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ABSTRACT

Topographic Rossby waves are long-period waves which occur on continental slopes. In this paper we
examine the effect of a mean current on these waves, when the current is directed along the isobaths and
has a linear shear in the transverse direction. Solutions are obtained in terms of Whittaker functions and
are applied to some data analyzed by Hamon er al. (1975), which has been interpreted as evidence of
topographic Rossby waves by Garrett (1979). The modifications due to a linear friction law are also

considered.

1. Introduction

When transient motions in a barotropic ocean,
such as meanders or eddies, encounter a conti-
nental slope, the vortex lines are compressed (or
stretched) as they move into regions of shallow (or
deep) water, respectively, due to the conservation
of potential vorticity. The resulting fluid motion is
a topographic Rossby wave whose longshore phase
velocity is directed along the isobaths, with the
deeper water on the left in the Northern Hemisphere
or on the right in the Southern Hemisphere (Le
Blond and Mysak, 1978, Section 20). Recently, Gar-
rett (1979) has suggested that data analyzed by
Hamon et al. (1975) of longshore currents on the
East Australian Shelf are consistent with the pres-
ence of topographic Rossby waves with an onshore
component of group velocity. Kroll and Niiler (1976)
have shown that such waves may propagate a con-
siderable distance up the slope before being elimi-
nated by friction. Also, Petrie and Smith (1977) found
some evidence for onshore propagation of these
waves on the Scotian Shelf.

In this paper we propose to examine the effect of
a mean longshore current on topographic Rossby
waves. We shall assume that the undisturbed depth
is &(x), so that the isobaths are parallel straight lines;
the x,y axes are normal to and parallel to the isobaths,
respectively (see Fig. 1). The mean longshore cur-
rent is vo(x) parallel to the isobaths. Then if # and
are the x and y components of velocity, respectively,
and ( is the wave height, the governing equations
are (Le Blond and Mysak, 1978, Section 20)
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Here f is the Coriolis parameter, and is positive in
the Northern Hemisphere but negative in the South-
ern Hemisphere. Eq. (1.1a) is the equation for con-
servation of potential vorticity and (1.1b) is the equa-
tion for conservation of mass. Hereafter we shall
make the nondivergent approximation which means
the neglect of { compared with k; the approximation
is valid when f?L? < gh,, where L is the length scale
of the waves and /, the depth scale. Then the linear-
ized equation for perturbations to the mean long-
shore current is

(0 8){6(16‘1’) 182‘1’}
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F1G. 1. The coordinate system.

o

hu = — (1.2¢)

Here u and v are the perturbation velocities (i.e.,
i =u and b = vy + v), and ¥ is a streamfunction
for the perturbed flow. P(x) is the potential vortic-
ity of the mean current over the slope region. We
seek solutions to (1.2a) of the form

¥ = Rely(x) exp(imy — imct)], (1.3)
where m is the longshore wavenumber and ¢ the

longshore phase speed. Substituting (1.3) into (1.2a)
it follows that

iiﬂ) _¥y 4,
dx(h dx (¢ — vy) dx '

Our aim is to seek solutions to this equation which
describe topographic Rossby waves.

We shall assume throughout that the depth profile
is exponential. We let

“h(x) = hy exp(2Ax), (1.5a)
lp(x} = hyV? exp(Ax)d(x). (1.5b)

Here we shall assume that A is positive, so that depth
increases with x. Then (1.4) becomes

d*¢
dx?

m? dP

- — 14
hllf+ (1.4)

— (m? + A%

[ v,

—\[f+
dx? (f

é=0. (1.6)

&)
dx
(c = vy)
Now, if vy(x) is a constant V, say, a solution of
(1.6) is
¢ = A exp(ikx), (1.7a)

where
—=2\f

TR m R (1.70)
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and A is a constant amplitude. Eq. (1.7b) is the dis-
persion relation for barotropic topographic Rossby
waves (Kroll and Niiler, 1976; Garrett, 1979). The
intrinsic phase speed (¢ — V) is such that the wave
has the deeper water on the left in the Northern
Hemisphere or on the right in the Southern Hemi-
sphere. The corresponding group velocity has
components

4mkf
(k® + m2 + 22’

2N(m? — k* = N3
(K + m? + 22

(1.8)

in the x and y directions, respectively. For onshore
propagation we must have mk < 0 in the Northern
Hemisphere, or mk > 0in the Southern Hemisphere;
the constant phase lines kx + my = constant slope
offshore from south to north in the Northern Hemi-
sphere, and from north to south in the Southern
Hemisphere. The phase lag between two isobaths
xgand x, (xp > x;)isk(mc)™(x, — x,) units of time.

