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ABSTRACT

Using the method of strained coordinates, a uniformly valid approximation to the nonlinear equatorial
Kelvin wave is derived. It is shown that nonlinear effects are negligible for the Kelvin waves associated
with the Gulf of Guinea upwelling. The Kelvin waves involved in El Nifio, however, are significantly
distorted both in shape and speed. The leading edge is smoothed and expanded rather than steepened,
but the trailing edge will form sharp fronts and eventually break.

1. Introduction

The importance of equatorially trapped waves in
the dynamics of the equatorial ocean is summarized
in the review papers by Moore and Philander (1977)
and Wunsch (1978). The Kelvin wave is of special
significance because, first, it is the lowest meridional
mode and, second, theory (McCreary, 1976; Moore
et al., 1978; O'Brien et al., 1978) suggests that it
plays a major role in El Nifo and in similar upwelling
in the Gulf of Guinea. For all classes of equatorial
waves one would like to understand the effects of
nonlinearity on them, but almost all previous ana-
lytic work has been linear. The author is presently
embarked on a thorough investigation of equatorial
solitary waves, and a preliminary report has already
appeared (Boyd, 1978). For the Kelvin wave, how-
ever, solitary waves are impossible and the quali-
tative nonlinear behavior is very different from other
types of equatorial waves.

The magic word is nondispersive: all Kelvin waves
with the same equivalent depth have the same phase
speed, regardless of the zonal wavenumber. In linear
theory then, a Kelvin wave packet will propagate
without change of shape. It is well-known, how-
ever, that in other nondispersive wave systems—
shallow water waves on a nonrotating earth are the
most familiar example—nonlinearity will drastically
distort the packet, perhaps to the point of breaking.
The goal of the present work is to derive a general,
uniformly valid small-amplitude theory for nonlinear
equatorial Kelvin waves and then to apply this
theory to a couple of particular cases.

The principal mathematical tool is Lighthill’s
method of strained coordinates, which is a singular
perturbation technique. The underlying physics for
the nonlinear Kelvin wave is so similar to that of
the one-dimensional advection equation (the in-
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viscid Burger’s equation) that coordinate straining
for the former can be done by inspection of its use
upon the latter. Consequently, Section 2 discusses
the one-dimensional advection equation in some de-
tail, using it to illustrate the method of strained co-
ordinates and other preliminary results. Most of this
section is not new, although the ideas have been
published only in scattered places. Rather surpris-
ingly, however, it has apparently never been noticed
previously that, first, the lowest order strained co-
ordinates approximation is the exact answer for the
one-dimensional advection equation (though not,
unfortunately, for the Kelvin wave) and, second,
that the implicit equation one must solve for either
the one-dimensional advection equation or Kelvin
wave to obtain the wave in explicit form is the Kepler
equation of celestial mechanics for which an analytic
solution is known.

The third section deals with the Kelvin wave it-
self. By introducing ‘‘sum’’ and ‘‘difference’’ vari-
ables and using the algebra of the ‘‘raising’’ and
“‘lowering’’ operators for the Hermite functions, the
first-order regular perturbation expansion is de-
rived. This approximation is then made uniform in
x and ¢ by straining the coordinates, which follows
almost trivially from the results for the one-dimen-
sional advection equation. Section 4 applies the non-
linear theory to the Kelvin waves associated with
El Nino and the Gulf of Guinea upwelling.

Before continuing, it is appropriate to note some
relevant previous work. First, Bennett (1973) stud-
ied nonlinear coastal (as opposed to equatorial)
Kelvin waves. For this simpler problem, strained
coordinates perturbation theory is unnecessary.
Bennett derived the exact solution via the method of
characteristics and found qualitative behavior simi-
lar to that for the equatorial Kelvin waves here.
The two species of Kelvin wave are related by more
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FiG. 1. Successive profiles of a nondispersive wave at various
times. The wave breaks at t = ¢, (after Whitham, 1974).

than name and lack of dispersion: when the equa-
torial Kelvin wave strikes the west coast of a con-
tinent, it excites coastal Kelvin waves that propagate
north and south hugging the shoreline (Moore, 1968).

Second, Hurlburt er al. (1975) and Adamec and
O’Brien (1978) have numerically modeled nonlinear
equatorial dynamics including Kelvin waves. In the
latter paper, Adamec and O’Brien observed that
equatorial Kelvin waves steepened and broke,
which cannot be explained on the basis of existing
linear theories.

Third, Ripa (1979) has examined nonlinear Kelvin
waves from the viewpoint of resonant triad inter-
actions and noted the possibility of steepening and
breaking. Although he did not derive analytical solu-
tions as done here, this resonant triad perspective
is helpful in interpreting the perturbative solution.
Both Ripa (1979) and Adamec and O’Brien (1978)
will be referenced again in later sections.

