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ABSTRACT

Scaling of the turbulent energy equation suggests the balance of terms in the ocean is between
turbulent production, dissipation and the loss to buoyancy. In this paper two models for the source
of oceanic turbulence are considered; namely, production by the Reynolds stress working against a
time variable mean shear, and the gravitational collapse of Kelvin-Helmholtz instabilities. Both of
these shear instabijlities are believed to be important in the ocean. Using values for the critical flux
Richardson number and the measurements from studies of Kelvin-Helmholtz instabilities, the
efficiency of turbulent mixing is shown to be comparable for the two models. Therefore, a general
relationship between the dissipation rate and the buoyancy flux due to the small-scale turbulent
velocity fluctuations is derived. The result is expressed as an upper bound on the value of the turbulent
eddy coefficient for mass K, < 0.2¢/N2. Values of K, are calculated from recent oceanic measurements
of energy dissipation. Isopycnal advection and doubly diffusive phenomena are not included in the model.

1. Introduction

This paper combines recent measurements of
turbulent energy dissipation and the efficiency of
turbulent mixing to estimate the local cross-
isopycnal mass flux. Two different models of
oceanic turbulence are used. In the first model the
turbulence is maintained by the turbulent energy
production of the Reynolds stress working against
the mean shear (which may be varying slowly with
time, i.e., a running mean) while the dissipation and
the buoyancy flux act as sinks for the turbulent
energy. In the second model the turbulence is
associated with the gravitational collapse of Kelvin-
Helmholtz instabilities. This turbulence decays with
time. Some of the kinetic energy removed from
the mean flow is dissipated while some is used for
mixing. The first model is applied to the shear zone
between the South Equatorial Current and the At-
lantic Equatorial Undercurrent and may apply to
some of the 5-40 m thick patches of turbulence
found in other parts of the ocean. The second,
or billow turbulence model, may apply to many of
the active microstructure regions that have vertical
scales on the order of 1 m. As discussed later,
doubly diffusive convective regimes are not incor-
porated in these models.

2. Energetics—Derivations
The Navier-Stokes equation can be used to form
two kinetic energy equations starting with the basic
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where u; is the velocity vector, p the pressure, «
the specific volume, (}; the rotation vector, €;;, the
three-dimensional permutation symbol, §;; the
Kronecker delta, v the coefficient of kinematic
viscosity, x; is directed vertically upward and re-
peated indices indicate summation.

The velocity, specific volume and pressure can be
written as a mean plus a fluctuation part

u,- = 12,' + ui,

a=a+ o

p=p+p
We will discuss the definition of the mean state

later.
Multiplying Eq. (1) by &; and averaging yields
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Usually, viscous effects on the mean motion are
neglected. The velocities are normally considered



84 JOURNAL OF PHYSICAL OCEANOGRAPHY

nondivergent and the specific volume term written
as the product of the means [since o'(dp'/dx;)
< a(0p/ax;)], giving
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The left-hand side represents the total derivative
of the kinetic energy of the mean motion E,, = Yii?.
The first term on the other side is work done by
the pressure gradient, then the gravitational
terms is subtracted to account for the hydrostatic
pressure gradient. The last two terms are the di-
vergence of the mean advection of a turbulent cor-
relation and the Reynolds stress times the mean
shear. It is this last term which also appears in
the equation for the turbulent kinetic energy—
providing the transfer between the two forms of
kinetic energy. The divergence term serves to re-
distribute the energy in space.

Mutltiplying Eq. (1) by u,’, averaging and assuming

the turbulent flow to be nondivergent allows us to
write the viscous term as the sum of the divergences
of the velocity times the stress and the dissipa-
tion e. Thus
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From (5) we see that the turbulent kinetic energy
is modified by 1) the work done by the buoyancy
flux [—u;'a’8p/dx; = (g/p)us'p’]; 2) the correlation
of the turbulent velocity times the turbulent pres-
sure gradient and the specific volume; 3) the di-
vergence of the viscous diffusion of turbulent
kinetic energy; 4) the dissipation; and 5) the
Reynolds stress times the mean shear. Thus it is
via the turbulent kinetic energy that stratification
and dissipation come to affect the mean circulation.