Hamon ef al. (1975) have presented two years of
data for surface longshore currents on the East
Australian shelf, for two alongshore tracks—one
19 km offshore and the other 6.5 km offshore. The
data showed a current pattern moving south at a
speed of 0.1 m s~*'. At the spectral peak at a period
of 117 days, the inshore current lagged the offshore
current by 10 days. Garrett (1979) has proposed a
simple model using the topograhic Rossby wave
defined in the previous paragraph. With m and ¢
prescribed (i.e., determined by some fluctuating
motion in the deep ocean), Eq. (1.7b) determines
k and hence the phase lag can be prescribed. Choos-
ing V=-06ms! ¢c=—-0.1m s, mc=-27
(117 days)™, f= ~7.3 x 103 s7!, X = 2.7 x 1073
m™, Garrett (1979) found that Xk = 8.4 x 105 m s™!
and the phase lag between 19 and 6.5 km is 20 days.
The onshore component of group velocity is 6.6
X 1072 m s, and so the time taken for the disturb-
ance energy to travel between the two tracks is 2.2
days; Garrett (1979) shows that this is sufficiently
short to allow the disturbance to reach the inshore
track before being eliminated by friction. Here V
is the mean current in the region between the two
tracks, A the value obtained by Buchwald and
Adams (1968) for an exponential fit to the real topog-
raphy between the two tracks, and f the value for
30°S. Note that V is sufficiently large to ensure that
¢ Is negative, although the intrinsic phase speed
¢ — V is positive. The waves are being swept
downstream.

The principal purpose of this paper is to modify
Garrett’s simple model by taking account of the
mean current shear. According to Godfrey (1973)
this is approximately constant to ~30 km offshore,
with dvy/dx approximately equal to —4 x 1075 s~!.
In Section 2 we shall obtain the appropriate solu-

. tion to (1.6) when v, is linear in x up to some value
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x = L, and is constant for x > L. In the application
we put L = 30 km. We put

Vo+ax, 0=sx<L
= ’ (1.9
bol) [Vl, x=L. |
where
V] = V() + aL,

Then in x > L, we shall suppose that ¢ is given by
(1.7a), and k is determined from the dispersion rela-
tion (1.7b) with V replaced by V,. Matching condi-
tions applied atx = L enable this topographic Rossby
wave to be continued into the region x < L. The
matching conditions are continuity of mass flux and
wave elevation (Grimshaw, 1976), or in the present
case,

dé¢ dvy 7

—_t — = 0. .10
The solution for the case (1.9) is described in Sec-
tion 2. Note that no boundary condition is imposed
at x = 0, the shoreline. In this model it is assumed
that the wave is eliminated by friction before reach-
ing the shoreline. If this is not the case, there will
be some reflection and the solution in x > L would
no longer be given by (1.7a). The modifications due
to friction are examined in Section 3.

Before proceeding to Section 2, we note that one
simple method of incorporating mean current shear
is to use the WKB asymptotic solution of (1.6).
This is

6]t = 0, {(c o)

¢ ~ Ak12 exp(i r kdx) s (1.11a)

whére
NS + o)

ey e

(1.11b)

Here £ is a function of x determined from the local
dispersion relation (1.11b). As x varies from 19 km
to 6.5 km, k varies from 8.94 X 10> m~! to 17.3
x 1075 m~!. The phase lag between x, and x; is now
(mc) ! [E kdx. With o = —4 X 1073 871, and vy(x)
given by (1.9) (with V,, chosen so that vy = —0.3 m
statx, =65kmand vy = -0.8m s atx, =19
km), and the remaining data taking values given in
the previous paragraph, we find that the predicted
phase lag is 27 days. The time taken for the dis-
turbance energy is obtained by integrating the
reciprocal of the onshore component of the group
velocity and is 6 days. However, the criterion for
the validity of the WKB asymptotic solution is that
|dkidx | < k*; with the parameters taking the values
given above we find that [k“Q(dk/dx)l ranges from
0.59 at x, = 6.5 km to 0.35 at x, = 19 km. It is thus
doubtful if the WKB approximation will be quanti-
tatively accurate.
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Eq. (1.6) has a singularity at x., say, where vo(x,)
= ¢. Near this level the general solution of (1.4) as-
suming that dv,/dx(x.) # 0, is

¢ = [Cy + aC; In(x — x)I(x — x )1 + O(x — x.)]

