak
wave theory seems hopeless given the observed
energy levels. On the other hand, we avoid turbu-
lence modeling both because we observe correla-
tions that are wavelike and because turbulence
modeling seems to offer only simple, dimensional
scaling laws. In this section I will just sketch a
third approach which might be classed a ‘‘renor-
malized perturbation method.”’ The sketch is tenta-
tive inasmuch as this is work that I have not car-
ried out but only mention for the possible interest
of more active investigators in this field.

Progress on internal wave interactions would
appear to depend on the following two steps:

1) REFORMULATION OF THE EQUATIONS OF
MOTION

In previous discussions, we have criticized the
statistical assumptions leading from an equation of
motion (2) to an equation for average spectral
evolution (7). Now we must worry as well whether
(2) is valid. The concern is whether a Lagrangian-
based derivation is suitable for describing finite-
amplitude wave-wave interactions. Even among
proponents of Lagrangian derivations there are
important differences as between McComas (1975)
and Olbers (1976). Both develop their Lagrangians
in powers of the small fluid particle displace-
ment £ from a hypothetical rest position, where &
draws contributions from all waves present. Then
as we have seen above, near Ri = 4 the displace-
ment induced by the inertial shear is larger than the
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horizontal wavelength of internal waves during an
internal wave period. Because both McComas and
Olbers only retain terms up to O(£%), their forms
for (2) are identical. However, inclusion of higher
order terms in the method of McComas could
lead to divergence at observed oceanic energy
levels. In addition, one may ask whether the wave
modes obtained by requiring the Lagrangian to be
stationary at O(¢?) are a complete basis for the
fluid motion. These cautions prompt us to returntoa
direct formulation from the Boussinesq equations
in Eulerian velocity and density fields. Then
Fourier decomposition of velocity and density
perturbation fields provides a natural basis for
describing buoyant turbulence. However, linear
wave modes are disguised because linear operators
couple the density and velocity fields. To recover a
description in interacting wave modes bases, one
would rotate the density-velocity bases. Whether
to rotate bases or not will turn out to be a mat-
ter of convenience or taste. Formally the result
will resemble (2), viz.,

@, + L) = J dendeuMimnbnba. 1)
A

Here we suppose ¢ is a vector whose components
may consist of density and velocity coefficients
while L and M are tensors replacing () and A (scalars)
in (2). By rotating bases into wave modes, one may
diagonalize L. For the case of internal waves on a
vertical plane, such a diagonalization with a dis-
" cussion of symmetries and invariants has been
given explicitly by Ripa (1980). The main point here
is that in any particular representation we may
choose for (21), we are assured of an exactly
gquadratically nonlinear equation of motion on a com-
plete basis set regardless of wave amplitude.

2) RENORMALIZATION OF THE SPECTRAL EVOLU-
TION EQUATION

The problem of strongly interacting waves has
been an urgent one for some time in the field of
plasma turbulence. Kadomtsev (1965) has described
a closure theory for such strongly interacting
waves (i.e., interacting in times as short or shorter
than their wave periods) by extension of the ‘‘di-
rect interaction’” (DI) theory of turbulence as
proposed by Kraichnan (1959). These theories may
be classed as renormalization methods because of
their close resemblance to line or mass renormal-
izations in quantum field theory. Such renormal-
izations are not unique. DI is only the simplest
second-order line renormalization. For the problem
of fluid turbulence a choice among possible re-
normalizations cannot be made analytically in con-
trast with an analytical solution for the probiem
of electromagnetic fields. Thus, the basis for strong
wave and turbulence theories is not deductively
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established. Moreover, attempts to employ the very
difficult formalism of Kadomtsev in quantitative
calculations have not shown very close agreement
with data on plasma turbulence.

A problem which resembles the internal wave-
turbulence problem but is rather easier is that of
interacting Rossby waves and two-dimensional,
quasi-geostrophic turbulence. Rhines (1975) has de-
scribed this motion is which long waves propagate
rapidly with (presumably) weak interactions among
themselves. whereas shorter Rossby waves propa-
gate very slowly and are completely dominated
by advection. For Rossby waves, the interaction
equations are simpler since the barotropic wave is
defined by a single scalar field, the streamfunction.
Fourier transformed, the equations of motion are
naturally of the form (2). We can then concen-
trate on the statistical closure question, hoping
that the more difficult problem for internal waves
and turbulence may be solved similarly.