2. Strained coordinates and the one-dimensional
advection equation

a. The one-dimensional advection equation
The one-dimensional advection equation is

U+ (¢ +wyu, =0, 2.1

where « is the zonal velocity, ¢ the linear phase
speed (a constant), and the subscripts denote dif-
ferentiation with respect to the subscripted variable.
As shown in Whitham (1974), this equation has an
exact solution in implicit form. To derive it, we pre-
tend for the moment that it is [¢ + u(x,t)] rather
than u(x,t) which is the particle velocity. Eq. (2.1)
can then be interpreted in terms of the total, particle-
following velocity as simply

du
=0, 2.2
o 2.2

This means that if we trace a curve C in the (x,?)
plane which moves with the particle velocity
(¢ + u), i.e., a curve C, such that

ﬂ- =c¢ + u(x,t),

2.3
7 (2.3)
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then u(x,t) will be constant on C. Eq. (2.3) then
implies that C will be a straight line with the slope
(¢ + u). Thus, the general solution of (2.1) depends
on construction of a family of straight lines in the
(x,1) plane, each with the slope (¢ + u) correspond-
ing to the value of u on that particular line.

To illustrate this, consider the general initial value
problem

u(x, t = 0) = Q(x), 2.4

Now if one of the curves C intersectst = Qatx = &,
then u(x,t) = Q(¢) on the whole curve. The corre-
sponding slope of the curve is then [¢ + Q(&)] and
the equation of the curve is simply

x = ¢+ [c + QO] 2.5)
Allowing ¢ to vary, we obtain the general solution

u(x,t) = Q(é€), (2.6)

where &(x,t) is defined implicitly by (2.5). When'
Q(¢) is sufficiently simple, it may be possible to
solve (2.5) for &(x,t) analytically, and substituting
it into (2.6) then gives u(x,t) explicitly. In any case,
however, it is easy to obtain u(x,?) graphically by
drawing a set of straight lines in the (x,¢) plane which
each satisfy (2.5) for a given Q(x) and different
values of .

Several features of this general solution deserve

comment. First, as shown in (2.5), the nonlinear
wave cannot be characterized by a single phase
speed. Instead, each portion of the wave moves
along at its own speed with the crest [Q(¢) maxi-
mum] traveling fastest and the trough [Q(¢) mini-
mum] moving most slowly. Second, because the
crest is traveling fastest, it will eventually overtake
lower and more slowly moving portions of the wave,
causing the wave to ‘‘break.”” The distortion that de-
velops in the compressive part of the wave [where
u(x,t) is a decreasing function of x] is qualitatively iden-
tical to that one observes in a water wave advancing
toward a beach, and the end result is the same.
This is schematically illustrated in Fig. 1, which
shows successive profiles of u. Breaking begins at
t = tg in Fig. 1 where the profile of u first develops
an infinite slope. The profile at ¢z = ¢, illustrates the
fact that the ‘‘post-breaking’’ solution given by (2.5)
and (2.6) is triple-valued. In reality, (2.1) is no longer
an adequate description of the wave after breaking,
and some sort of shock wave theory is needed based
on going deeper into the underlying physics of the
phenomenon for which (2.1) has been used as a first
approximation.
- The actual time of breaking tz can be derived as in
Whitham (1974). If one regards £(x,t) as a known
function implicitly defined by (2.5), then explicit dif-
ferentiation of (2.6) yields

ur = Q"6

-0 Jx < w®,

(2.7a)
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Uy = Q)¢ (2.7b)
where the prime denotes differentiation. By explicit
differentiation of (2.5),

= —[c + Q(f)] , (2.83)

[1+ Q']

1
= 2.8b
RANTEYTTY (250
therefore,

Q@ ro@

[1+0'1]
=_2© (2.9b)

[1+ Q'(&)1]

From (2.9), it is obvious that (2.5) and (2.6) indeed
satisfy (2.1) and (2.4). It is also clear that , and
u, are infinite whenever [1 + Q'(€)t] = 0. Breaking,
therefore, occurs on that characteristic £ = &5 for
which Q'(¢) has its largest negative maximum with
the time of first breaking given explicitly by

-1
Q'(&s)
Third, the large distortions of the wave profile

that develop in Fig. 1 positively cry out for a singular
perturbation method. If one defines

€ = *max|Q(x)|,

(2.10)

Ip

2.1H

where the sign is chosen for convenience, and where
QO(x) is measured in the nondimensional units
defined by (3.2) and (3.3), then if € < 1, one can
solve (2.1) by applying an ordinary perturbation ex-
pansion in . Because the distortion is increasing
linearly with ¢, however, the difference between the
perturbed and unperturbed solutions may become
O(1) long before the wave actually breaks. There-
fore, instead of being uniformly accurate, the
ordinary perturbation series is useful only for a small
fraction of the total interval between ¢ = 0 and the
time of breaking.

For dispersive waves, the method of multiple
scales, alias ‘‘two-timing’’, is a powerful tool for
circumventing the nonuniformity of an ordinary per-
turbation expansion. However, Kelvin waves and
the solutions of (2.1) are both nondispersive , and this
makes all the difference in the world. In particular,
two-timing adjusts for the nonlinearity by correcting
the linear phase speed by a constant, independent
of x and ¢, which depends on € alone. Since the
exact solution (2.5) and (2.6) shows that the nondis-
persive, nonlinear wave cannot be characterized by
a single phase speed, the method of multiple scales
simply will not work. We need a phase speed cor-
rection which is a function of x and ¢ as well as of
¢, and the alternative algorithm described in the next
subsection provides this.
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b. The method of strained coordinates for nondis-
persive waves

The basic idea of this method is to introduce a
transformation of coordinates such that the per-
turbative sohition, given as a function of the new
coordinates, is a uniformly valid approximation to
the exact answer. This transformation will itself be
carried out perturbatively, order by order, and at
each order we will choose the transformation or
‘‘straining’’ functions so as to preserve the uniform
accuracy of the perturbative approximation. In-
specting the exact solution (2.5), we see that one
way to preserve this, at least to lowest order, is to
transform from x to the characteristic curve label
¢ since the exact solution is an explicit function of
¢ for all time, not merely for r = O(1). For the one-
dimensional advection equation (2.1), this trans-
formation from x to ¢ is precisely what the method
of strained coordinates does.

