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Abstract. The central question in constructing a secure and efficient
masking method for AES is to address the interaction between additive
masking and the inverse S-box of Rijndael. All recently proposed meth-
ods to protect AES against power attacks try to avoid this problem and
work by decomposing the inverse in terms of simpler operations that are
more easily protected against DPA by generic methods.
In this paper, for the first time, we look at the problem in the face,
and show that this interaction is not as intricate as it seems. In fact,
any operation, even complex, can be directly protected against DPA of
any given order, if it can be embedded in a group that has a compact
representation. We show that a secure computation of a whole masked
inverse can be done directly in this way, using the group of homographic
transformations over the projective space (but not exactly, with some
non-trivial technicalities). This is used to propose a general high-level
algebraic method to protect AES against power attacks of any given or-
der.
Key Words: Rijndael, AES, inverse S-box, homographic transforma-
tions, linear fractional transformations, Möbius transformations, the zero-
masking problem, Differential Power analysis, higher-order DPA.

1 Introduction

A secure implementation of (even a very secure) cryptographic algorithm,
is by no means easy to achieve in portable cryptographic devices such as
a smart cards. Indeed, it is hard to protect a secret that is entirely in
the hands of a potential attacker. The nature of cryptography makes
that all kinds of additional information, even very remotely correlated
with the secret quantities manipulated in the cryptographic algorithm,
are very likely to either directly leak information on the secret quantities,
or indirectly, will help to improve some cryptographic attack. Moreover,
in cryptographic devices such as smart cards, the performance and cost
considerations make that there is little or no margin between the required
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level of security and the best known attack. Thus all kind of side channels
are potentially fatal to the security.

The idea of side-channel attacks is very old and well known, for ex-
ample it is possible to break many implementations of one-time pad by
studying the output not in terms of zeros and ones, but with an os-
cilloscope... In 1998 practical side channel attacks for smart cards have
been demonstrated by Kocher, Jaffe and Jun. They introduce a class of
attacks called Power Analysis, using the power consumption traces to re-
cover the key of an encryption scheme implemented in a smart card. The
Power Analysis of first and higher order is already described by the au-
thors in the original paper [22], and also in [23]. These attacks have been
later applied to attack (and protect against such attacks) many secret
key schemes, see for example [22, 28] and in particular to AES in [10, 5,
15, 1, 19, 34]. Before 2000, only first order attacks were demonstrated in
practice.

In order to protect the secret key schemes against first order power
attacks, two generic methods have been proposed: the transformed mask-
ing method [26, 1] and the duplication method [20, 21, 10, 11]. Moreover,
in the particular case of AES, specific methods have been proposed [1, 38,
19, 6, 37, 35, 36, 30, 31]. Although few of these methods can be extended
to higher order attacks, it was long considered that it was not a problem,
since these elaborated attacks were believed hard to implement.

In 2000, T. Messerges [27] showed that second order attacks are per-
fectly doable in practice. In 2004 Waddle and Wagner improved this at-
tack [39] and show that by using the Fast Fourier Transform (FFT) the
attacker suffers only a logarithmic overhead in terms of runtime, com-
pared to “ordinary” DPA. In particular, with the progressive replace-
ment of DES by AES as a universal encryption standard, and with slow
advances in hardware protections, efficient software protections of AES
against higher order side-channel attacks have become a hot topic.

Up till now, the only proposed method to build high-order DPA-
resistant implementations is due to Akkar and Goubin [2], see also [3]. It
can be applied to the case of AES, however it uses many precomputed ta-
bles, which is memory-consuming in software and not really acceptable in
hardware. In this paper we propose a new algebraic AES-specific masking
method that may appear complex, yet it allows to achieve the same (very
ambitious) goal without tables, and thus is suitable for both hardware
and software implementations. The main contribution of this paper can
be summarised as follows: a fully masked non-linear S-box of Rijndael can
still be “embedded” (in a special way) in an algebraic group that has a
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compact representation. This allows to construct efficient and somewhat
mathematically elegant protections against power analysis of any given
order. The paper is organized as follows:
– In the next section we recall the principles of first and higher order

DPA attacks, summarise the existing counter-measures for AES, and
define our objectives.

