第15卷第3期 强激光与粒子束 2003年3月 HIGH POWER LASER AND PARTICLE BEAMS

文章编号:1001-4322(2003)03-0305-05

脉冲高功率离子二极管的动力学模拟

向 $f^{1,2}$, 赵渭江², 韩宝玺², 曾葆青³, 杨中海³

(1.中国工程物理研究院 电子工程研究所,四川 绵阳 621900; 2.北京大学 重离子物理研究所,北京 100871;3.电子科技大学 高能电子学研究所,四川 成都 610054)

摘 要: 基于等离子体的爆炸发射模型,利用自洽的2.5 维的胞中粒子(PIC)模拟程序 MAGIC 模拟了平板型磁绝缘离子二极管中电子和质子的动力学特性。给出了电压为300kV,外加磁场为2倍 临界磁场情况下的二极管特性,阴阳极间隙中带电粒子的空间和相空间分布,以及净电荷密度分布和电 场分布,结果表明,引出束流密度比单离子 Child-Langmuir 公式计算的结果大5倍;外加磁场导致在阴 极附近形成虚阴极。空间电荷使得阴阳极间隙中电场扰动和增强。

关键词: 脉冲高功率离子束;磁绝缘离子二极管;爆炸发射;胞中粒子模拟 中图分类号:O462.5 文献标识码:A

自二十世纪七十年代末提出离子束驱动惯性约束聚变(ICF)以来,脉冲高功率离子束(又称强流脉冲离子 束)的研究受到美、前苏联、日等国极大的关注^[1~4]。这是因为离子束与激光和电子束相比,具有许多独特的 优点^[1,4,5]。在各种产生强脉冲离子束技术中,利用外加垂直于电场方向的磁场来约束二极管间隙中电子的磁 绝缘离子二极管(MID)则具有众多优点^[4]:可多次重复工作,免于频繁更换阳极的麻烦;能量转换效率高;产生 的离子束具有较好的方向性。在近一二十年,磁绝缘离子二极管除用在离子束 ICF 研究以外,在核爆效应模 拟、强脉冲中子源和材料改性等领域的应用研究也倍受关注^[4,5]。我国虽然在二十世纪七八十年代先后建了 二三十台强流脉冲电子束装置,但在产生强流脉冲离子束方面的工作尚处于起步阶段,还未开展磁绝缘离子二 极管的研究^[5,6]。

对磁绝缘离子二极管研究的极大关注也促使磁绝缘离子二极管的理论受到重视。Sudan 等人^[1,9,10]基于 一维模型的磁绝缘离子二极管理论只适用于稳态情况,无法用于脉冲高功率离子二极管中粒子的动力学计算。 近几年,基于多维模型的胞中粒子(particle-in-cell)计算机程序已成功地用于磁绝缘离子二极管中粒子的动力 学过程的模拟^[10,11]。基于爆炸发射模型和自洽 PIC 粒子模拟程序 MAGIC,我们已经对电压为 300kV,底宽为 40ns 情况下,磁场对平板型磁绝缘离子二极管束流特性的影响进行了计算。结果表明,外加磁场对二极管的 效率、引出束流的均匀性和引出束流密度等都有显著影响,为了有效地将电功率传给离子流和得到均匀性较好 的离子流,外加磁场需大于 2 倍临界磁场^[12]。本文着重研究电压为 300kV,外加 2 倍临界磁场情况下,平板型 磁绝缘离子二极管产生脉冲离子束的动力学特性。

1 模拟方法

MAGIC程序是全电磁 2.5 维(2 维场和 3 维粒子运动学)通用的胞中粒子模拟程序^[15],该程序采用时域 有限差分对 Maxwell 方程组和粒子运动的 Lorentz 方程进行自洽的数值求解和模拟等离子体物理过程,计算 中自动考虑了空间电荷效应及其与电磁场的相互作用。

磁绝缘离子二极管多采用高压表面击穿的电弧闪络方式产生阳极等离子体,即爆炸发射产生阳极等离子体。实际上爆炸发射产生等离子体是一个非常复杂的过程。本文采用的模型不考虑等离子体形成过程的物理 细节,仅基于等离子体形成的唯象描述,也就是说,仅当垂直电场 *E*c 超过某一具体阈值时,才引起击穿。同时 粒子本身的发射基于 Child-Langmuir 的 3/2 次方定律。根据 Gauss 定律,单位面积上产生的宏粒子数表示 为^[12]

$$\frac{\mathrm{d}q}{\mathrm{d}A} = {}_0f(t - t_\mathrm{b})(E_\mathrm{c} - E_\mathrm{r}) - \mathrm{d}x \tag{1}$$

* 收稿日期:2002-09-09; 修订日期:2002-12-03

基金项目:国家自然科学基金资助课题(19975003)

作者简介:向 伟(1967-),男,博士,副研究员,从事离子束物理及技术研究;绵阳919-523 信箱。

其中 $_0$ 为真空中的介电常数 , f 是等离子体形成函数 , t_b 是胞击穿时间 , E_r 是剩余电场 , 是胞表面的电荷密 度 , d x 是胞的高度。