There are two different ways, however, of imple-
menting this idea. One can either transform the dif-
ferential equation first, leaving a lot of undetermined
transformation or ‘‘straining’”’ functions floating
around, and then perturbatively solve the trans-
formed differential equation, as done by Lighthill
(1949), who invented this technique, or one can
apply perturbation theory first and then rewrite the
ordinary perturbation expansion in terms of the new
coordinates, as independently suggested by Pritulo
(1962) and Martin (1967). Crocco (1972) notes that
“‘the standard procedure [Lighthill’s] can become
discouragingly cumbersome and confusing’’, whereas
with Pritulo’s method, despite its being ‘‘all but ig-
nored by the occidental experts’’, the ‘‘sometimes
discouraging complication of the transformed equa-
tions can be entirely bypassed.’’ Because of its sim-
plicity and despite the fact that it is still somewhat
out of fashion, Pritulo’s *‘post-perturbative transfor-
mation’’ method will be adopted here.

Let
s =x —ct, (2.12)
u=¢€eu®+eu'+...], (2.13)
and make the replacement
Q(x) = €Q(x) (2.14)

in the initial condition (2.4). Applying ordinary per-
turbation theory to (2.1) gives

u® = Q(s), (2.15a)
—1Q(s)Q'(s), (2.15b)

where the prime denotes differentiation. We now in-
troduce the implicit transformation from s to &, i.e.,

S(€,8) = &+ esy(E,8) + (€D + .. .. (2.16)

A similar transformation could be introduced for ¢
if need be, but since there is wave propagation in

ul
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one direction only, both here and for the Kelvin
wave, it is only necessary to strain a single co-
ordinate. We want to choose the straining functions
51(&,1), etc., in such a way that the expansion of
u(x,t)interms of e and the strained coordinates, i.e.,

u(x,t) = eU%¢,) + eUWED + ..., 2.17)

is uniformly valid. Introducing (2.12) into (2.9) and
expanding the result in powers of € gives

U%¢E,t) = u¢,), (2.18a)
0,
UNED = k(60 + si(éud) 3“—;§2 . (2.18b)
or using (2.10) and (2.11),
U'¢,t) = Q(9), (2.19a)

UNg) = 10O Q'(§) + 5:(§0NQ'(€).  (2.19b)

The higher order extensions (more strained co-
ordinates and higher powers in €) of the general
expressions (2.18) are given by Crocco (1972).

It is the linear growth of u! with time, as indi-
cated in (2.15b), that quickly destroys the usefulness
of the ordinary perturbation expansion. In (2.19b),
we must therefore choose s; so as to cancel out
this linear dependence of the first-order solution on
time, which implies

si(é,1) = 1Q(§) + p(&.0), (2.20)

where p(&,t) is a bounded, O(1), but otherwise arbi-
trary function. This arbitrariness represented by
D(&,1) is a general feature of the method of strained
coordinates and one may choose p(¢£,f) to be what-
ever is convenient, so long as it does not destroy
the uniform validity of the perturbation series. Here,
the obvious choice is p(§,t) = 0 which makes
U' = 0. Letting

€0 — Q0

so as to be consistent with the original specifica-
tion of the initial condition (2.4), and replacing s by
x — ct, the first-order strained coordinates solution
becomes

(2.21)

x=¢+ [c + 0®, (2.22a)
u(x,t) = Q(8). (2.22b)

Comparing this with (2.5) and (2.6), one sees that
Egs. (2.22a,b), in fact, are the exact solution: all
higher order corrections, as can be easily verified
explicitly, are, in fact, zero.

It is a source of some amazement to me that no
one, to my knowledge, has previously called atten-
tion to the fact that the lowest order method of
strained coordinates solves the one-dimensional ad-
vection equation exactly, but it is a compelling argu-
ment for applying strained coordinates to fluid
waves. In more complicated problems, such as the
Kelvin wave, it is too much to expect that the
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method will give the exact answer at lowest order,
but the source of nonuniformity is the same —non-
linear advection—so one would expect that strained
coordinates would be very effective at providing
a uniform approximation.

One drawback of the method is that it usually
generates implicit rather than explicit solutions. As
can be seen from the exact answer to (2.1), how-
ever, this annoying implicitness is not a weakness
of the perturbative algorithm but is rather inherent
in the nature of nonlinear, nondispersive waves: the
method of strained coordinates mirrors the under-
lying physics of the problem as closely as any per-
turbation scheme could hope to.

c. The signaling problem

For the Kelvin wave, it is of interest to study not
only the familiar initial value problem but also the
boundary value problem where u(x,t) is specified
at a single value of x for all values of t—what in
acoustics is known as the signaling problem. As
background for the Kelvin case, it is useful to write
down the solution of the signaling problem for the

" one-dimensional advection equation. As for the ini-

tial value case, both Whitham’s line of reasoning
and the lowest order method of strained coordinates
give the exact answer.
Let
u(x =0,1) = R(—ct), (2.23)

(Note the minus sign, which has been inserted to
make the signaling formulas parallel those for the
initial value problem as closely as possible.) The
ordinary perturbative solutions are

u® = R(s), (2.24)
—xR(s)R'(s)/c. (2.25

Straining s so as to remove the nonuniformity in
X now gives

X =ct =§&+ (£+ chHR(H)c, (2.26)
u = R(§). ' (2.27)

Eq. (2.26) is identical with (2.5) except for the sub-
stitution of R for Q and the extra term £R(£)/c on
the right-hand side.