– In the third section we introduce the mathematical background nec-
essary.

– In Sections 4-5 we describe the actual new solution. We present a
security proof for the basic version and sketch a general solution for
DPA of any given order.

2 AES and Side-channel Attacks

2.1 Known Side-channel Attacks
In this paper we limit to passive non-intrusive attacks against implemen-
tations of cryptographic algorithms, such as DPA, or any other passive
side-channel attack.

The Differential Power Analysis (first order) attack works as fol-
lows: one records the power consumption of several runs of a crypto-
graphic algorithm implemented on a smart card. Then one guesses a few
bits of the secret or derived key, which allows to compute for each curve,
some intermediate bit(s) that appear inside the cryptographic algorithm.
For example the first bit of the entry of the first S-box. Then one sepa-
rates the curves in two classes, these for which this bit is expected to be
0, and those for which this bit is expected to be 1. If the guess on the
key is correct, one will be able to distinguish the two classes by various
statistical techniques, if the guess was incorrect, both classes should look
the same.
An algorithm is susceptible to be attacked by DPA if there is an inter-
mediate value that depends on the plaintext and on key bits or derived
bits.

Higher Order DPA (of order k) just generalizes the above attack:
we will use up to k points on the curves, or equivalently, up to k inter-
mediate variables. The information obtained on each of these values (e.g.
it’s power trace) should be efficiently combined in order to produce an
output, that is correlated to some internal value/combination of values
that again depends on the plaintext and on key or derived bits.

2.2 Adversarial Model for General Side-channel Attacks
In order to prevent all possible side-channel attacks, whatever is the leak-
age model, it is possible to assume that the (passive) adversary has full
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access to some of the intermediate results of the computation. This cannot
hold for all values, and Blömer, Merchan and Krummel do define on Fig.
1. in [6] a minimal set of two assumptions that are judged necessary to be
able to protect the implementation of a cryptographic algorithm against
side-channel attacks. We adapt and comment on these assumptions.

1. First of all, a random number generator must be available (that unlike
what we read in [6] does not have to be really random and can be
pseudo-random as long as it is not resettable, i.e. at least some real
entropy is gathered and used by the device). This random generator
must be protected against manipulation/perturbation (not necessarily
against reading).

2. The secret key (and part of it) K can be securely combined by a
group operation with this random number R. This operation that
manipulates K should be secure both for reading and manipulation
(!). Then both R and R⊕K can go further unprotected.
We observe that this assumption of [6] is not sufficient to protect
against DPA of higher order. Our corrected assumption is follows. One
can chose random R1, . . . , Rk, then securely compute K ′ = K ⊕R1⊕
. . .⊕Rk and then the values K ′, R1, . . . , Rk can go further unprotected.

These assumptions seem to be acceptable and realistic, because:

0. smart cards may indeed protect some basic operations very carefully
in hardware at the gate level,

1. it is difficult to produce really precise perturbations to random num-
bers that will not be removed by more randomisation,

2. we assumed that we manipulate the key only once with a random
mask, and in a way that is independent of the plaintext. This makes
DPA impossible and SPA can again probably be prevented by classical
noise/randomisation techniques (without DPA the noise should cover
the signal to recover),

3. finally even if the attacker were able to read R (which is permitted by
the model), we can have again DPA attacks on R⊕K, the only place
the key is exposed. This is linear and as such, it is known to be fun-
damentally much more resistant to DPA than non-linear operations,
see [33].

We will assume that the power of the attacker is restricted to observ-
ing at most k intermediate values that appear during the computation.
Usually and in [6] it is also implicitly assumed that some “atomic” com-
putations are secure and the only “observable” data are intermediate data
at some level of abstraction. This assumption seems strong but we claim
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that as far as protecting against power attacks of any given order can be
achieved, it is not necessary and can be relaxed. If we assume that the
code of the algorithm is public, each part of computation is some deter-
ministic function of a small number of intermediate values, and will be
secure if k is high enough.