图 1 给出了模拟计算产生强脉冲质子束的平板型磁绝缘离子二极管示意图。其中二极管阴、阳极的长度 均为 200mm,阳极-阴极的间距为 8mm,产生阳极等离子体的闪烁板长度为 190mm。加在二极管的单次脉冲 电压波形 V_d 如图 2 所示。

图 1 中二极管间隙的绝缘磁场由流过阴极的脉冲电流产生。计算中,我们认为加在二极管间隙垂直于 xy 面的均匀外磁场大小为 2 B_c,其中 B_c为临界磁场,可根据电子的能量和正则动量守恒关系式得到。平板型磁 绝缘离子二极管的临界磁场 B_c的大小为^[4]

$$B_{\rm c} = \frac{1}{d} \sqrt{\frac{2 m_{\rm e} V_{\rm d}}{e}} \sqrt{1 + \frac{e V_{\rm d}}{2 m_{\rm e} c^2}}$$
(2)

其中 d 是平板型二极管的阴阳极间距, V_d 是二极管间的电压, m_e 是电子的静止质量,e 是电子的电量,c 是光速。

2 模拟结果与讨论

306

图 3 分别给出了根据图 2 电压波形计算的二极管 束流 *I*_d 和在假设阴极透明度为 100 %情况下阴极引 出质子束流密度 *j*_i 随时间的波形。可以看出,二极管 的最大束流达 150kA,引出质子束流密度达 70A/cm², 比单粒子情况下 Child-Langmuir 公式计算的引出极限 束流密度 *j*_{ic}大近 5 倍。从图 3 中,我们还可以看出, 可以管的束流 *I*_d 的起始位置相对于二极管电压有近 7ns 的滞后,而阴极引出质子束流密度 *j*_i 相对于 *I*_d 又 延迟近 3ns,其中二极管束流滞后于电压波形的原因 是只有二极管中电场达到爆炸爆发的阈值时,二极管 间隙中才有等离子体产生。

图 4 是 *t* = 9.435ns 时,二极管中电子和质子的空间分布。从图中可以看出,在 2*B*。情况下,电子被约束在阴极附近形成虚阴极,避免了电子流对阳极的轰

击,达到了磁绝缘的目的;而质子流几乎沿直线运动。实际上,磁场使得质子流稍微向 + x 方向偏离。从图 5 所示的 t = 9.435 ns 时刻 p_x -y 和 p_y -y 相空间图可以估算出大多数质子偏离 + y 方向的角度约为 3°,由于二极 管中强流电子流和离子流产生的强磁场和电场的相互作用,有少量的质子偏离的角度达 8°。虚阴极的存在使 得引出的质子流部分中和,很明显,这有利于强流质子束的传输。另外,除了电子被约束在阴极附近外,电子由 于受到 E ×B 力作用而向 + x 方向漂移。由于二极管为有限尺寸,电子会在端部聚集。从图 6 中阴阳极间隙 中净电荷密度分布图可以看出,除了在端部存在电子空间电荷聚集外,虚阴极表面存在不同程度的起伏。虚阴 极的这种分布也改变了二极管中的电场分布,见图 7。从图 7 中可以发现,虚阴极使得阴阳极间隙中电场存在 扰动和增强,在 t = 9.435 ns 时,最大值电场强度达 5.5 ×10⁷ V/m。而在阴阳极间隙中不存在空间电荷的情况 下,电场应该均匀分布,相应的电场强度应为 3.0 ×10⁷ V/m。也就是说,电场强度增加 1.8 倍。反过来,电场 增加又引起阴阳极发射粒子增加,其结果使得引出离子流增强。

Fig. 6 Contour of the net charge density in the AC gap at t = 9.435 ns 图 6 t = 9.435 ns 时阴阳极间隙中净电荷密度分布图

图 8 分别给出了不同时刻图 1 所示阴阳极间隙净电荷密度和纵向电场分量 *E_y* 沿纵向 *y* 方向的分布图。 从图中可以看出,在电压波形的上升沿,如 *t* = 7.549ns 时,阴极初始爆炸发射电子,虚阴极厚度很薄,这时空间 电荷的影响并不明显,此时阴阳极间隙间电场基本上保持均匀分布。在达到电压峰值的 *t* = 15.096ns 时,虚阴 极厚度达 2mm,同时也存在虚阳极,此时阴阳极间隙间的电场出现中间高,阴阳极两端附近电场低。在电压波 形的下降沿,如 *t* = 15.096ns 时,电荷在阴阳极间隙虚阴极厚度减小,由于质子的运动速度较慢,因此阴阳极间 隙间主要为正电荷。同时由于电场降低,在阴阳极两端爆炸发射的粒子数目也相应减少。

 Fig. 8 Longitudinal distribution of the net charge density(a) and the electric field (b) in y axis at different times