Since R(¢) < 1 uniformly in (x,t), it follows that
one canreplace (¢ + ¢r) by x in(2.26) to approximate
(2.26) as

0=t <o,

ul =

x —ct = ¢+ xR(§lc, (2.28)

with a uniformly small error, which is no worse than
that usually inherent in the lowest order method of
strained coordinates. As shown in the next subsec-
tion, Eq. (2.28), which also displays the secular be-
havior in x more clearly, is often easier to solve.
It is only for this special case of the one-dimensional
advection equation that (2.28) is inferior to (2.26)
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because for (2.1), Eq. (2.26) is exact while Eq. (2.28)
is only approximate. By reasoning similar to that
used to derive ¢ for the initial value problem, one
can show that the breaking distance [from (2.28)] is

—C
R'(¢5)

where &5 is the value of ¢ for which R(£) has its
negative maximum.

(2.29)

XB

d. Periodic initial or boundary conditions

If the initial condition is

u(x,t = 0) = e sin(kx), (2.30)
then ¢ is determined from
x = ¢+ [c + e sin(ké)]t. (2.31)

If one rescales according to

¥ = ké, (2.32)

e = —ekt, (2.33)

0 =k(x — ct), (2.34)
then (2.8) becomes

P =8+ e sinyg, (2.35)

which is known in celestial mechanics as Kepler’'s
equation.! The advantage of this transformation is
that we can use the known analytic solution of
Kepler’s equation to solve (2.28) for all ¢ < 1., i.e.,

u(x,t) = € sin(ys), (2.36)

Y =60+23 Jul(ne) sin(n6) . (2.3
n=1 n
The wave breaks? when |e| = 1, which is equiva-
lent to
1
g = —. 2.38
5= (2.38)

Note that the breaking time is proportional to (ke)™!
and not merely to €' alone: If kK < 1, as it is for

! In this astronomical context, e is the eccentricity of the orbit
and ¢ and # are the mean and eccentric anomalies. After sub-
mission of the first draft of this work, I found that Platzman
(1964) had independently also discovered this relationship be-
tween Kepler's equation and periodic solutions of the advection
equation. He gives extensive references and also explicitly de-
rives the Bessel function series solution. Blumen (1979), which
led me to Platzman’s work, also refers to other, closely related
Bessel function series which have been used in other models
of frontogenesis, so series like (2.37) have a long history and a
broad usefulness.

2 This breaking condition is derived in Platzman (1964). It is
obvious to celestial mechanics since e (eccentricity) = 1 marks
the transition from closed periodic, elliptical orbits to unbounded,
hyperbolic trajectories.
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one of the Kelvin wave applications, then the break-
ing time may be very long compared to €.

For the signaling problem, life is more compli-
cated because Eq. (2.26), the exact equation for
&(x,r), cannot be recast into Kepler’s equation. If
one uses the approximate but uniformly valid alter-
native (2.28), however, then the signaling problem

u(x = 0,1) = —e sin(kct) (2.39)
is solved by
u(x,t) = € sin(ys), (2.40)
where  is still given by (2.34) but now
e =— ﬁx_ . (2.41)
c

As before, the wave breaks when Ie| = 1, which
implies that the breaking distance is

(o
Xp = — .

2.42
e 2.42)

3. The nonlinear Kelvin wave

a. Perturbation theory

Let a be the radius of the earth, Q the frequency
of the earth’s rotation, and H the depth of the layer
of homogeneous, incompressible fluid. Defining

L 3.1)
gH
it is convenient to nondimensionalize using
L =EYq (length scale), 3.2)
T = EV(2Q)! (time scale). (3.3)

The nonlinear shallow-water wave equations on the
equatorial beta-plane are then

U, + uu, + vuy, —yv + ¢, = 0, (3.9
vy + uvy + oo, +yu + ¢y, = 0, 3.5)
G + uy + (ud); + v, + (vd), = 0.  (3.6)

The first step in Pritulo’s procedure is to solve these
equations via regular perturbation theory. We shall
see that this is the hard part; the second step, strain-
ing coordinates, is so similar to that for the one-
dimensional advection equation that it can be done
by inspection.

The lowest order solution is simply the linear
Kelvin wave

Cux,y,t) = eTVPVQ(x — 1), (3.7a)
(x,y,t) =0, (3.7b)
¢°(x,y,1) = u(x,y,1), (3.7¢)

where Q(x — t) is determined by the initial or
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boundary conditions, depending on whether we are
solving the initial value or signalling problem. The
set of equations which determines the first-order
solution is

uf —yv' + ¢ = —uul, (3.9
v +yut + ¢, =0, 3.9
&} + ul + v) = —2u%l, (3.10)

after simplification by using the facts that u® = ¢°
and v° = 0.