In addition doing this assumption at some level allows reasoning and
security proofs much simpler. Then, refining the attack to an access to
more internal states in a more precise decomposition may force us to use
a protection with a higher k, but the overall method should work and
remain the same.

2.3 A Representation of Rijndael

In this paper we will view AES (and other versions of Rijndael) in an
abstract way, as a functional composition of three kind of operations
denoted by X, I and L:

X In Rijndael we simply XOR a byte of an expanded key with a byte of
the current state. We assume that the expanded key is also computed
by a composition of basic operations X,I and L.

I Special substitution S-box that is called Inv. Many authors identify
this function with the inverse X 7→ 1/X in the finite field. We will see
that Inv is not exactly the same thing as 1/X in GF (256).

L Linear operations (and more precisely linear or affine transformations
over GF (2), that are fixed and do not depend on the key or on the
data).

Typically a DPA counter-measure for Rijndael is designed to protect
an implementation of any cipher that is a composition of these operations.

2.4 Previously Proposed Masking Methods for AES

A natural method to protect (against side-channel attacks) a cipher using
operations of type X and L is the transformed masking method [26, 1] in
which any value inside the computation of the enciphering algorithm is
masked with XOR by some random value. This masking method can also
resist to higher-order DPA if the mask is split into several sub-masks as
follows R = R1 ⊕ . . . ⊕ Rk, R is never computed but all sub-masks are
used one after another.

The main question that arises in all proposed masking methods for
AES is how to protect the AES S-box, and more precisely how to protect
the Inv operation. In the past, the question has been answered with more
or less success as follows:
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1. Transformed Multiplicative Masking (TMM) of Akkar and Giraud [1].
Switching from additive (XOR) to multiplicative masking and back is
possible and easy due to the ring structure of GF (256). Unluckily, a
multiplicative masking with respect to the multiplication in GF (256)
cannot be secure, because there is a special value 0 ∈ GF (256) that
for any mask remains the same (i.e. is never masked).

2. In [38] Trichina et al proposed a simplified version of this method,
which is not secure for exactly the same reason, see [19, 30].

3. Embedded Multiplicative Masking (EMM) of Golić and Tymen.
One solution to the “zero-masking problem” is proposed in [19]. The
method consists of a randomised embedding of GF (256) in a larger
ring in which zero can be represented by several possible elements (on
two bytes). Then each byte taken separately has a uniform distribu-
tion.

4. A method based on univariate polynomials of Blömer, Merchan and
Krummel [6]. This can be seen as a perfectly general method that can
be applied to any S-box, as any function over a finite field can be seen
as a univariate polynomial. Luckily, the polynomial representation
Inv(x) = x254 for any x (including 0) has only one monomial. This
makes the method more efficient than in the general case and suitable
for Rijndael.

5. In [37] Trichina and Korkishko propose a software-oriented masking
method based on log tables.

6. In [32] Rostovtsev and Shemyakina propose to use isomorphisms of
the underlying finite field.

7. Tower Fields Methods by Oswald, Trichina, et al [35, 36, 30, 31] are
designed for hardware implementations. In these methods, the com-
puting of Inv in GF (22k) is reduced to a secure computation with
masked values of multiplications and inverses in GF (2k), by repre-
senting GF (22k) as a quadratic extension of GF (2k). Multiplications
can be computed with additive masking and we are left with the prob-
lem of a secure computation of Inv at the lower level. Two versions
have been proposed:
– In [35, 36] Trichina, Korkishko and Hee Lee go down to the field

GF (16). At this level the problem is solved by a completely general
method in which it done as a masked computation of a combina-
torial circuit with XOR and AND gates.