 图 8 不同时刻阴阳极间隙间净电荷密度和电场强度沿纵向 y 方向的分布

3 结 论

基于等离子体的爆炸发射模型,利用自洽的 2.5 维的 PIC 模拟程序 MAGIC 模拟了脉冲高功率离子束平 板型磁绝缘离子二极管中电子和质子的动力学特性。结果表明,外加磁场等于 2 倍临界磁场时,可以对二极管 阴阳极间隙中的电子束进行约束,达到磁绝缘的目的。同时,引出束流密度比单离子 Child-Langmuir 公式计算 的空间电荷极限流大 5 倍。外加磁场也导致在阴极附近形成虚阴极。虚阴极使得阴阳极间隙中电场存在扰动 和增强。虚阴极的存在或电场增加的结果反过来又使引出束流密度增加。

致谢 感谢中物院电子工程研究所戴晶怡研究员对本工作的大力支持和北京大学吕建钦教授的指导。

参考文献:

- [1] Sudan R N, Lovelace R V. Generation of IIB in pulsed diodes[J]. Phys Rev Lett ,1973 ,31:1174-1178.
- [2] Mehlhorn T A, Bacon L D, Bailey J E, et al. Progress in Li beam focusing and beam target interaction experiment at Sandia[C]. Proc of 9th Inter Conf on High Power Particle, Washington DC, 1992.31-42.
- [3] Chishiro E, Matsuyama A, Masugata K, et al. Dependence of characteristics of B_r-type magnetically insulated diode on configuration of insulating magnetic field[J]. Jpn J A ppl Phys, 1996, 35:2350-2355.
- [4] Bystritskii V M, Didenko A N. High-power ion beams[M]. New York : American Institute of Physics ,1989.
- [5] 王淦昌. 高功率粒子束及其应用研究[J]. 强激光与粒子束,1989,1(1):1-21.(Wang G C. High power particle beams and its applications. *High Power Laser and Particle Beams*,1989,1(1):1-21)
- [6] 石磊,邱爱慈,王永昌,等.高功率脉冲离子束的产生[J].强激光与粒子束,1999,11(6):776-780. (Shi L,Qiu A C, Wang Y C, et al. The generation of high-power pulsed ion beams. *High Power Laser and Particle Beams*, 1999,11(6):776-780)
- [7] Remnev G E, Isskov I F, Opekounov M S, et al. High-power ion beam sources for industrial application [J]. Surf Coating Technol, 1997, 96: 103-109.
- [8] Bergeron K.D. Two-species flow in relativistic diodes near the critical field for magnetic insulation[J]. Appl Phys Lett, 1976, 28:306-308.
- [9] Desjarlais M P. Theory of applied-B ion diodes[J]. Phys Fluids, 1989, B1 (8):1709-1720.
- [10] Faechl R J, Rej D J. Simulation of a B_r ion diode[C]. Proc of the 9th Inter Conf on High Power Particle Beams, Washington DC, 1992.762 768.
- [11] Boine-Frankenheim O, Pointon T D, Mehlhorn T A. Simulation of the plasma dynamics in high-current ion diodes[J]. Nucl Instr and Methods A, 1998, 415:473-477.
- [12] Xiang W, Zhao WJ, Yan S, et al. Simulations of intense pulsed ion beam uniformity in a planar magnetically insulated ion diode[J]. Rev of Sci Instrum, 2002, 73(2):857-859.
- [13] Goplen B, Ludeking L, Smithe D, et al. User-configurable MAGIC for electromagnetic PIC calculations [J]. Computer Phys Comm, 1995, 87: 54-86.

Dynamic simulations of an ion diode for high power pulsed ion beams

XIANG Wei^{1,2}, ZHAO Wei⁻ jiang², HAN Bao⁻ xi², ZENG Bao⁻ qing³, YANG Zhong⁻ hai³

(1. Institute of Electronic Engineering, CAEP, P. O. Box 919-523, Mianyang 621900, China;

2. Institute of Heavy Ion Physics, Peking University, Beijing, 100871, China;

3. Institute of High Energy Electronics, University of Electronic Science and Technology of China, Chengdu, 610054, China)

Abstract: Based on the explosive emission model, the self-consistent and 2.5 dimensional electromagnetic particle in cell MA GIC code was employed to simulate the dynamics of the particles, including electron and proton, in a planar magnetically insulated ion diode for high-power pulsed ion beams. Time-dependent diode characteristics, spatial and phasespace distributions of the charged particles, as well as the distribution of the net charge density and the electric field in the anode cathode (AC) gap are presented at a diode voltage of 300kV and a double intensity of the critical magnetic field. The results show that the extracted ion current density is five times larger than the single species limited ion current density according to Child Langmuir law. The virtual cathode forms in the vicinity of the cathode surface when the external magnetic field applied, and the space-charge leads to the fluctuation and enhancement of the electric field in the AC gap.

Key words: High power pulsed ion beam; Magnetically insulated ion diode; Explosive emission; Particle in-cell simulation