To solve (3.8)-(3.10) efficiently, it is necessary
to introduce a couple of tricks. The homogeneous
solutions of (3.8)~(3.10) are characterized by the
fact that the north-south velocity for a given mode
is directly proportional to a Hermite function, i.e.,

v = p(x,ne”V"PVH,(y), G.11)

where H, is the nth Hermite polynomial, whose de-
gree is used to label the latitudinal structure of the
free modes. Unfortunately, u and ¢ for a given mode
are generally equal to the sum of two Hermite func-
tions. However, it can be shown that for a given
mode

S =(¢ + u) =r(x,0)e""¥H, (y), (3.12)

D = (¢ — u) = g(x,n)e"""H,_(y). (.13)

The first trick will be to introduce these ‘‘sum’’ and
‘*difference’’ variables in place of ¢ and u because
the fact that each is proportional to a single Hermite
function will greatly simplify the algebra. [This de-
vice was introduced by Gill and Clarke (1974).] The
first-order equations become (dropping the super-
script 1's)

9 .
St+SI+[——_y}U=F,
dy

(3.14)

o+ l[i + y]s + 1[_‘9_ - y]D =0, (.15
2| 8y 2 ay

a
D, — D, + [—+y]v=G, (3.16)

ay

where

F = -34%9%, (3.17)
G = —uul. (3.18)

The second trick is to recognize that the linear
operators

)
R=—-y, 3.19)
dy ‘
L= 9 +y, (3.20)
dy

which appear in square brackets in (3.14)-(3.16) are,
in fact, the ‘‘raising’’ and ‘‘lowering’’ operators for
the Hermite functions, i.e.,
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R[H (y)eT"¥] = —H,,(y)e=V2¥  (3.21)
L[H\(y)e™V®¥] = 2nH,_(y)e='¥, (3.22)

Since all the explicit y dependence of the first-order
equations is expressed in terms of the raising and
lowering operators alone and since the Hermite
functions give the latitudinal structure of the free
modes and are a complete, orthogonal set of basis
functions, the next step is obvious: expand both
sides of (3.14)-(3.16) in terms of Hermite functions.
This yields

§ = e-ion éo S(LNHW), (.23
v =eUDE ;::0 v(x,DH (y), (3.23b)
D = e-vow éo Dy, 0HNY),  (3.230)
F = e-vomw éo Fux,0H(y), (3.24a)
G = 1w éo Gux,)HA(y).  (3.24b)

Substituting these expansions into (3.14)-(3.16) and
using the properties of the raising and lowering
operators, one finds that

Sor + SOJ; = F,, (3.25)

plus the pair of equations
Syt + 81z = vo = Fy, (3.26a)
Vg + Sl =0, (3.26b)

plus the coupled triplets of equations, one for each
value of n = 1

(Spet)e + (Spet)e — v = Fryy, (3.27a)
Uy +(n + DS,y — V2D, =0, (3.27b)
(Dy-1)t = (Dy1)e — 200, = Gy (3.270)

The reason that one finds only a single equation
for S, and just a pair involving v, versus a set of
three equations involving v, for n = 1 is simply a
reflection of the well-known fact that there is only
one mode with no meridional velocity (the Kelvin
wave) and only two modes with v proportional to
H, (the mixed Rossby-gravity wave plus a westerly
gravity wave). For greater values of n, each triplet
(3.27) has three homogeneous solutions correspond-
ing to an easterly Rossby wave plus easterly and
westerly gravity waves. This direct correspondence
between (3.25) to (3.27) and all the allowable free
modes is one of the benefits of approaching the
shallow water equations as a set: the usual procedure
of reducing the three equations down to a single
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equation for v has the double-barreled disadvantage
of (i) leaving out the Kelvin wave entirely and (ii)
introducing a third spurious mode for » = 0, which
one must then argue away by showing that it is not
a solution of the original set of equations.

Since the Kelvin wave is symmetric about the
equator, as are the Hermite polynomials of even de-

=3Q(x = NQ'(x = (23)"*

]

0

G,=F,/3

Since the F,,, G,, and the linear Kelvin wave itself
are all functions of (x — ¢) only, it is convenient
to transform the coordinates into a frame of refer-
ence moving with the phase speed of the zeroth-
order solution by defining

s=x—1. (3.30)
In the new coordinates, the equations become
Sor = Fo(s) (3.31)
and the triplet sets
(Snt1)e = v = Fria($), (3.32a)
Upt — Ups + (0 + 1Sy — 2D, =0, (3.32b)

(Dp-1)i = 2(Dp_y)s + 210, = Gu_y(s). (3.320)

0

va(s,t) = —iU

dkwg(k)Ag(k) expliks — iwp(k)t]

=

©

+L

dkﬁ’wc(k)A wel(k)

®

+

wp(k)Ap(k)

+J dk

D, _(s,t) = —ZnUw dk

-

(l)WG(k) + 2k

where wp, wye and wgg are the three roots of the
dispersion relation

@ + 3ko? + k2 - 2n - Do
- 2n + 2k =0, (3.34)

physically corresponding to Rossby waves, west-

mWG(k)A walk)

=]

+Ld

BOYD 7

gree while those of odd degree are antisymmetric
about the equator, it follows that all the odd-degree
Hermite expansion coefficients of F and G are zero.
This implies that one need not worry about (3.26) or

- about those triplets (3.27) for which n is even.