– In [30, 31] Oswald, Mangard, Pramstaller and Rijmen go down to
GF (4) on which Inv is multivariate linear (linear over GF (2), not
over GF (4)) and easy to protect.
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2.5 New Method - Defining the Target
In this paper we present a novel algebraic masking method for Inv. Our
method is strictly more powerful and somewhat mathematically more
elegant that all the other known methods. After the initial (insecure)
proposal of multiplicative masking all the methods subsequently proposed
has become more and more generic in a sense that had to decompose the
Rijndael S-box in simpler operations and protect each of them separately.
On the contrary in our new method we operate at higher level, and protect
directly more complex operations by representing them as elements of
some group. This is made possible by exhibiting a new algebraic structure
that though a bit tricky to use, allows to protect Rijndael against side-
channel analysis.

In our method, we will be able to make masked computations of Inv
in one single step without “mask switching”. We wish to go directly from
a masked input to a masked output and thus the operation that we wish
to protect a fully masked Rijndael inversion defined as:

F(R,R′) : X 7→ Inv(X ⊕R)⊕R′

Though complex, this operation can be directly protected. The basic
idea is as follows: if we can embed this operation in some group, we can
protect it against DPA of any fixed order: we represent it as a composition
of several transformations, for example k, out of which any subset of k−1
transformations are just a set of random uniformly distributed operations.

We will exploit the group of homographic transformations with some
non-trivial mathematical and implementation technicalities: strictly speak-
ing Inv does not belong to this group (while the real inverse in GF (256)
does). In our solution we will represent F(R,R′) as a combination of a
homographic transformation and of mapping that exchanges two points.
This representation has a very interesting feature: these two type of map-
pings do “almost” commute (except that the two points to exchange are
different). Thus we will also be able to mask completely the exchange of
two points by additional homographic mappings.

3 Homographic Functions

In this paper we will work in GF (2n), for Rijndael S-boxes we have n = 8.
The function Inv can be defined over GF (2n) in the same way as in
Rijndael with the usual 0 7→ 0:

Inv(X) =
{

X−1 in GF (2n) if X 6= 0
0 otherwise

We also have the real inverse function that can be either defined as
– a function GF (256)∗ → GF (256)∗ or
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– as a projective function GF (256) → GF (256) with GF (256) = GF (256)∪
{∞}. This is our preferred version that will be used in this paper.

In mathematics the functions of the form X 7→ aX+b
cX+d are called ho-

mographic functions (a.k.a. linear fractional transformations or Möbius
transformations, see [40]). It is well known that they can be represented
by 2× 2 matrices

(
a b
c d

)
. The composition of these functions is equivalent

to multiplying their matrices. A cross-ratio of 4 pairwise different points
R(t, u, v, w) = t−u

t−w/ v−u
v−w is known to be an invariant for such transforma-

tions, see [12, 4].

3.1 What is the Difference Between Inv and 1/X ?

Unfortunately the function Inv of Rijndael is not strictly speaking a
homographic function. It is equal to a function of the form X 7→ aX+b

cX+d
except in one point, when 0 is mapped to 0. This “completion” with 0 7→ 0
has many important and non-trivial properties, see [12]. There are three
ways of defining a practical “inverse” function for the finite field GF (256):

1. We can have a bijection on 255 elements GF (256)∗ → GF (256)∗.
2. We can have a bijection on 256 elements Inv : GF (256) → GF (256)

that is used in Rijndael.
3. We can have a bijection on 257 elements GF (256) → GF (256) with

GF (256) = GF (256) ∪ {∞}. The “real” inverse is defined as:

Inv(X) =

X−1 if X /∈ {0,∞}
0 7→ ∞
∞ 7→ 0

.

This is an eminently interesting version that is of central interest to
us. We can compose this function with other homographic permutations
defined as follows:

Ha,b,c,d(X)
def
=


aX+b
cX+d if X /∈ {−d

c ,∞}

−d
c 7→ ∞

∞ 7→ a
c

with det
(

a b
c d

)
6= 0.

