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Abstract. In this paper, we propose a secret sharing scheme which prevents the cheaters from 
recovering the secret when the honest participants cannot, with high probability. The scheme is a (k, n) 
threshold scheme providing protection against less than k cheaters. It is efficient in terms of share sizes 
for the participants. Furthermore the total size of the individual shares per participant is less than twice 
the size of the secret itself. The cheaters can do successful cheating with a probability 1/t, which can be 
adjusted without significantly increasing the total size of the individual shares. Such a scheme can be 
deployed in thin client fat server systems where the server has reasonable computational power and 
there is a high level of mistrust among the users.  

 
1. Introduction 
 
Shamir[1] and Blakeley[2] independently proposed the notion of a secret sharing scheme. 
A secret sharing scheme (threshold scheme) is a method of dividing a secret ( ,k n) s into 

shares  and giving a unique share to a set of  n  participants n 1 2, , , ns s s…
{ }1 2, , , nP P PΡ = … such that the knowledge of any k or more shares makes the secret 

s easily computable but knowledge of 1k − or less shares does not reveal any information 
about the secret s . Here, k is called the threshold of the scheme. The secret s is chosen 
by a Dealer and gives the share  to the participant  over a secure channel.  D∉Ρ is iP
 
An elegant feature of Shamir’s Scheme is that it is unconditionally secure. A 
consequence of this property is that the size of shares per participant be at least the size of 
the original secret [3]. This poses a fundamental limit on unconditionally secure secret 
sharing schemes. Against resource bounded adversaries this lower limit can be relaxed by 
introducing computational security. Krawczyk [18] was the first to discuss 
computationally secure secret sharing schemes by reducing the size of shares to 
approximately s k . However our discussion will be limited to unconditionally secure 
schemes. Although Shamir’s secret sharing scheme seems perfectly secure, however it is 
not free of conspiracies and cheating. Tompa and Woll[5] presented a possible scenario 
in which a participant or a group of participants can send a false share and hence get the 
correct secret whereas the honest participants will be deceived with the wrong secret. 
This situation will go undetected in Shamir’s scheme described above. Tompa and 
Woll[5] first showed how to prevent this form of cheating keeping in mind the 
unconditional security assumption. An outcome of their scheme is that the size of shares 
should grow with the probability of cheating detection. This was shown to be undeniable 
in [14] where the authors gave lower bound on the size of shares. This bound was 
improved by Kurosawa et al in [20]. Another undesirable property of cheating detection 



schemes is that even though cheating is detected (or in some other schemes cheaters are 
identified) the cheaters still recover the secret whereas the honest participants don’t get 
the correct secret. Tompa and Woll showed how to prevent this situation. They encoded 
the secret as a sequence, where only one element of the sequence is assigned the actual 
secret and the other elements a dummy value. These elements are then divided into shares 
and given to each participant. There are a couple of disadvantages in their method. Firstly, 
each participant has t shares to keep (equal to the length of the sequence). Secondly the 
probability of the cheaters to get the secret is 1 t≈  which can be made less by making the 
number of shares large, where each share is at least the size of the original secret. The 
goal of this paper is to increase this probability without considerably increasing the size 
of shares.  
 
Related Work: A number of cheater detection and identification techniques have been 
proposed [5, 6, 7, 8, 9]. Some others are given in [20,22,23,24]. A serious drawback of 
their results is the dramatic expansion of shares as discussed by Piepryzk and Zhang in 
[25]. They propose a cheating detection scheme for a general linear secret sharing scheme 
(Shamir’s Scheme is a special case of such schemes). Amazingly their scheme does not 
involve any share expansion. However, it uses shares from the extension field 

( )vGF p instead of the usual prime field ( )GF p . Secondly and more importantly, in 
order to detect cheaters, the actual number of participants involved is greater than the 
threshold of the scheme. As the name of these schemes suggests, they only detect or 
identify the set of cheaters and do not stop them from recovering the secret whereas the 
honest participants still don’t get the correct secret. This property can be achieved by 
using verifiable secret sharing schemes. As an example see the scheme proposed by 
Rabin and Ben-Or [21]. Such schemes have capabilities of verifying the shares 
distributed by a possibly dishonest dealer and verifying the shares of the participants 
during secret reconstruction phase before actually revealing the secret. This verification 
generally involves digital signatures and pooling of encrypted shares and hence these 
schemes are only computationally secure. Notice that the cheaters won’t get the secret too 
because their shares are rejected before combining the secret shares. However, the 
communication model of these schemes is different from the one addressed in this paper. 
First of all we do not assume a dishonest Dealer. Secondly, on secret reconstruction we 
assume that all participants are able to “see” the unencrypted pooled shares. Thirdly, we 
assume a simultaneous pooling of shares. Under these assumptions, a dishonest 
participant would still recover the secret as he would now have the knowledge of the 
pooled shares.  
 