A closure theory for strongly interacting Rossby
waves has been developed and compared favorably
with data from numerical flow simulations by Hollo-
way and Hendershott (1977). Here we just sketch

.those points on which Holloway and Hendershott

differ from the weak wave theories leading to (7).
First, we do not suppose the interaction time is
long compared to wave periods. The contrary may
be the case. Thus we omit (3) which would decom-
pose a wave into an amplitude and a fast varying
phase. Then we are not concerned with the rather
delicate limit-taking in (5). Second, we do not sup-
pose strictly the random phase or quasi-gaussian
assumption (6). Instead we expect that nonlinear
interactions will build up higher order, non-gaussian
correlations as must be the case since it is the
triple correlation (¢;dn¢,) not equal to zero which
is responsible for any energy transfer at all. We
suppose that a sum over quadruple correlations
will draw some contribution from triple correlations,
viz.,

1/22 ((&l&mépéq) + (‘i’l&’n‘i’péq) + (‘i’ménd"p‘i’q)
= O,P, + &P, + ¢, P, — P«[mn(‘i’lé’mqsn% (22)

where w;.., is a coupling coefficient to be determined
in a self-consistent way. Substitution of (22) in place
of (6) results in an equation much as (7), viz.,

ad,
or
= Tl = J dkmdknBlrhn((bmq)n - q)l(bm)elmm (23)
A
where
Omn = Reallpymn + iy + Q, + Q)17 (24

and it remains to determine ;.
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In (23), just as in (7), the fundamental interaction
rate is
8T,

8d,

here modified by the replacement of w8 (, + Q,
+ Q,) by 8;,,,. We may understand », as a frequency
uncertainty in mode / due to wave interactions.
We may also observe in (24) that u;,, appears as the
frequency uncertainty among three interacting
waves, i.e., as a broadening of the resonance
condition (4). This motivates us to identify the
frequency uncertainty among three waves with the
individual interaction rates ;, ), and 7,, simply

Mimn = M + N + M. (26)

Now p;,, has been specified in a way that is con-
sistent with the interaction rate computed in (25). It
is on this point that weak wave theories have been
inconsistent, viz., supposing g, — 0 while com-
puting finite »,, n,, and 7,.

Together (23), (24), (25) and (26) are a closed set of
equations guiding the evolution of the variance spec-
trum @,. In the limit of small amplitude, n,#Q? — 0
from (25), then 6,,, — 78( + ., + Q,) so that
one recovers a weak wave theory in the limit that
such a theory would be valid. The limit of large
amplitudes is such that the natural frequency
), becomes insignificant, i.e., Q%m?— 0, then
Oimn —> (1 + Nm + mMp)~t. This limit corresponds to
a theory of strong turbulence as proposed by Ed-
wards (1964). One simple, unifying step, namely
reintroducing the interaction rate into the calcula-.
tion of the interaction rate, takes one from a theory
of weak waves to a theory of strong turbulence.
However, the turbulence theory of Edwards (1964),
like that of Kraichnan (1959), is known to be de-
fective in its treatment of the interaction between
very long and very short scales. The problem is
basically that of random Doppler shifting as dis-
cussed previously so that one cannot sum frequency
uncertainties as in (26). Rather, the effect of ad-
vection by very long waves which contributes
substantially to'y,, n,, and 7, should not significantly
affect ul,,. Kadomtsev (1965) has suggested limit-
ing the integration in (25) to cut off long-wave
contributions. Kraichnan (1971) has suggested a
reweighting of the integrand in (25). With such
modifications it has been shown that (23) is con-
sistent with Kolmogorov inertial scaling at large
Reynolds number and without stratification.

Another possible defect has been suggested in
various forms by Legras (1978), Carnevale (1979)
and Holloway (1979). The question concerns 7,
and wp,, which are given above as real quantities
because 6;,, is real in (24). In fact, it would be
possible to drop the real part operator in (24) al-
lowing T}, 6, m and py,, to be complex. Then
0®,/0r would be RealT,, while Imagu,,,, would shift

"h = = J dkmdknB(mnq)molmm (25)
A
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the resonance curve to ; + Q,, + Q, + Imagu;,,
= 0 and Realy;,,, would be the resonance broaden-
ing. This and other modifications may be argued in
a number of ways but have not been demon-
strated in any specific example.

This outline is only a sketch that no doubt
will be shown to be wrong in parts. However,
certain prima facie features could be stressed:

e There is no inherent limit to wave amplitudes.
For waves of very small amplitude, a valid weak
wave theory would be recovered. For waves of
extremely large amplitude, stratification would be
negligible and the theory would predict inertial
turbulence including a Kolmogorov subrange.
Hopefully, such a theory may yield sensible re-
sults at intermediate amplitudes.

e There may be a saturation mechanism in (23)
which is absent in (7). This is due to the coupling
among (24), (25) and (26). For small amplitudes,
O 18 close to wd( + O, + Q,) so that v; draws
contributions in (25) only from nearly resonant
triads. With increasing wave amplitude, py,, in-
creases as 7, + M, + 7M., hence the rates 7;, »,, and
M. in turn draw contributions from the richer col-
lection of off-resonant triads.

e If in (21) we deal with ¢, in primitive bases,
i.e., velocity and density components, then we seek
in (23) the evolution of the tensor variance spec-
trum @, = (¢¢_;) which has among its components
the density covariance and the vertical and horizon-
tal components of mass flux as well as the velocity
covariance tensor. Thus we may consider the gen-
eration, and interaction with, density finestructure
as part of a unified treatment including the rate of
working against gravity.
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