+ C,[1 + O(x — x.)], (1.12a)
where
-1
a=h i{(i’)—") (1.12b)
dx \ dx

r=x,

and C,, C, are arbitrary constants. With vy(x) given
by (1.9) and the parameter values described above,
there is a singularity at x, = 1.5 km. This is suffi-
ciently close to the shoreline for us to assume that
friction will have effectively eliminated the wave
before this critical singularity is reached.

Eq. (1.6) also possesses a wave invariant

o = ViRe (l%d)—;-(f)) = l4Re (;—-Z—f J;) , (1.13)

as it may readily be shown from (1.6) [or (1.4)] that
& is constant, except at a critical point x.. Using
the conditions (1.10), we see that & is continuous
at x = L. o may be identified as the offshore com-
ponent of wave action flux, as & is just the time
average of the offshore wave energy flux hlu,
divided by the intrinsic frequency m[c — vy(x)].
myf is also the time average of the offshore com-
ponent of wave momentum flux Auv. The time aver-
age of the wave energy density Y2 h(u® + v?) is -
171do |? d¢ . do

P 3 L + 2 2 2 _ . .
4[ dxl (m* + )] H‘(d’ o 0 dxﬂ
The ratio of m[c — vy(x)]« to this quantity deter-
mines the velocity of offshore energy propagation.
In particular, the sign of m[c — vo(x)]# determines
the direction of energy propagation. For the case
when vy(x) = V,aconstant, and ¢ is given by (1.7a),
the wave invariant o is —Y2k |A |2, and it is readily
verified that the velocity of energy propagation is
Jjust the group velocity defined by (1.8). For the case
when v, is defined by (1.9), « is again —%k [A |2 in
x > L, and hence takes this value forx < L, until a
singularity is reached. The negative sign shows that
there is an onshore flux of wave momentum and
wave energy. At a critical point, & is discontinuous.
Determining the branch of the logarithm by re-
placing mc by mc + ie, € > 0, and taking the limit
€ — 0 (this is equivalent to using causality con-
siderations), we find from (1.12) that

1 iC.C
o = 14Re (l‘Clc_jg), x> x, (1.14)
VaRe (iC,C;) * Yoma |C,|?, x <x,.
Here the sign of the second term is determined by
the criterion m(dv,/dx)(x,) S 0. The discontinuity in
& at the critical level is +V4ma ]Cz |2; for the param-
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Re(w(x))

L = 30 km.

x(km)
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-1

-3
W.X.B.
Approximation

-5 . . L = 60 km.

-6 L = k0 km.

F1G. 2a. A plot of R'e [¥{x)] versus x for L = 30, 40 and 60 km,
compared with the WK B approximation. All plots are normalized
so that ¢(19 km) = 1.

eter values quoted above, this is negative, showing
that the wave action flux, or wave momentum flux,
being directed toward x = x, from the offshore side
is absorbed at the critical level. The wave momen-
tum flux divergence is *Y%mam|C,|28(X — X.),
where 8 is the Dirac delta function, and hence has
the correct sign to support a positive longshore
pressure gradient (cf. Garrett, 1979).

2. Solution for constant mean current shear
With vy(x) given by (1.9) the solutioninx > L is

& = A, explik,(x — L)], (2.1a)
where
2Af

(k2 + m? + \2)

For the region 0 < x < L, the governing equation
is (1.6) or

c—-V, =~ (2.1b)
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dx? (m® + A (¢ =V, — ax) =0 @2

From (1.10) and (2.1a) the boundary conditions at
x =L (as x — L from below) are

d
e = An 22| <o, (2.3a)
dx |,y
where
v =ik ~ — (2.3b)
Yoo vV, ' )
Putting
z=6(c —V,—ax), o?B%=40%+ m?) (.4a)
and
BAMS + @)
== — 2.4b
DY R, (2.4b)
it may be shown that Eq. (2.2) becomes
d’¢ 1 K
+{—=+—|¢p =0 2.5
dz? ( 4 z )d) (2.9)

This is just Whittaker’s equation (Abramowitz and
Stegun, 1964, Chap. 13) and two linearly independent
solutions are -