Explicitly, by using the known expansion for
[exp(—(1/2)¥?)]* = exp(—Yy?), one finds

—(:l& (n even)

(n/2)112%2 (3.28)
(n odd),
(all n). (3.29)

The general solution to (3.31) and (3.32) will consist
of a particular solution plus an appropriate combina-
tion of the free modes which satisfy the homogene-
ous forms of (3.31) and (3.32). The homogeneous
solution is given explicitly by

So(s,t) = Ag(s), (3.33a)
' Sani(s,t) = J“’ dkAg(k) expliks — iwgp(k)t]
+ jw dkAwg(k) exp[iks - l(l)w(;(k)t}

+ J“ dkAge(k) expliks — iwpe(k)t], (3.33b)

expliks ~ iwywe(k)t]

[

dkwpo(k) A go(k) expliks — inG(k)t]} . (3.33¢)

o

expliks — iwp(k)t]

expliks — iwwe(k)?]

k wEG(k)AEG(k)

wge(k) + 2k expliks - leG(k)t]} , (3.33d)

o©

ward propagating gravity waves, and eastward
propagating gravity waves. The amplitudes Ag(k),
Awg(k) and Apg(k) (which are different for each n)
are chosen (with the help of inverse Fourier trans-
formation) so that the sum of the homogeneous solu-
tion (3.33) plus the particular solution (3.35) satisfies
the initial conditions and A x(s) similarly. Since these
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free modes are either sinusoidal in time (n = 1) or
independent of time (S,), as is explicit in (3.33),
their contribution to the first-order equations cannot
cause the perturbation expansion to be nonuniform
and one need not worry about them further. It is
the particular solution that will require straining the
coordinates and, in this respect, (3.31) and (3.32)
are radically different.

The triple set (3.32) has a particular solution which
is a function of s only and is explicitly

—Fpo(s), (3.35a)

Un(S) =
Dyi(s) = — j ds'[4Gr(s")

0

+ nFpi(s))], (3.35b)
Spia(s) = —(n + 1! J ds'[V4G_y(s")

0
+ VanEan(s) + (Fun(s Dl (3.350)
In contrast, :

So(s,1) = Fo(s)t + (x — 0)B(s),  (3.36)

where B(s) is an arbitrary function of 5. A factor of
s (=x — t) has been explicitly displayed in the term
which is a function of s only so that one can see
that the only way that one can remove the ‘‘secular’
(linearly increasing and unbounded) behavior in ¢ is
to set B(s) = Fy(s), which generates secular be-
havior inx. Itis this single equation (3.31) that keeps
the regular perturbation expansion from being uni-
formly accurate in x and ¢. Physically, this distinc-
tion between (3.31) and (3.32) is easy to understand
because the other free modes [the solutions of the
homogeneous form of (3.32) as given by (3.33b)-
(3.34)] all have phase speeds different from that of
the Kelvin wave. Consequently, a forcing, such as
that given by F(s) and G(s) here, which is traveling
at the phase speed of the Kelvin wave, will reso-
nantly force just that one mode—the Kelvin wave
itself. o

An alternative approach to seeing the nature of
the solutions of (3.31) is to use (3.12), (3.17), (3.28)
and (3.30) to rewrite (3.31) as

u) + ul + G/2)"2u%% = 0. (3.37)

Except for the factor of (3/2)V2 = 1.2247 (which
could be eliminated by rescaling u), this\equation
is identical to (2.1) for the special case ¢ = 1. From
the results presented in the previous section, one

has immediately the lowest order® strained co-.

ordinate solutions:

3 By the *‘lowest order’’ here and *‘first order’”’ below (3.41b),
1 refer to U° and U! in the notation of Section 2b, i.e., the per-
turbative solutions after straining. It is one of the peculiarities of
singular perturbation theory that U°, although “‘lowest order”’,
is not equal to «°, which is the linear wave.
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Initial value problem ‘
u(x,t = 0) = Q(x)e"12¥ (3.38)
u(x,r) = Q(é)e 1A, (3.39a)
where £(x,t) is determined by solving
x =&+ [1 + @2)20(8)]t. (3.39b)
Boundary value [signaling] problem
u(x = 0,1) = R(=H)e™2% (3.40)
u(x,t) = R(§)e-1>v, (3.41a)

where £(x,t) is found from
x =&+ [1 + GR2)2R(E]It + BI12)VR(E). (3.41b)

The first-order solutions (which will not be con-
sidered further in this work) are identical, to this
order of approximation, with (3.33) and (3.35) except
that, first, s is replaced by ¢ and, second, S, = 0.
Section 4 illustrates these solutions (3.39) and (3.41)
by applying them to some oceanographic phenomena.

b. Resonant triads and coastal reflections

From a resonant triad viewpoint, as considered by
Ripa (1979), every Kelvin wave is resonantly inter-
acting with every other Kelvin wave and not reso-
nantly interacting with any other species of equa-
torial wave. This mutual resonance of the Kelvin
waves among themselves justifies the use of strained
coordinates since an approximation, which repre-
sents the Kelvin wave as the sum of a triad of sine
functions in x, must inevitably fail long before the
wave actually breaks. The nonresonance of the
Kelvin wave with other types of equatorial waves,
however, is even more important.