Now we need to scale Eq. (5) to determine the
dominant terms. This exercise forces us to define the
averaging process. The concept of a mean and a
fluctuating part requires a separation between what
is the mean motion and the fluctuating part. One
wants the mean motion to be larger in scale and to

€ = voy'oy'2.
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change more slowly in time than the fluctuating part.
Since we are interested in the effects of the small-
scale turbulence we separate the flow as follows.
The fluctuating part will include those variations on
scales which contribute significantly to the mean-
square shear, i.e. the dissipation scales. Most
internal waves, inertial currents, etc., will be con-
sidered part of the ‘“‘mean’’ motion. The problem of
separating internal waves from turbulence may be
serious but is not amenable to solution here.
Usually they will have different time scales. Thus
it is assumed that the dissipation is due to random
motions which cause mixing and not wavelike
motions which do not.

Scaling the equations to determine the dominant
terms can be done for some atmospheric flows.
Monin and Yaglom (1975) indicate that for a parallel
shear flow in the absence of a destabilizing heat
flux, the pressure velocity correlation and the
turbulent diffusion terms are generally neglected.
Both of these terms can be written as divergences
and therefore affect only the distribution of turbulent
kinetic energy in space, but not the total quantity.
Thus for a steady-state situation the balance is
between the turbulent production, the dissipation
and the work against buoyancy. We will use this
balance for the oceanic situation. Applied to the
ocean this balance can be written as

dx; p @

The ratio of the buoyancy flux to the turbulent
production is defined to be the flux Richardson
number R;. The value must be less than 1 for steady
state. In fact, there are good arguments (Stewart,
1959) that the value is considerably less than 1 for
maintained turbulence in a shear flow. Essentially,
the physical argument is that for a shear 9i,/dx;
the turbulent production goes into «,’? and from
there is distributed by pressure velocity correlations
to u,’? and u;'2. There is viscous dissipation in each
component but a loss to buoyancy only via the
vertical component. Thus the loss to buoyancy is
probably much less than the dissipation. The possi-
bility of a maximum value for R, above which the
turbulence cannot be maintained in steady state is
very appealing. Such a value constitutes a critical
flux Richardson number.

Britter’s (1974) measurements suggest the critical
value for Ry is 0.18-0.2. Businger (1973) discusses
atmospheric measurements. Ellison’s (1957) the-
oretical prediction is ~0.15. At higher values of the
flux Richardson number too much energy is going
into the buoyancy flux and the turbulence will be
suppressed. If the time scale for the variation of the
mean field is large compared to u'%¢”! then the
turbulence will be close to equilibrium. Thus we
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can apply the steady-state value for R, critical to a
slowly varying mean state.
If we define the eddy coefficient for density K, by

NS |

gus'p'p
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where N is the Viisila frequency. Then K, can be
related to €, N and Ry as

K, = )
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0.15
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Eq. (10) can now be used to relate dissipation
measurements to the buoyancy flux in a steady
shear zone such as the Atlantic Equatorial Under-
current. It may also be applicable to thick (10 m or
more) patches of turbulence found in various regions
of the ocean.

There are patches of temperature and velocity
microstructure in the ocean that have scales of 1 m.
These thin features could well be the result of
Kelvin-Helmholtz instabilities. Gregg (1977) shows
oceanic temperature, salinity and density profiles
that look like the laboratory profiles of Thorpe
(1973) and Koop (1976). There are two sources of
information on the mixing efficiency of Kelvin-
Helmboltz (KH) billows. Thorpe has done measure-
ments on KH billows. His 1975 review paper com-
ments that 10% of the energy removed from the
mean field can go into mixing and up to 16% might
be radiated away via internal waves. Koop (1976)
reports on extensive measurements of the ratio of
the increase in potential energy to the decrease in
kinetic energy as a function of gradient Richardson
number. Koop defines Ri = g(Ap/p)h,/(Au)?,
where 4, is the initial scale of the velocity shear.
His experiments were done in a flume tank with
shear and a density gradient. The most efficient
mixing occurred at small gradient Richardson num-
bers with a value of APE/AKE = 0.25. As the value
of R approached 0.20 the ratio APE/AKE ap-
proached 0.01. From these data we can get a range
of values for the multiplication factor y = (APE/
AKE)/(1 — APE/AKE), which converts the already
dimensionally correct ratio ¢/N2, into an eddy
coefficient for mass transport. The different values
of vy are listed in Table 1.