61(2) = M 12(2), ¢2(z) = W, 10(z), (2.6)

where M, ,(z) and W, .(z) are Whittaker functions. .
M, 12(z) and W, ,(z) are in turn the product’ of
z exp(=z/2) with the Kummer functions M(1 — «,
2, zyand U(1 — «, 2, z). ¢.(z) is a regular function of
z, while ¢,(z) has a logarithmic singularity at z = 0.
Thus we may put

¢ = A\{B,¢:(2) + Bydo(2)}, _ 2.7

‘where B,, B, are constants determined from the

boundary conditions (2.3a). We find that

d .
aBWB, = af ¢ vey| (2.8a)
dZ xr=L
aBWBy = a8 2P | (2.8b)
dz x=L
where
do, de,
W = - 2.8
b T (2-8¢)

Here W is the Wronskian of the solutions ¢, and ¢,,
and is {«k['(—«)}~*. All the numerical results quoted
in this section are for the parameter values given in
Section 1; we find that 8 = 1.38 sm~'and « = 2.75;
zranges from 1.58 atx = 30 kmto 0.97atx = 19km
and 0.28 at x = 6.5 km. The Whittaker functions are
evaluated from the power series expansions in z of
the Kummer functions (Abramowitz and Stegun,
1964, Chap. 13). Fig. 2a shows a plot of Re (i) against
x for L = 30, 40 and 60 km. All plots are noimalized



MARCH 1980 I.

so that y(x = 19 km) = 1. Note that the apparent
change of sign between the case L = 30 km and
L = 40 km is an artifact of this normalization. Re-
plotting the curves with the normalization i(x
= L km) = 1, for example, would produce a quite
different picture (see Fig. 2b). Hereafter, all results
will be for L = 30 km unless otherwise specifically
stated.

The WKB approximation of Section 1 can be re-
derived from the solution (2.7) and (2.8) by using the
asymptotic form of the Whittaker functions as
k — « (Abramowitz and Stegun, 1964, Chap. 13).
The result is

1/4
b~ Al(i) expli(kz,)® — 2i(k2)'®], (2.9)
2L

where z;, is the value of z when x = L. This agrees
with the result obtained when (1.11a) is used in con-
junction with the boundary conditions (2.3a); note
that the wavenumber k& =~ af( x/z)~'2. Fig. 2a shows
a plot of Re ¢ using the WKB asymptotic solution
(2.9) and comparing this with the true solution. It
is apparent that increasing the value of L brings the
true solution closer to the WKB asymptotic solu-
tion, but that for L = 30 km, the true solution must
be used. The validity of the WKB asymptotic solu-
tionrequires («z)'”* > 1, and this may be achieved by
increasing L. However, note that the WKB solution
fails as z — 0 (or x — x,); this is easily seen by com-
paring (2.9) with (1.12a). Since x, = 1.5 km in our

0.6
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case, and we require the solution to be valid down
to x = 6.5 km, this is an additional reason why the
true solution must be used.

The total streamfunction is

lI:(x,y,t) = —f hvodx

Xo

+ Re [y(x) exp(imy — imct)], (2.10)

and the total longshore velocity component is

6(x’yrt) = U()(x)
+ Re [— iﬂ exp(imy — irnct)] . (21D
h dx

Here ys(x) is related to ¢(x) by (1.5b) and ¢(x) is
given by (2.7) and (2.8). The function ¢(x) contains
an arbitrary constant A,. The data presented by
Hamon et al. (1975) show that the fluctuations in the
longshore current are comparable to the magnitude
of the mean current. Hence, we choose A, so that
the perturbation velocity v at x = 19 km has a mini-
mum value equal to ve(x = 19 km) or —0.8 m s~".
Fig. 3a shows a contour plot of ¢ for ¢+ = 0; this
streamline pattern (for the mass transport) propagates
southward at a speed of 0.1 m s~'. Qur solution
shows a series of large meanders with a longshore
wavelength 277 m~! or ~1000 km, and an offshore
wavelength of ~50 km. Fig. 3b shows the corre-
sponding contour plot when v,(x) = V, a constant,
and ¢ is then given by (1.7a); the offshore wave-

FiG. 2b. Plots of Re [¢{(x)] (——) and Im [y(x)] (-—-) for L = 30 and 40 km.
Both plots are normalized so that y(x = L) = 1.
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¥(10%km)

i0

- x(km)
2 6 20 2% 28 22 26 30

FIG. 3a. A contour plot of the total streamfunction ¢ for ¢t = 0
when vi(x) is given by (1.9) with L = 30 km; the units are
108 m® s—1.