First, as shown above, it implies that the actual
straining of coordinates for the Kelvin wave is the
same as that for the one-dimensional advection
equation, which simplifies life enormously. Second,
and more significant, this nonresonance justifies the
initial condition of a pure Kelvin wave assumed in
(3.7), which in and of itself is highly unrealistic.
In general, however, resonant effects dominate non-
resonant effects, and, in the present case, this means
that the mutual resonance of the Kelvin waves
among themselves is what primarily determines their
nonlinear evolution. To a first approximation, the
Kelvin wave will steepen and break independent of
whatever Rossby or gravity waves may be present,
provided only that the amplitude of these other
waves is small.

It is this independence of other waves that justifies
the rather naive determination of the significance of
nonlinearity for Kelvin waves in the Gulf of Guinea,
which is presented in the next section. When a
Kelvin wave strikes the west coast of a continent,
Rossby and gravity waves are generated by reflec-
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tion. Thus, the response to a low-frequency, peri-
odic forcing in a bounded ocean will inevitably con-
sist of a complicated mixture of many different
species of equatorial waves. As pointed out to the
author by S. G. H. Philander, there may be little
physical point to regarding such a soup of multiple
reflections as ‘‘waves’’ if the forcing frequency is
low enough. It is always possible mathematically,
however, to expand the total solution as a Hermite
function series and examine individual coefficients.
In particular, the evolution of the coefficient of Hy(y)
in the expansion of the sum variable S, i.e., the
Kelvin wave, is still largely independent of all the
other coefficients, provided that the others are small.
It follows that assuming an initial condition of a pure
Kelvin wave as in (3.7) will, to lowest order, lead to
a correct analysis of the effects of nonlinearity on
the Kelvin wave even in situations where the Kelvin
wave by itself cannot possibly be the complete solu-
tion to the stated problem, as is true of the Gulf of
Guinea.

A similar argument can extend the present theory
to the much more realistic case of a baroclinic ocean.
The Kelvin waves of different vertical modes will
not resonantly interact with another, so the steepen-
ing and breaking of the Kelvin wave of the first
baroclinic mode— which is what will actually be dis-
cussed in the oceanographic examples of the next
section—will proceed independently of what is hap-
pening in other vertical modes. Thus, the barotropic
theory presented here can be directly applied to a
stably stratified ocean simply by replacing the fluid
depth H by the appropriate ‘‘equivalent depth’”. The
only other possibility is that there may be resonant
triad interactions between different vertical modes,
possibly involving Kelvin waves—but here, this
sleeping tiger will be left asleep.

4. Applications to El Niiio and the Gulf of Guinea
a. Background .

At the present time (December 1978), there are
no direct observations of Kelvin waves in the
oceans. However, Kelvin waves play a major role
in McCreary’s (1976) theory of El Nifio and Moore
et al.’s (1978) explanation of similar upwelling
events in the Gulf of Guinea. While the waves them-
selves have not been seen, the wind stresses that
excite them and the upwelling that occurs when the
Kelvin waves reach the eastern boundary are both
known observables, and this makes it possible to
calculate what the Kelvin waves should be. Because
of their great practical importance, the rest of this
section will concentrate on these El Nino and Gulf
of Guinea Kelvin waves.

The following parameters will be used: H = 40
cm [equivalent depth of the first baroclinic mode];
E [defined in (3.1)] = 214 000; the nondimensional
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unit of length [defined by (3.2)] L = 295 km; the
nondimensional unit of time [defined by (3.3)] T
= 1.71 days; and the phase speed of the Kelvin wave
is, therefore, 2.00 m s™!. Following McCreary (1978,
private communication), the maximum amplitude of
the wave is taken to be ~1/3 (nondimensional) for
all three oceans (Pacific, Atlantic, Indian), which
implies a maximum zonal velocity of 0.66 m s™.
These estimates, however, should be regarded as no
more than educated guesses in the absence of direct
observational verification.

In McCreary’s (1976) model of El Nifio, the Kelvin
wave was excited by a ‘‘sudden event’—in this
case, a rapid change in the wind stress applied to
the Pacific. At first it was thought (Moore et al.,
1978) that the Gulf of Guinea upwelling was an
almost identical (though weaker) ‘‘sudden event”’,
but more recent observational and theoretical evi-
dence (Moore and McCreary, private communica-
tion, 1978) suggests that the phengmenon is periodic
with an annual period. Consequently, the next two
subsections will treat periodically forced and impul-
sively forced Kelvin waves in turn. For both cases,
the ‘‘signaling’’ problem will be examined with x
= ( corresponding to the ocean’s western boundary
where the wave is excited. The ‘‘signaling’’ solution
(3.39) will be used to follow the wave as nonlinearity
modifies its shape and speed as it propagates east-
ward towards the other coast.

b. Periodic forcing: The Gulf of Guinea

The general periodic Kelvin wave solution is
given by

u(x,y,t) = e sin(k&)e~12¥*, (4.1a)
¢(x,y,t) = u(x,y,t), (4.1b)
v(x,y,t) =0, 4.1¢)
where ¢ is determined by
k(x —t) = k& + ek(3/2)V%x sin(k¢), (4.2)

using the approximation made in (2.28). Except for
the y dependence and the factor of (3/2)'2 in (4.2),
this is the same as the solution of the one-dimen-
sional advection equation given in Section 2d. For
a wave of annual period, using the parameter values
given above, one has

k = 0.030, 4.3)
1/3. 4.9

One then finds the wave first breaks at a distance
from the western boundary of the ocean given by
[from (2.42)]

€ =

@Ry
Xp = 4.5
B i<l 4.5)
= 24 000 km. (4.6)
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FiG. 2. The nondimensional thermocline thickness of the El Nifio Kelvin wave at
the moment it strikes the Peruvian coast in linear (dashed line, McCreary, 1976) and non-

linear (solid line) theory.