Lin and Harn [10] proposed a method that can be deployed under our assumptions for 
cheating prevention. Still, in their scheme, the probability of the cheater recovering the 
secret is inversely proportional to the number of shares. Lee and Laih[11] proposed the 
notion of a ( fairness secret sharing scheme in which there are ), ,v k n 2v k<  cheaters 
and  the probability of recovering the secret is equal for all participants. Their scheme 
was improved in efficiency by Hwang and Chang [12]. They use two polynomials to hide 
two seemingly unrelated numbers necessary to find the secret. Knowledge of one of the 
numbers leaves absolutely no information about the other and hence the secret. Their 



scheme requires each participant to keep 2 shares each the size of the actual secret and is 
unconditionally secure. However they assume that the number of cheaters is less than 

2k , which in most cases may not be true. Indeed in Tompa and Woll model the number 
of cheaters can be up to . More recently Pieprzyk and Zhang [19] have discussed 
such cheating immune schemes where the secret is from

1k −
( )vGF p . We will focus on a 

cheating immune system where the secret and all the shares are from the prime field 
. In this paper we propose a secret sharing scheme to prevent cheating with high 

probability using individual shares whose total size is roughly the same as the size of the 
secret. The basic theme is to divide the shares into parts, introduce random numbers and 
shuffle them with the shared pieces in such a way that the participants don’t know the 
exact construction of the shares unless at least k of them pool their shares together. The 
participants pool the individual parts one by one and the notion of hash functions as in [4] 
is used to detect cheating at every stage. The resulting scheme prevents cheating against 
any set of  cheaters. Introduction of a one way hash function of course takes away 
the unconditionally secure property of the Shamir Secret Sharing Scheme, however it can 
help in reducing the size of the shares per participants. The scheme can successfully 
detect cheating provided there exists a collision free one way hash function. The main 
contribution of our work is not to detect the cheaters but to prevent them from attaining 
the secret under our communication model. The rest of the paper is organized as follows: 
In Section 2, Shamir’s Secret Sharing scheme is introduced. Section 3 discusses cheating 
in Shamir’s scheme. Section 4 describes the use of one way hash functions for cheating 
detection. In Section 5 we propose our scheme. Section 6 gives the security analysis 
followed by computational analysis in Section 7 and finally we conclude in Section 8.  

( )GF p

1k −

{0,

 
2. Shamir’s Secret Sharing  
 
In this section, we describe Shamir’s[1] Secret Sharing scheme more elaborately. Given a 
set of participants {Ρ n }1 2, , , nP P P… , a set 1,2, , 1}S s= −…  of possible values of the 
secret and the threshold of the scheme: k
 
1. Choose a prime { }max ,p s≥ n . 

2. Let be the field of non negative integers modulop
∗Z p . 

3. Randomly choose 1, 2 1, , ka a a −… from a uniform distribution over the integers  

 . [ )0, p
4. Choose the secret from the set . 0a S
5. Construct the polynomial ( ) 2 1

0 1 2 1
k

kf x a a x a x a x −
−= + + + +… . 

6. , let . ∀ 1 i n≤ ≤ ( ) modis f i p=
7. Give the share to the participant over a secure channel. is iP
 
Any out of n participants can pool their shares together to construct the polynomial k
( )f x by langrange’s polynomial interpolation to get , which when is given by: 0a 0x =



0
1 1

(0) mod
kk

i
i j

j i

jf a s
j i= =

≠

= =
−∑ ∏ p  

However if the participants are less than , they cannot reconstruct the polynomial k
( )f x and hence do not get any information about 0(0)f a= . The scheme involves two 

phases: Secret Generation and Secret Recovery. 
 