The set of such invertible homographic mappings forms a group H
under the usual composition law ◦. The matrix representation

(
a b
c d

)
in

GL2(GF (2n)) is redundant and our group H is in fact isomorphic to a
subgroup SL2(GF (2n)) of GL2(GF (2n)) in which all matrices are of
determinant 1. Each element of H can be represented by “essentially”
three elements of GF (2n).
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3.2 Composition / Group Properties and Subtleties
We call an Almost-Invariant, any property that is invariant with a prob-
ability close to one. We have the following theorem:

Theorem 3.3 (Jakobsen-Knudsen-Courtois, cf. [12]).
For any function Y = F (X) that composes in any order

(a) N applications of Inv in GF (2n),
(b) any number of XORs with different subkeys or constants,

there exist (a, b, c, d) ∈ GF (2n)4 such that:

IPX∈GF (2n)

[
Y =

aX + b

cX + d
| Y = F (X)

]
≥
(

1− 1
2n

)N

≥
(

1− N

2n

)
Remark: When N is small, the probability is very close to 1 and the

difference can be neglected, see [12, 24, 25]. Several related Theorems are
given in [12]. One rather surprising fact is that, in spite of the fact the
“homographic approximation” given by the Theorem 3.3 has rather ex-
cessively high probability, the probability will decrease with composition
and can eventually become negligible. We have the following result due
to Courtois [12]:

Theorem 3.4 (The Group Generated by Inv and XORs).
The group generated by composing Inv and constant/key additions is

exactly the group of all permutations of GF (2n).

Note: The only difference between Theorem 3.3 and Theorem 3.4
is replacing Inv by the real inverse. The homographic function 1/X
over GF (256) composes well with constant/key additions and with con-
stant/key multiplications to form a quite small group. When we replace
1/X by Inv, “nearly” the same thing, the group generated changes dra-
matically (becomes the group of all permutations). This fact is closely
related to the famous question whether DES is a group or not and has
some interesting consequences for block cipher cryptanalysis, see [12].

4 The New Masking Method

Let τab, be a function that that swaps two points a 6= b:

τab(X) =

X if X /∈ {a, b}
a 7→ b
b 7→ a

.

We observe that Inv is a restriction to GF (256) of Inv ◦ τO∞. We
have

Inv = Inv ◦ τO∞ = τO∞ ◦ Inv
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Now, our target is to protect the whole operation as follows:

F(R,R′) : X 7→ Inv(X ⊕R)⊕R′

Though it is defined over GF (2n), nothing prevents us from extend-
ing it by deciding that F(R,R′)(∞) = ∞. We will be using operations in
GF (2n) to implement operations in GF (2n) and if we are able to securely
implement F(R,R′) we obtain also a secure implementation of F(R,R′).

Our new target is F(R,R′) and it can also be seen as a composition
of an invertible homographic transformation and another mapping that
swaps two points:

F(R,R′) = Ha,b,c,d ◦ τ∞R = τ∞R′ ◦Ha,b,c,d
With a, b, c, d that can bo computed explicitly as:(

a b
c d

)
=

(
R′ RR′ + 1
1 R

)
with det

(
R′ RR′ + 1
1 R

)
= 1.

We will use the second decomposition (the first might be used as well).
We have:

F(R,R′) = τ∞R′ ◦Ha,b,c,d

It is important to see that it is not sufficient to find a secure imple-
mentation of Ha,b,c,d and a secure implementation of τ∞R′ . This is because
when the (real, not masked) value of the input of the Rijndael S-box is
equal to 0, the output value of Ha,b,c,d is always ∞ (∞ is not masked
by R′). This is a projective version of the “zero-masking problem”. In
a secure implementation both operations have to be “jointly” protected.
In particular the implementation of τ∞R′ ◦Ha,b,c,d must hide both points
that are exchanged ∞ and R′, not only the point R′.