length in this case is ~75 km. Fig. 4a shows a con-
tour plot of ¥ for + = constant, while Fig. 4b shows
the corresponding contour plot when vy(x) = V.
Note that one effect of including the shear in the
basic velocity profile is to intensify the inshore
northward currents. From (2.11) we see that

v(x,y,t)
= vo(x) — a(x) cos[my — mct + e(x)], (2.12a)
where
1 dy
= |27 .1
a(x) 1 o | , (2.12b)
e(x) = arg[%%} . (2.120)

It follows that the phase lag between two isobaths
X, and x, is (mc)'[e(x;) — e(x,)] units of time. In
Fig. 5 we show a plot of this quantity for x, = 19
km as x, varies. When x; = 6.5 km, the phase lag is
29 days. This is for a period of 117 days correspond-
ing to the observed spectral peak. For waves of a
lower period, the value of m is increased, but pro-
vided m remains significantly smaller than A, our
solutions for ¢ are not significantly altered and so the
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phase e(x) is not significantly altered; thus since the
phase lag is proportional to the period, a lower
period will produce a lower phase lag. Finally, using
the definitions given in the last paragraph of Section
1 we can determine the velocity of energy propaga-
tion as a function of x, and hence show that the travel
time for a distance to travel from x, = 19 km to
x; = 6.5 km, is 3.6 days. Also, we find that msf (the
time average of the offshore component of wave
momentum flux) is —0.88 m® s2; by contrast the dis-
continuity in msf (1.14) atx = x. (here x, = 1.5 km)
is —2.7 m® s~%. This latter wave momentum flux
divergence could support a longshore pressure
gradient of 1.4 X 10~® m s, whereas the observed
longshore pressure gradient is 5 X 107 m s~2
(Garrett, 1979).

3. Modifications due to friction

The theory described in Section 2 not only pre-
dicts a phase lag larger than the observed value, but
also predicts larger currents inshore than the ob-
served currents, which are smaller on the inshore
track (x = 6.5 km) by a factor of 2 (Hamon et al.,
1975). Garrett (1979) has discussed a number of ef-
fects which may act to improve the predicted
values. Here we propose to discuss just the modifi-
cations to our theory due to friction.

y(10%km)

10

x{km)

2 6 10 1% 18 22 26 30

F1G. 3b. The corresponding contour plot when
vo(x) = V(—0.6 m s7).
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y(10%km)

10

x(km)
6 10 1k 18 22 26 30

F1G. 4a. A contour plot of the total longshore velocity o fort = 0
when vy(x)is given by (1.9) with L = 30 km; the units are m s,

To include friction in our model, we introduce
stresses 7 and ¥’ in the x and y momentum equa-
tions, respectively. Then the potential vorticity
equation (1.1a) is modified by the presence of a term

I 67.(1‘) a,r(i/)
"ﬁ{ day  ox ]

on the right-hand side, while (1.1b) remains un-
changed. We follow the procedure of Kroll and
Niiler (1976) and assume a linear friction law

(3.1

(3.2)
Then (1.4) is modified by the presence of a term

T = y(x)u, 7™ = y(x)v.

i d (v di m%y
m(c—-v@{dx(h a'x) h

Kroll and Niiler (1976) have argued that if the fric-
tion is principally due to bottom friction, then vy
is proportional to A~ (typical bottom velocity).
Since a typical bottom velocity will vary as k12,
v is proportional to 4732, This makes the differential
equation difficult to solve by simple analytic means.
Here, for simplicity, we shall suppose that v is a
constant. Using the values quoted by Kroll and
Niiler for y and averaging their results over all
depths between x = 6.5 km and x = 19 km, we put
v = 2.2 x 1078 571, This is smaller than the value

l[l} . (3.3)
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¥(10%km)
10

x(km})

o

10 1 18 22 ' 2% 30

F1G. 4b. The corresponding contour plot when
vo(x) = V(-0.6 m s~).

used by Garrett (1979), whose estimate was based
on the assumption that the typical bottom velocity
has a magnitude comparable with the mean surface
velocity; this is almost certainly an overestimate.
With y a constant, Eq. (1.4) is modified merely by
replacing ¢ by ¢ + iym~!. Thus the solutions in
Section 1 and 2 will remain unchanged except for a
time decay factor of exp(—+yt). From a knowledge
of the time for the disturbance to travel from x, to
x,;, we can compute a frictional decay factor, and
compare this with the amplitude increase in the
absence of friction.