Since no ocean is this wide, it follows that Kelvin
waves with an annual period are unlikely to break
anywhere on the globe. v

For the Atlantic, in which a Kelvin wave of annual
period is thought to play a major role in the Gulf of
Guinea upwelling described by Moore et al. (1978),
one may take the width of the ocean as 5000 km.
Ignoring the (nonsecular) first-order terms involving
higher modes which are given by (3.33), the ordinary
perturbation series to first order is

u(x,y,t) = ee"V"¥ ginlk(x — 1)]
x {1 = (3/2)"2¢kx cos[k(x — D]}, 4.7

where the maximum value of the correction term
(in braces) is only 0.208 at the eastern boundary of
the Atlantic.

For the Gulf of Guinea Kelvin wave, then, ordi-
nary perturbation theory is perfectly adequate, and
using it, McCreary and Moore (private communica-
tion, 1978) have already independently confirmed
that nonlinear effects are small. In both the formula
forxz [Eq. (4.5)], and in Eq. (4.7), however, a factor
of k appears explicitly, so shorter period waves will
be more strongly affected. An Atlantic Kelvin wave
with a two-month period and the same amplitude
assumed above would break before reaching the
Gulf of Guinea.

c. Impulsive forcing and El Ninio

In McCreary’s (1976) model of El Nifio, the
boundary forcing of the Kelvin wave is assumed
to be

O0<t=t¢
u(x=0,y,t)=[

t =t,,

Ee(—llZ)yz(t/to)Z’
(—1/2)y2
bl

4.8)

€€

when a zonal wind stress is driving the motion,
where t, = 3 X 10 s and € = —1/3.* The approxi-
mate solution is

ee(“l/Z)y2§2/t02’

0<t<ty+[1 - (32)Y%]x

u(x,y,t) = e (4.9a)
€e 5 .
t =19+ [1 — (3/2)12)x,
2(x — .
¢ = 1) (4.9b)

TTT U+ 432 Rex(x — it

Because the wave is strictly a wave of depression
(e < 0)—it makes the warm, upper layer thinner by
raising the thermocline—the sloping portion of the
wave is horizontally expanded by nonlinearity as the
wave propagates. In linear theory, upper and lower
limits of the quadratically varying portion of the
wave would be separated by 5780 km; according to
(4.9a) these limits are separated by 7000 km—an
increase of 21% when that part of the wave generated
at t = 0 strikes the Peruvian Coast. The linear and
nonlinear predictions are compared in Fig. 2. The
travel time of the flat portion of the trough from one
coast to the other has been increased by twice as
much, about 40%.

Thus, nonlinearity significantly alters both the
shape and phase speed of equatorial Kelvin wave,
even though the idealized wave is of positive definite
slope, which precludes the formation of sharp fronts

4 The sign of € has been changed so that, both here and in
the preceding subsection, the Kelvin wave makes the thermocline
rise, as consistent with the upwelling theories. Note that u(x,
y,1) as given in (4.1a) = —e sin(ks) atx = 0. ‘
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and breaking. In reality, however, the trailing edge
of the Kelvin wave packet, instead of being flat as
assumed here, probably has negative slope. From
(4.8) and (4.9), one can easily see that a wave of the
same amplitude and shape as our leading edge, but
of opposite sign, will break 8000 km from the western
boundary—before reaching the Peruvian coast.
This strongly suggests the trailing edge of the El
Nifio Kelvin wave will break also. Although their
model is too complex to allow a quantitative com-
parison, such trailing edge breaking has been ob-
served by Adamec and O’Brien (1978)° in their non-
linear numerical calculations.

5. Summary

Kelvin waves play a major role both in El Nifio
and the related upwelling in the Gulf of Guinea,
but nonlinearity is important only for the former.
For the waves that propagate into the Gulf of
Guinea, nonlinear effects are very small and can be
calculated using ordinary perturbation theory. For
the Kelvin wave excited during El Nifio, however,
it is a different story: a 40% reduction in phase
speed, a 20% expansion of the leading edge of the
wave, and frontogenesis and breaking in the trailing
edge. To analyze such large nonlinear effects, the
strained coordinates theory presented here is es-
sential.

In view of current observational knowledge of
Kelvin waves (essentially none!), the theory’s sim-
plicity is a great virtue. For example, one can deter-
mine from inspection of (4.5) that a periodic Kelvin
wave of the same amplitude as assumed here will
break in crossing the Atlantic if its period is two
months or less and in crossing the Pacific if its period
is four months or less. As other species of Kelvin
waves are identified, each can be compared against
the theory presented here to determine the role of
nonlinearity in its propagation.
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