Thus we see that the factor R;/(1 — Ry), derived
from the concept of a critical flux Richardson
number, is half as large as the maximum value of
v derived from Koop’s forced shear flow and 30
~60% larger than the values deduced from Thorpe’s
work. As the gradient Richardson number in-
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TABLE 1. Relative efficiency of mixing by Kelvin-Helmholtz
billows and the critical flux Richardson number.

v = (APE/AKE)/

APE/AKE (1 — APE/AKE) Source

0.25 0.33 Koop (1976), Ri = 0.043

0.15 0.18 Critical flux Ri

0.1 0.14 Thorpe (1975) accounting
for the 16% radiated by
internal waves

0.1 0.11 Thorpe (1975), no radiation

0.01 0.01 Koop (1976), Ri = 0.2

creases, and we would have to think of this as the
local value increasing everywhere, the factor y be-
comes smaller. Thus using Eq. (10} is a reasonable
way to estimate an upper bound for diffusion from
measurements of the local dissipation rate for the
two sources of turbulence considered.

3. Applications

The first set of dissipation data we will examine
is from the equatorial Atlantic (Crawford and
Osborn, 1979a). The Atlantic Equatorial Undercur-
rent is a rather special oceanic situation for there is a
large mean shear above the core. The South
Equatorial Current is flowing at 0.3 m s~! to the west
and at ~100 m the Undercurrent is flowing almost
1 m s7! to the east. The shear over 10 m intervals
reached values well in excess of 1072 s~ with values
as large as 6 X 1072 reported by Bruce and Katz
(1976). This region of high shear coincides with the
region of maximum dissipation. Crawford and Os-
born (1979b) examine the energetics of the current
and scale the turbulent energy equation to justify
using € as an estimate of the local production. Their
dissipation estimates are combined with other meas-
urements of the mean flow regime to allow an inte-
grated version of Eq. (3) to be compared with
measurements of the mean properties for the South
Equatorial Current and the Equatorial Under-
current above the velocity maximum. The com-
parison is quite favorable. Since that work was
done the results of some temperature microstructure
measurements taken on the same cruise have be-
come available (Osborn and Bilodeau, 1980).

Following Crawford and Osborn (1979a) we can
identify three major regions of the water column:
1) the shear region above the Equatorial Under-
current, 2) the core region of the Equatorial Under-
current, and 3) the shear region below the Equatorial
Undercurrent. Table 2 shows the results for K,
calculated from (10) using the dissipation data from
Crawford and Osborn (1979a) and density data from
Katz (personal communication). Values of K; were
calculated from the results in Osborn and Bilodeau
(1980) using the model of Osborn and Cox (1972).
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TAaBLE 2. Dissipation and eddy coefficient estimates from data collected in the equatorial Atlantic. Average values for K, and
K, were derived by averaging individual estimates of K, and K, not from average €, N2, etc., and then applying Eq. (10). Dissipation
estimates are derived from an instrument called the **Camel”, while the temperature gradient variance comes from measurements
with instruments called *‘Pumpkins’. Numbers following the instrument indicate drop number.

Atlantic Equatorial Undercurrent
average values

High shear Core Shear
above core region below core
€ 3 x 1073 cm? §® 3 x 1075 104 — 103
K, 4cm?s™! 0.015 03—-3
Ky 2+1)x19cm?s™! 2=1)x0.01 (2x1)x0.04—0.2
Camel 18, Pumpkin 19
Depth 20-42 m 42-60
€ 7 x 1078 cm? s® 5 x 1078 * 0°02'N 24°00'W
K, 2.6 cm? s~ 0.013
Kr 2+x1)x32cm’s 2+1)x0.04
Camel 23, Camel 24, Pumpkin 24
Depth 20-50 m 50-106 106148
€ 2.5 x 103 cm? s73 2.5 x 1073 1 x 10~ 0°18'S 28°01'W
K, 3.5 0.01 0.32
Ky 2=1)x08 (2 £ 1) x 0.005 2= 1) x 0.043
Camel 28, Camel 29, Pumpkin 30
Depth 20-60 m 60-110 28 29
11-130 115-152
€ 3.4 x 103 3 x 1073 (1-2)x 103 0°02’'N 32°59'W
K, 6.4 0.014 2.4 3.2
K, 2=1)x1.6 (2=1)x0.006 2+1)x02

* Estimated.