4.1 Joint Secure Implementation
First we describe a method for usual DPA (1st order). We assume that
in the implementation of Rijndael each entry and each output of the Inv
function are protected by a couple of masks R and R′ that vary from one
S-box to another. We omit the description of how to protect the linear
parts of the algorithm.
1. We pick a random α ∈ H.
2. We compute α−1 ∈ H.
3. By evaluating α−1 on R′ and∞, we compute two points g, h ∈ GF (2n)

such that:
τ∞R′ = α ◦ τgh ◦ α−1

It is possible to show that they are a random and uniformly distributed
couple of distinct points in GF (2n). A proof of this fact is given in
Appendix A.
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4. We compute H ′ = α−1 ◦Ha,b,c,d.
5. We store the sequence α, τgh,H ′ in RAM as matrices of SL2(GF (2n)),

except τgh that is stored as a couple of points in GF (2n).
6. Our a secure implementation of F(R,R′) is defined as the following

sequence of transformations to be applied to X in order from right to
left:

α, τgh, H ′

Security of our countermeasure against DPA. Observing each of
the three transformations specified above is just a random transformation
of some type that gives no information to the attacker.

It is also the case for H ′ and τgh ◦ H ′. This allows to see that all
the intermediate values H ′(X) and τgh(H ′(X)) before the final masked
output are fully de-correlated from X, from the real values inside the
AES, and from the key.

In Appendix A we give a complete proof that this method is fully
secure for (usual) DPA of order 1. This holds even while in our model the
adversary is powerful enough to observe the whole values such as H ′ (3
bytes).

An attack of order 2: Our method may a look a bit over-kill but
isn’t. We will show (which is not obvious to see at all) that it does not
protect against DPA of order 2. We limit to show this in the case when the
attacker is quite powerful, and can indeed see two full intermediate values
appearing in our (high) level of abstraction. In particular, if the attacker
“looks” at X and Ha,b,c,d that appear in 4., he can compute Ha,b,c,d(X).
This value is nearly random, except it will always be ∞ when a 0 appears
inside the unprotected Rijndael. Then a version of zero-masking attack
[19, 30] is possible.

4.2 Joint Secure Implementation - General Case

Again each Rijndael S-box is protected by a different couple of masks
R and R′. Moreover, for higher order DPA we assume that these masks
are never computed and never stored during the computation but each of
them is a sum of k sub-masks Ri such that{

R = R1 ⊕ . . .⊕Rk

R′ = R′
1 ⊕ . . .⊕R′

k.

Each time we wish to manipulate R to XOR or multiply it with some
value, we do not compute R, but we use the group/ring structure to
obtain the result by successively adding the parts corresponding to each
Ri. (In addition the order of the Ri used can be also randomised).
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Here is how to compute F(R,R′) securely with respect to the DPA
of order k. We present the simplest (but presumably not the fastest)
solution.
1. We pick k random αi ∈ H and k random βi ∈ H.
2. Let α = ©i=1..kαi and α−1 = ©i=k..1α

−1
i . Let β = ©i=1..kβi and

β−1 = ©i=k..1β
−1
i . We will never compute any of these four values.

3. We put
Gi =

(
1 Ri

0 1

)
G′

i =

(
1 R′

i

0 1

)
and we will never compute Ha,b,c,d (cf. the attack above) but observe
that:

Ha,b,c,d = G′
k ◦ · · · ◦G′

1 ◦
(

0 1
1 0

)
◦G1 ◦ · · · ◦Gk

4. Instead, we will compute iteratively H ′′ = α−1 ◦ Ha,b,c,d ◦ β−1 in a
secure manner.
For this we first compute α−1

1 ◦G′
k then α−1

2 ◦ (α−1
1 ◦G′

k) ◦G′
k−1,

Up to: A = α−1 ◦G′
k ◦ · · · ◦G′

1.
Then we compute successively Gk ◦β−1

k then Gk−1 ◦ (Gk ◦β−1
k ) ◦β−1

k−1

up to B = G1 ◦ · · · ◦Gk ◦ β−1. Finally we compute

H ′′ = A ◦
(

0 1
1 0

)
◦B.

5. We need to securely evaluate α−1 on R′ and ∞, to compute two points
g, h ∈ GF (2n) such that:

τ∞R′ = α ◦ τgh ◦ α−1

For ∞ we simply successively compute α−1
1 (∞), α−1

2 (α−1
1 (∞)), . . ..