3. Cheaters in Shamir’s Scheme 
 
Although the scheme described in section 2 seems “perfectly” secure, however it is not 
secure against cheating. Tompa and Woll[5] pointed out a possible cheating scenario. 
Without loss of generality suppose participants decide to pool their shares 
together and decides to cheat. interpolates a 

1 2, , , kP P P…

1P 1P 1k − degree polynomial ( )x∆ such that 

and for . He then gives the share instead of the 

given share
( )0∆ = −1 ( ) 0i∆ = 2 i k≤ ≤ ( )1 1s + ∆

( )1 1s f= . The k participants will now construct the polynomial ( ) ( )f x x+ ∆  

with the constant term . All the honest participants will get the wrong 

secret where as the cheater can recover the correct secret by subtracting from the 
final result. Furthermore this cheating will go undetected. 

( ) ( ) 00 0f + ∆ = −1a

( )0∆

 
Tompa and Woll[5] proposed a cheating detection model in which each of the 

participant is given the share n ( ),i iS x s= i , where ( )1 2, , , nx x x… are chosen uniformly 

and randomly from all permutations of n distinct elements from { }1, 2, , 1p −… , and 

. As the cheaters do not know the ( )is f x= i ix ’s of the other participant they cannot  
cheat in the way mentioned above without being undetected with the probability about 
( )( ) ( )1 1s k p k− − − . However, although cheating is detected with high probability, the 
cheaters cannot be identified. Furthermore, the cheaters can still construct the secret and 
the honest one’s cannot. To solve the latter problem, they encode the secret s into a 
sequence ( ) ( ) ( )1 2, , , ts s s… for some t . They set ( )is s= for some i chosen randomly and 
( )js = w  for all j i≠ where is a dummy integer. The w ( )is ’s are divided into shares and 

given to each participant. During secret recovery phase, the participants pool all their 
shares together and interpolate the ( )is ’s  one at a time until they get some ( )is s≠ . If this 
( )is is not legal, then they know that cheating has occurred. The probability of cheating on 

this moment is 1 t≈ . To make this probability small, the value of t should be large 
enough which implies increase in the number of shares per participant. Moreover the size 
of each share should be equal to the size of the actual secret. We would like to find out a 
cheating prevention scheme in collaboration with a cheating detection and identification 
scheme in which the share sizes are not significantly affected by the probability of 
successful cheating.  
 



Before we present our scheme we would like to illustrate the assumptions used in our 
scheme: 
 
A1. There is an honest Dealer 
A2. When the shares are pooled during Secret Recovery, they can be viewed by all the 
participants involved in the process. In other words they no longer remain “secret”. 
A3. During secret recovery, all participants will pool their share simultaneously. (This 
avoids the situation in which a participant deliberately holds its share if he is the last one 
to pool and hence can see all the other shares which can be used in secret recovery). 
 
4. Using One Way Hash Functions to Detect Cheating 
 
For cheating detection and identification,  T.C. Wu and T. S. Wu [4] used the idea of one 
way hash function and arithmetic coding. Any one way hash function  can be used 
with the usual properties of collision freeness, input of any length and output of a fixed 
length. Their proposed method is based on the following two theorems whose proof can 
be found in [13].  

( ).h

 

Theorem 4.1 If , where 01

1

n
i

i
i

T a p −

=

=∑ ia p≤ < , then 

1 mod ii

T p a
p −

⎢ ⎥
=⎢ ⎥

⎣ ⎦
, for 1 i n≤ ≤ . 

 
From Theorem 4.1, we get the following general result: 
 

Theorem 4.2 If ( )
1

2 1 2 1

1 1

n n
i i

i
i i

T a p cp
−

− −

= =

= +∑ ∑ , where ip a p− < < and 1 c p≤ < , then 

( )2 1 mod modii

T p a p
p −

⎢ ⎥
=⎢ ⎥

⎣ ⎦
, for 1 i n≤ ≤  

 
For the share of participant , is iP ( )ih s is calculated, where ( ).h p< . For a positive 
constant c , the following is computed.  p<

( ) ( )
1

2 1 2 1

1 1

n n
i i

i
i i

T h s p cp
−

− −

= =

= +∑ ∑  

The values T and p are made public. Now upon reconstruction of the secret, the share 

of participant is checked as follows.  calculates . It is checked 

whether

is′ iP iP ( ) ( )2 1

1

n
i

i
i

T h s p −

=

′ ′= ∑

1i

T T
p −

− mod 0p
′⎢ ⎥

=⎢ ⎥
⎣ ⎦

. If this is not the case then is a cheater.  iP

 



The check for cheating detection and identification follows from Theorem 4.2 and the 
collision free property of .   ( ).h
 
As the name identifies, this is a cheating detection and identification technique. So, under 
our assumptions the cheaters can still get the secret even if they are identified (as all 
participants have pooled their shares). It would be nice to modify this technique for 
cheating prevention too. Of interest would be the outcome that the share sizes of the 
participants be almost as much as the size of the secret itself.  
 