t (days)

3%

(a)
10 (b)

x (km)

6 10 14 18

F1G. 5. A plot of the phase lag when vy(x) is given by (1.9),
with L = 30 km: (a) no friction, (b) in the presence of friction.
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by (107 la)®
a

6.0
5.0
-0.5
4.0
3.0
0.0 v 2.0

2.0

.0
4
3.0
4.0
5.0
2 0.5
6.0
2 6 10 14

1
= x (km)
18 22 26 30

F1G. 6a. A contour plot of the total streamfunction ¢ fort = 0
when vy(x) is given by (1.9) with L = 30 km in the presence of
friction; the units are 10° m3 s~*.

However, it is not obvious that the effect of fric-
tion is to impose a spatially uniform time decay on
the wave. It is more likely to generate a decay in the
x direction. Thus for the case when vy(x) = V, the
dispersion relation (1.7b) with ¢ replaced by c
+ iym~" will have a complex-valued solution for k,
ko, — i8, say; consequently, the solution (1.7a) will
contain a decay factor of exp(éx). This decay fac-
tor will agree with that calculated using a time decay
factor only when v is small compared to m(c — V),
as then vy is approximately 8(x component of group
velocity). In the present case vy is comparable with
m(c — V). Wefindk, = 7.2 x 10 m~'and 8§ = 2.6
x 1075 m~!. The phase lag between 19 and 6.5 km is
now 17 days, and the frictional decay factor is 0.72.
The amplitude increase is proportional to 2!” and
gives a factor of 1.4; together there is virtually no
decay. Thus the effect of a uniform coefficient of
friction is to bring Garrett’s (1979) simple model
closer to agreement with the data, both with respect
to the phase lag and the current amplitudes. A larger
value of y would tend to decrease the phase lag
further.

For the WKB approximate solution, the disper-
sion relation (1.11b) is modified by replacing ¢ on
the left-hand side by ¢ + iym~'. The wavenumber
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= ko — i6 determined from (1.11b) is a function of
x and substitution into (1.11a) determines the phase
lag (mc)™"'[% kodx and the decay factor exp(— [%
x &dx). As x varies from 19 to 6.5 km, k, varies from
8.2 x 107® to 10.4 X 10> m~!, and § varies from
2.1 x 1075 to 6.3 x 107> m~!. We find a predicted
phase lag of 22 days, and a decay factor of 0.63. For
this case the amplitude increase is proportional to
(k> + 8)'2h12 and gives a factor of 2.0; together
there is an amplitude increase of 1.26.

Next, we turn to the case when v,(x) is given by
(1.9) when the solution for ¢ is (2.7) and (2.8) with ¢
replaced by ¢ + iym~!. This causes no changes in
B and «, but z (2.4a) becomes a complex variable,
with a constant imaginary part. The Whittaker func-
tions may be evaluated numerically as before, using
power series expressions for the Kummer functions.
Fig. 6a shows a contour plot of the total stream-
function ¢ for # = 0, while Fig. 6b shows a contour
plot of the total longshore velocity ¢ for ¢t = 0; the
corresponding plots in the absence of friction are
Figs. 3a and 4a, respectively. They show that the ef-
fect of friction is to slightly inhibit the onshore in-
cursion of the meander, with the consequence that
the inshore regions of northward current are dis-
placed slightly offshore. The phase lag is plotted in

y(10% kn) b

-1.5
x (km)

F1G. 6b. A contour plot of the total longshore velocity © for
t = 0 when vo(x) is given by (1.9) with L = 30 km in the presence
of friction; the units are m s,
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TaBLE . A tabulation of the predicted phase lag between
x = 19km and x = 6.5 km for the various cases discussed in the
text with and without the effects of friction.

Friction coefficient

vy =22
vo(x) d(x) y=0 X 1078 s~!
Constant V

Phase =06ms! (1.7a) 20 17
Lag Linear shear

(in Eq. (1.9) WKB (1.11a) 27 22
days) Linear shear

Eq. (1.9) Exact (2.7) 29 19

Fig. 5, and is 19 days for the interval from x, = 19
km to x, = 6.5 km. Note that as x increases m|c
— vy(x)] increases relative to <y, and so the relative
effect of friction is more pronounced inshore. Also,
increasing the value of y decreases the phase lag; for
example, if y = 3.1 x 107% s™!, the phase lag is 15
days. All our results for phase lags are tabulated in
Table 1.
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