For R′, that is 6= ∞ we embed R′ into H as already defined simple
translations G′

i. Then we successively compute α−1
1 ◦ A1, then α−1

2 ◦
(α−1

1 ◦A1) ◦A2 etc..
At the end we get some G′ ∈ H and compute h = G′(0).

6. The following sequence of transformations to be stored in RAM, is
a secure implementation of F(R,R′) to be applied to X in order from
right to left:

α1, . . . , αk, τgh, H ′′, β1, . . . , βk

5 Implementation Issues

Representation of GF (256). The representation can still be on 8-bits,
and the case ∞ can be hard-coded into algorithm code. Instead of writing
some variable a = ∞ and the evaluating some homographic function
at this point, we will directly compute the result of the next operation
at ∞. We will use conditions to check which case we are in, yet the
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implementation will be secure because any implementation of our way of
rewriting Rijndael should be secure.

Representation of H. Each element of H can be represented by
an element of SL2(GF (2n)) which amounts to store “essentially” three
elements of GF (2n).

6 Conclusion

In this paper we studied the interaction between additive masking and
the inverse S-box of Rijndael the happens to be less complex than it
seems. It allows to construct a method to protect in one single step the
whole masked inverse against all passive side-channel attacks (e.g. DPA,
DEMA, etc.). This is achieved by embedding (with additional non-trivial
technicalities) this operation in a group of homographic transformations
over the projective space that happens to have a compact representation
(essentially 3 bytes).

Further Research: This paper is a proof of concept for a new non-
trivial algebraic masking method. Due to the space requirements we do
not present yet an optimised ready-to-use solution for DPA of order 1 or
2. With our methodology: embedding in a group, it is clear that we can
construct a provably secure masking solution in the spirit of [6] yet secure
against attacks of any given order, not only first-order DPA. At present
we give a security proof for order 1 and sketch a general solution. It is also
clear that our solution is reasonably fast and practical for both software
and hardware implementations (there are no large tables to generate).
A specific optimised solution with precise comparison to other known
masking schemes will be given in a separate paper.
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19. Jovan Dj. Golić, Christophe Tymen: Multiplicative Masking and Power Analysis
of AES, In CHES 2002, LNCS 2523, pp. 198-212, Springer, 2003. Available at
http://eprint.iacr.org/2002/091/.

20. Louis Goubin, Jacques Patarin: Procédé de sécurisation d’un ensemble électronique
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A Appendix: Proof of Security for First-Order DPA

In all this section, we will denote q = 2n (for AES, we have n = 8). We
will make use of the following fundamental lemmas:

Lemma 1. Let (u1, u2, u3) and (v1, v2, v3) two triplets of elements in
GF(q), such that uj 6= uk and vj 6= vk whenever j 6= k. Then there is
exists a unique β ∈ H such that β(ui) = vi (i = 1, 2, 3).

Proof. See [40]. ut

Lemma 2. Let u ∈ GF(q) and v ∈ GF(q). There are exactly q(q − 1)
homographic transformations β ∈ H such that β(u) = v.

Proof. Let us define u1 = u and v1 = v. Moreover, choose arbitrary values
for u2 and u3, such that u1, u2, u3 are pairwise distinct.

Let Av be the set of pairs (v2, v3) such that (v, v2, v3) are pairwise
distinct. It is easy to see that Av contains q(q − 1) elements: there are q
choices for v2 ∈ GF(q) \ {v} and q − 1 choices for v3 ∈ GF(q) \ {v, v2}.

Let Hu,v the set of homographic transformations which map u onto
v. From Lemma 1, there is a one-to-one correspondance between Av

and Hu,v (for a given (v2, v3), consider the transformation which maps
(u1, u2, u3) onto (v1, v2, v3)). Therefore Hu,v also contains q(q − 1) ele-
ments. ut

Security proof (first-order DPA).
Now, let us recall the first-order method (see section 4). Let

F(R,R′) : X 7→ Inv(X ⊕R)⊕R′.