The factor (2 = 1) is used to convert components
of the mean square gradient to the total variance

of the gradient. The three stations included in’

Table 2 were located close to the core of the under-
current as seen in Bruce and Katz (1976). The values
of K; and K, can be compared with the expecta-
tion that the eddy coefficients for different scalar
variables should be the same (Munk, 1966). The high
shear region above the core of the undercurrent
probably represents one of the best places to expect
the assumptions leading to Eq. (10) to be valid.
The results are encouraging in the upper shear
layer. Both K, and K, are large and of the same
order of magnitude. The results are consistent with
the turbulence in the upper shear layer being main-
tained in the presence of stable stratification.
Through the core of the current € decreases and N
increases so that K, is 100 times smaller than in the
water above. The values for K, are also smaller in
the range of 10 times the molecular value for heat.
Thus, in this region, K, and K; are comparable but
small. In the shear region below the core values for
€ vary by a factor of 10 between the pair of profiles,
23 and 24, and the other pair, 28 and 29. Here, the
values of K, are an order of magnitude larger than

the values of K;. Both estimates of the eddy co-
efficient show the same variation as the values of the
dissipation. One possible interpretation is that the
flux Richardson number is considerably smaller (by
a factor of 10) in the lower shear region.

Another set of data is available from the waters
adjacent to the island of Santa Maria in the Azores
(Osborn, 1978). The data show thick regions (10—
40 m) of relatively high dissipation. These features
are most noticeable in the seasonal thermocline
adjacent to the island but are also seen at depth
away from the island. The Ozmilov scale (e/N3)V2 is
on the order of 1 m in these turbulent regions. Thus
the scale of the constituent eddies is smaller than
the full vertical scale of the active turbulence.

The model of shear production balancing dissipa-
tion and the buoyancy flux may still be applicable.
Osborn (1978) suggests that the thick dissipation
patches may be regions where the turbulence is
supported by the Reynolds stress working against
the local mean shear. This mean shear would be
time variable, largely due to inertial and internal
waves, and hence the turbulence would grow and
decay with time. Stewart (1959) discusses the equa-
tions for the individual components u’%, v’%? and
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w2 as well as the Reynolds stress term u'w’.
Increases in the shear can lead to increased turbulent
energy production which leads to an increase in the
Reynolds stress. Thus the turbulence could increase
until the shear started to decrease. The picture is
one of a time varying turbulence level in response
to a time varying mean shear. There would always
be a low level of background turbulence perhaps
decaying in time but ready to grow with an increase
in the local mean shear. This mechanism could pro-
duce turbulent patches, such as reported by Gregg
(1977, Fig. 15a), with vertical scales of tens of
meters even with static stability on scales of 1 'm
and larger.

The dissipation data below the upper layer, which
is in direct contact with the atmosphere, can be
separated into three oceanic regimes:

1) The region well away from the island (~80 km
west) and below the surface mixed layer. These data
encompass the region 200—750 m depth, which is the
maximum operating depth of the instrument.

2) The seasonal thermocline adjacent to the island
(within 16 km) corresponding to the depth interval
between 100 and 150 m.

3) The region below the seasonal thermocline
adjacent to the island, ~150-750 m.

Values of K, for the three regions in the Azores
below the wind-mixed upper layer are shown in
Table 3. The first two values are quite large com-
pared to what one has come to expect from tempera-
ture microstructure using the Osborn-Cox model
(Gargett, 1976; Gregg, 1977). The lower value below
the seasonal thermocline adjacent to the island
compared to the same depth offshort is a reflection
of the relative € values and is quite apparent in the
averaged values of €.