5. Proposed Scheme 
 
Before going on to the proposed scheme, we revise the notion of permutations which will 
be needed to describe our scheme. For a positive integer , let [t ] { }1, 2, ,t t= … . A 

permutationσ of [ ]t is a one-to-one correspondence from [ ]t to[ ]t . Let tR denote the set 

of all permutations of[ ]t . The identity of tR denoted by ι is a permutation defined by the 

rule ( ) [ ],x x x tι = ∀ ∈ . The composition of two permutations σ and τ is defined as 

( ) ( )( ) [ ],x x xστ σ τ= ∀ t∈ . The inverse 1
tRσ − ∈ of the permutation tRσ ∈ is defined 

by 1 1σσ σ σ ι .  A ranking function assigns a unique integer in the range [− −= = ]1, !t  to 
each of the permutations in !t tR . The corresponding unranking function is the inverse, 
which given an integer in the range [ ]1, !t  returns the permutation with this rank. 
 
Next we define a few functions which will be required in our scheme. Let p denote a 
positive integer and let . Let px +∈Z p  denote the number of bits in the binary 
representation of p . 
 
Definition 5.1 The concatenation of the positive integers x and is a number obtained by 
appending the binary representation of after the binary representation of

y
y x . We denote 

it by .  ( ),con x y
 
This definition can be extended to more than two arguments in a natural way. 
 
Definition 5.2 For a positive integer t , the function ( ), ,split x t p is an ordered t -tuple 
defined by, 

( ) ( )1 2, , , , , tsplit x t p x x x= …  
Such that, 

ix p t⎡ ⎤= ⎢ ⎥  for 1 1i t≤ ≤ − , 

( )1tx p p t t⎡ ⎤= − −⎢ ⎥ , 

and ( )1 2, , , tcon x x x x=… . 



 
Definition 5.3 Given an ordered t -tuple of elements ( )1 2, , , tx x x x= … , we say that the 

ordered -tuple is a reordering of t ( ) ( ) ( ) ( )( 1 2
, , ,

tx )iO x x xσσ = …i iσ σ x  according to the 

permutation σ , if  
( ) ( ) ( )1 21 ti i iσ σ σ= < < <… t=  

where [ ]1 2, , , ti i i t∈…  distinct from each other and not necessarily in ascending order. 
 
We denote the initial ordered t -tuple ( )1 2, , , tx x x x= …  by ( )xO ι . 
 
Now we are set to describe our scheme. Continuing with our previous notation, let Ρ be 
the set of n participants { }1 2, , , nP P P… , let {0,1,2, , 1}S s= −…  be the set of possible 
values of the secret and let k be the threshold of the scheme. The scheme will be shown 
in two steps: Secret Generation Phase and Secret Recovery Phase. We assume an honest 
Dealer D  and a secure channel between the Dealer and each participant in the Secret 
Generation Phase. 
 
5.1 Secret Generation Phase 
 
This phase is carried out by the Dealer D . It is assumed that for a given integer t , the set 
of all permutations tR  is ranked according to a ranking function. 

1. Choose a prime . ( )max , , !p s n≥ t
2. Select the secret S from the set of non negative integers{0 . ,1,2, , 1}s −…
3. Select random integers from the integers 1 2, , , na a a… ( )0, p to construct the 

degree polynomial: 1k −
( ) 2 1

1 1 2
k

k 1f x S a x a x a x −
−= + + + +…  

4. Compute for1 . ( )is f i= i n≤ ≤

5. Select a positive integer t , and computeb p t⎡ ⎤= ⎢ ⎥ . 
6. For1 ,  i n≤ ≤
 6.1 Compute ( ), ,isplit s t p . If p t p⎡ ⎤ ≠⎢ ⎥ t , then select a random positive  

       integer such that q q p t t⎡ ⎤ p= −⎢ ⎥   and compute  . Now  

       concatenate the first 

( ,it its con s q= )
1t − - pieces as ( )( )1 2 1, , ,i i i i tS con s s s −= … . 

 6.2Let  and select 1ie s= it 1t − random positive integers  such that  

      each one is of size 
2 3, , ,i i ie e e… t

p t⎡⎢ ⎤⎥ . Create the t -tuple ( ) ( )1 2, , ,
is i i itO e eι = … e . 