By extending the function F to GF(q) = GF(q) ∪ {∞}, we obtain a
function F(R,R′) such that

F(R,R′) = τ∞,R′ ◦Ha,b,c,d,

the homographic transformation Ha,b,c,d corresponding to the following
matrix: (

a b
c d

)
=

(
R′ RR′ + 1
1 R

)
∈ SL2(GF(q)).

To study the resistance of the implementation against first-order DPA
attacks, we prove that the distribution of each intermediate value occur-
ring during the computation of Y = F (X) neither depends on X⊕R nor
on Y ⊕R′ (i.e. the input/output values without mask).
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Precomputations (i.e. computations which do not depend on
X).
For given R and R′, the following steps are performed:

1. Define α ∈ H by randomly and uniformly choosing a matrix

(
p q
r s

)
∈

SL2(GF(q)).

2. Define H ′ = α−1 ◦Ha,b,c,d ∈ H, by computing

(
a′ b′

c′ d′

)
∈ SL2(GF(q))

with 
a′ = −sR′ + q
b′ = −s(RR′ + 1) + qR
c′ = rR′ − p
d′ = r(RR′ + 1)− pR

Since H is a group, the distribution of H ′ ∈ H is also uniform.
3. Compute

g =
−sR′ + q

rR′ − p
= α−1(R′) and h =

−s

r
= α−1(∞).

For a given value g ∈ GF(q), from Lemma 2, there are exactly q(q −
1) transformations α ∈ H such that g = α−1(R′). Therefore g is
uniformly distributed in GF(q). The same is true for h = α−1(∞).

Note 1: We have g = α−1(R′) and h = α−1(∞), so that α ◦ τg,h =
τ∞,R′ ◦ α.

Note 2: By using lemma 1, we can also prove that the pairs (g, h),
g 6= h, are uniformly ditributed. Let (u, v) two distinct elements of GF(q).
Considering (u1, u2) = (u, v), (v1, v2) = (g, h) and an arbitrary u3 6∈
{u1, u2}, Lemma 1 proves that exactly q−1 homographic transformations
exist in H sending (u, v) onto (g, h) (one for each possible choice of v3 6∈
{v1, v2}).

Computations depending on X.
To compute Y = F (X), the following steps are performed:

1. Compute Z = H ′(X).
2. Compute T = τg,h(Z).
3. Compute Y = α(T ).

Let us detail the intermediate values Z and T .
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– The first step is:

Z = H ′(X) =
a′X + b′

c′X + d′
.

For each fixed pair (X, Z) with X ∈ GF(q) and Z ∈ GF(q), Lemma 2
indicates that exactly q(q− 1) homographic functions H ′ exist (in H)
such that H ′(X) = Z. Therefore, the distribution of Z is uniform on
GF(q) (the probability being taken on the possible choices of α).
Note. We also have:

Z =
(−sR′ + q)X + (−s(RR′ + 1) + qR)

(rR′ − p)X + (r(RR′ + 1)− pR)
=

(−sR′ + q)(X + R)− s

(rR′ − p)(X + R) + r
.

– In the second step
T = τg,h(Z)

the transposition τg,h acts as the identity map, except in one special
case: Z = h = −s

R (corresponding to X = R). For each fixed pair
(X, T ) with X ∈ GF(q) and T ∈ GF(q), there are two cases:
• First case: if X 6= R, we must have Z = T (because Z 6= −s

R
whatever we choose for α). Therefore, from Lemma 2, we have
exactly q(q − 1) transformations α such that τg,h ◦H ′(X) = T .

• Second case: if X = R, then Z = −s
R = h, thus T = g = α−1(R′).

Therefore, from Lemma 2, we have exactly q(q−1) transformations
α such that τg,h ◦H ′(X) = T .

In both cases, the distribution of T is uniform on GF(q) (the proba-
bility being taken on the possible choices of α).
Note. It should be noted that the other special case Z = g = −sR′+q

rR′−p
never happens (this would correspond to X = ∞, which is impossible
in our scenario).