The model was applied to data collected with the
same instrument system during the Fine and Micro-
structure Experiment (FAME). Data were taken at
several sites in the western North Atlantic, near
Bermuda, in the Guilf Stream as well at an open
ocean site (Gargett and Osborn, 1979a). Table 4
shows the values of K, derived from 200 m aver-

TABLE 3. Dissipation and diffusion estimates from the Azores.

Depth € K,
(m) (cm? s7%) (cm? s71) Location

1. 200-700 8.6 x 10~ 2 Below the seasonal

thermocline 80 km
- from the Island

2. 100-150 2.7 x 10 5 Seasonal thermo-
cline adjacent to
the Island

3. 150-750 2 x 10°° 0.3 Below the seasonal

thermocline ad-
cent to the Island
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TABLE 4. Estimates of eddy coefficients from the FAME data
presented for different locations in space.

Seasonal Main
thermocline thermocline
Location (cm? s™) (cm? s71)
Open ocean site 0.3 0.3
Near Bermuda 0.12 0.3
Gulf Stream 0.07 0.5

ages of € and N2, provided by Gargett (personal
communication). There is an ambiguity in ‘the cor-
rect way to average. Estimated values of € corre-
sponding to the noise level of the undercurrent
(<107° cm? s7%) can actually represent water with
much lower dissipation rates. This effect is most
pronounced at the deeper level for the open ocean
site where the estimate for K, would be about three
times less if values of € corresponding to the noise
level are set to zero before averaging the data
over 200 m intervals.

4. Error bands

The dissipation values are based on measure-
ments of the shear variance. The uncertainty in the
measurements of shear variance are reported at
*+50% (Osborn, 1978) and +45% (Crawford, 1976).
There is an uncertainty for spatial averaging
(Crawford, 1976) and the uncertainty in converting
the mean signal shear to dissipation using the iso-
tropic relation between the shear variance and e.
The finite noise level of the measuring system
places a lower bound on the measurement and
makes the average value ambiguous when a sub-
stantial part of the water column is at or below the
noise level. Calculations of K, and K; are also
statistically limited by the amount of data available.
It is unclear how much data are required to form a
stable estimate for either € or x = 2x(V8')>.

For the above reasons the values calculated in
this paper should be considered on an order-of
magnitude basis. The large values shown in Table 3
indicate a difference in the water column between
the near island seasonal thermocline and the region
below. The water below the seasonal thermocline
away from the island is different from that
sampled adjacent to the island. Values of K, that
differ by a factor of 2 should be considered
equivalent values.

5. Discussion

The eddy coefficient calculated by (10) param-
eterizes the diffusion due to the small-scale turbu-
lence. It obviously cannot include events such as
the MEDOC 69 convective penetration through the
thermocline. Nor does the eddy coefficient include
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the vertical turbulent diffusion due to large-scale
advection along sloping isopycnal surfaces. The
model used to derive K, estimates the buoyancy
flux associated with the local small-scale turbulent
fluctuations that are responsible for the dissipation.
Hence, the buoyancy flux and therefore the derived
eddy coefficient is associated with the small-scale
turbulence and represents the local cross-isopycnal
diffusion. Whenever one uses a model for deriving
an eddy coefficient, it is crucial to keep in mind the
assumptions associated in the model to allow the
correct interpretation of the value derived. For
example, Osborn and Cox (1972) derived a method
to estimate the vertical eddy coefficient for heat
from measurements of the small-scale temperature
gradient variance. In deriving that model, terms
which included the advection of temperature
variance were neglected. Hence that model is
inappropriate in frontal regions where there are large
advective contributions to the (6’)? balance.

Values for K; of 0.14 cm? s™* correspond to 100
times the molecular coefficient. Thermal micro-
structure measurements in the Pacific (Gregg,
1977; Gargett, 1976) suggest that this ratio of eddy
diffusivity to molecular diffusivity is not unrea-
sonable. Gregg’s values from FAME (personal
communication) indicate a Cox number on the order
of 100 from data collected near Bermuda. A larger
value for K, such as suggested by two of the Azores
regimes seems too large. Perhaps the time-de-
pendent effects are important in this case. The
limited sample does not allow us to estimate the
temporally averaged value and so we may be getting
the apparently large values due to specific mixing
events occurring during the sampling period. Hence
these values of K, in the Azores represent an
excessively large value to the upper bound of K.
The value of R; might have been considerably
below the value of 0.15 used in the derivation of
Eq. (10). Dissipation that occurs in well-mixed por-
tions of the water,column is not associated with
its proportionate share of mass transport. Thus the
estimate of p’'w’ and hence K,, from € is an
upper bound.