7. Choose a one way function ( ).h with the condition that ( ).h < p  and a positive 
 constant c  such that1 . c p≤ <



8. For1 j t≤ ≤ , compute ( ) ( )
1

2 1 2 1

1 1

n n
i i

j ij
i i

T h e p cp
−

− −

= =

= +∑ ∑  . Let ( ) ( )1 2, , ,T tO T Tι = … T . 

9. Compute  ( ) ( )
1

2 1 2 1

1 1

n n
i i

i
i i

T h S p cp
−

− −

= =

= +∑ ∑ . 

10. Randomly select a permutation xσ  from tR , where 1 !x t≤ ≤  and compute its 
 inverse permutation 1

y xσ σ −= . 
11. Use Shamir’s secret sharing to evaluate a polynomial modulo a prime 
  and (max , !p n′ ≥ )t p′ = b

i

with shadows  and constant term . 1 2, , , nd d d… y
12. For 1 , Compute: i n≤ ≤
 12.1.  and store in a public directory.    1 2i i i itc e e e d= ⊕ ⊕ ⊕ ⊕…
13. For1 , compute i n≤ ≤ ( )

is xO σ and send to the participant  along with over a 
 secure  channel. 

iP iS

14. Compute ( )T xO σ and store it along with p and T in the public directory. 
 

Notice that the inverse permutation yσ  is hidden in the second polynomial and hence the 
exact position of in the t -tuple is not known to any participant as they don’t know its

xσ either, unless they pool all their shares together to evaluate the second polynomial. 
 
5.2 Secret Recovery Phase 
 
Without loss of generality assume that participants  decide to pool their 
shares.  

1 2, , , kP P P…

 
1. Participants submit their first share . iS

1.1. For participant , computeiP ( ) ( )2 1

1

n
i

i
i

T h S p −

=

′ =∑ . 

1.2. For each , check whether iP

1 mod 0i

T T p
p −

′⎢ ⎥−
=⎢ ⎥

⎣ ⎦
 

  If the above equation does not hold, then  is a cheater. iP
1.3. If at least one cheater has been detected and identified then terminate the 

phase here. 
2. For 1 j t≤ ≤ : 

2.1. Participants submit their j th element of ( )
is xO σ . 

2.2. For participant , computeiP ( ) ( )2 1

1

n
i

ij
i

T h s p −

=

′ ′=∑ . 

2.3. For each , check whether iP



1 mod 0j
i

T T
p

p −

′−⎢ ⎥
=⎢ ⎥

⎣ ⎦
 

  If the above equation does not hold, then  is a cheater. iP
2.4. If at least one cheater has been detected and identified then terminate the 

phase here. 
3. For 1 : i k≤ ≤

3.1. Compute . 1 2i i i itd e e e c= ⊕ ⊕ ⊕ ⊕… i

4. Use Langrange’s polynomial interpolation to find x from these ’s and retrieve 
the permutation  

id

yσ  from tR  through the unranking function.  
5. For 1 : i k≤ ≤

5.1. Apply the inverse permutation 1
y xσ σ −=  to obtain ( ) ( )1

i is x x sO Oσ σ ι− = . 

5.2. If p t p⎡ ⎤ ≠⎢ ⎥ t , remove p t t p⎡ ⎤ −⎢ ⎥  last bits from the first element of 

( )
isO ι .  

5.3. Compute ( ) ( )1,i i icon S e s f i= = .  

6. Reconstruct the polynomial ( )f x from these k shares using Langrange’s 
polynomial interpolation. 

7. Recover the secret as ( )0S f= . 
 
At any stage of the recovery phase, if the cheaters change their elements in the t -tuples, 
the procedure will be terminated. And no one will submit the remaining elements of the 

-tuples. It will be shown in the next section that the probability of successful cheating in 
this scheme depends upon the parameter t which can be adjusted to decrease this 
probability.  

t

 
6. Security Analysis 
 
The above scheme acts both as a cheating detection and prevention scheme. The check to 
detect and identify the cheaters in step 1.3 and 2.3 of the recovery phase is justified by 
the following theorem: 
 

Theorem 6.1 If 1 mod 0j
i

T T
p

p −

′−⎢ ⎥
≠⎢ ⎥

⎣ ⎦
 in step 1.3 and 2.3 of the Secret Recovery Phase, 

then player is a cheater. iP
Proof The proof is given in [4], however we describe it here for completeness. Now from 
Theorem 4.2, 

( ) ( ) ( )1 mod modj
j ji

T T
p h s h s p

p −

′−⎢ ⎥
′= −⎢ ⎥

⎣ ⎦
 



As , this means that ( ).h < p ( ) ( ) ( )mod 0j jh s h s p′− = if and only if ( ) ( )j jh s h s′= . 