The derivation of a similar eddy coefficient for
the buoyancy flux [Eq. (10)] has been done by
Ozmidov (1965) on the basis of a critical mixing dis-
tance. In fact, the functional dependence on € and
N?is determined by dimensional reasoning as soon
as they are made the only available descriptors
of the flux. The derivation in this paper differs from
Ozmidov’s in that a basis is provided for evaluat-
ing the constant of proportionality between K,
and e/N2.

The model of oceanic turbulence is also different.
In Ozmidov’s model of turbulence there are mixing
layers up to some vertical thickness determined by
the stratification. Eq. (10) is derived without requir-
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ing that the stratification determine the vertical
scale of the turbulent patches. Rather, the vertical
scale of the turbulent patches is felt to be deter-
mined, in some cases, by the vertical scale of the
“‘local mean shear’” and in other cases by the
billow size.

Olbers (1976) uses the internal wave spectrum and
ideas about the energy transfer to estimate the
energy that is available to turbulence. Using a value
of 3 for e(K,N?)™! he derives the buoyancy flux
due to the energy lost from internal waves. His
value of K, = 0.3 cm? s™! would correspond in this
paper to a value of 0.16 cm? s=! when the differ-
ences in the assumed efficiency of mixing are taken
into account.

Lilly et al. (1974) use a value of R, = 0.25 to
convert estimates of dissipation rates in the atmos-
phere to diffusion fluxes for buoyancy. Weinstock
(1978) presents an analytical derivation for K, in the
atmosphere. However, the associated volume value
for R; would be ~0.44 which seems too large if one
is inclined to accept Stewart’s (1959) reasoning.

The models for turbulent diffusion discussed in
this paper use mechanical energy extracted from
the flow field to increase the potential energy of the
system by raising the center of mass. In contrast,
convection driven by the difference in diffusion
rates (doubly diffusive convection) removes po-
tential energy from the vertical distribution of one
constituent of the density field (heat or salt) and
uses that energy to raise the potential energy due to
the other constituent. The efficiency in converting
potential energy in .one scalar field to potential
energy of the other scalar field varies from 15% for
the more stable portions of the diffusive regime
(Turner, 1973) to 56% for salt fingers (Schmitt,
1977). Quantitative evaluation of the role of doubly
diffusive processes in oceanic transport of scalar
properties cannot be done with present information.
While thermohaline and the mechanical sources
may both contribute to the energy dissipation and
the buoyancy flux, more insight is needed to separate
out their relative contributions to the density flux.

6. Concluding remarks

This paper relates measurements of energy dissi-
pation to the local rate of cross-isopycnal turbulent
mixing. Two different shear instability mechanisms
are used to estimate the efficiency of turbulent
mixing. Doubly diffusive phenomena are not incor-
porated into this discussion since they represent
vertical convection driven by gravitational potential
energy, whereas this paper is concerned with verti-
cal transport due to turbulence whose energy is de-
rived from the local kinetic energy in the ocean.

A value for the buoyancy flux of 15% of the turbu-
lent production is used as an upper bound. This
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value is consistent with the two different sources of
the turbulent fluctuations. Large values in excess of
1 cm? s~ for the vertical eddy coefficient are found
in the shear region of the Atlantic Equatorial Under-
current as well as in parts of the seasonal and main
thermoclines adjacent to the Azores. Values well
below 1 cm? s~ are found in some of the Azores data
and in the dissipation measurements from FAME.
Much more data are needed to separate out temporal
and spatial variation in the dissipation rates. Work
is also needed to determine the statistics of the
distributions of € and x. These results would
show how much data are needed to reliably esti-
mate average values. More detailed measurements
in the vertical are necessary to determine the rela-
tionship, if any, between the distributions of the
local values of N? and e.
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