Since is collision free, therefore( ).h ( ) ( )j j jh s h s s s j′ ′= ⇔ = . Thus, if this value is not 

zero then player  submitted a false share and is a cheater.   iP
 
Next theorem shows the bound for the share sizes for each participant in information 
theoretic terms. For a background in information theory we refer the reader to [15] for 
details. Let ( )iH P represent the total size of shares held by each participant and let 

( )H S  represent the size of the secret and let ( )ln z z=  represent the size of the any 

positive integer where the base of ( )ln .  is 2.  
 
Theorem 6.2 In the above scheme  

( ) ( ) ( ) ( ) ( ) ( ) ( )ln 1 ln ln 1 1iH S p b t H P p t b t≤ + − ≤ ≤ + − + −  

 Where b p t⎡= ⎢ ⎤⎥

)t

and in the last expression of the inequality . 1t >
 
Proof Since, , so (max , , !p s n≥ ( ) ( )ln lnS ≤ p . Now, the last 1t − elements of the 

ordered - tuples t ( )
isO ι with each participant have size: ( )1b t − . If t divides p i.e. 

mod 0p t = , then ( ) ( ) ( )ln ln lni tiS s t p t t p t p⎡ ⎤+ = = = =⎢ ⎥ p . So in this case 

. Next, if ( ) ( )ln ln 1iP p b t= + − mod 0p t ≠ , then the size of  is 

, where 

( ) ( )ln lni tS s+ i

q( ) ( )ln lnp + ln q q p t t p⎡ ⎤= = −⎢ ⎥  as defined in the scheme. Let modp t r= , 
then 

( )ln
p t r p t r

q p t t p t p t p t
t t

⎡ ⎤ ⎛ ⎞+ − + −
⎡ ⎤= − = − = − =⎜ ⎟⎢ ⎥⎢ ⎥

⎢ ⎥ ⎝ ⎠
r− . 

Which has the maximum value when 1r = . Thus, in this 
case: ( ) ( ) ( ) ( )ln ln ln ln 1i tiS s p t+ = + − . In all other cases when mod 0p t ≠ it is clear 

that the inequality ( ) ( ) ( ) ( )ln ln ln ln 1i iS s p t+ < + − holds. So, if mod 0p t ≠ ,  then 

( ) ( ) ( )ln ln ln 1 1iP p t b t≤ + − + − . Now since the secret and the random elements in the 

-tuple  are uniformly chosen, therefore 
S

t ( )ln S H S=  and ( )ln iP H P= i . This proves 
the theorem. 
 
Corollary 6.1 When p s=  and divides t p , the above scheme has a minimum total 

share size per participant given by ( ) ( )1tH S H S
t
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠
. 

 



Proof If p s= , then ( ) ( ) ( )ln lnH S S= = p  and as seen above if  t divides p  then  

(b p t= ) . So  ( ) ( ) ( ) ( )( ) ( ) 1ln ln 1 ln 1 ln lni
tP p b t p p t t p p

t
−⎛ ⎞= + − = + − = + ⎜ ⎟

⎝ ⎠
.  

Thus,    

( ) ( ) ( )1ln i
tP H S H S

t
−⎛ ⎞= + ⎜ ⎟

⎝ ⎠
, which is obviously the minimum total share size 

attainable in our scheme. 
 
We describe a modified Tompa and Woll attack, which will be shown to be more 
effective in our scheme in the next theorem. Without loss of generality suppose 
participants decide to pool their shares together and decides to 
cheat. interpolates a k degree polynomial  

1 2, , , kP P P… 1P

1P ( )x∆ such that ( )0 1∆ = − ,  for 

some chosen and
( )1 r∆ =

r ( ) 0i∆ = for 2 i k≤ ≤ . He then computes ( )1k∆ + . From Langrange’s  
polynomial interpolation we have:  

( ) ( )

11

1 1

1 1

1 1

( ) ( )

1 1

kk

i j
j i

k k

j j
j i j i

x jx i
i j

x j xk
i j i j

++

= =
≠

+ +

= =
≠ ≠

−
∆ = ∆

−

j− −
= ∆ +∆ +

− −

∑ ∏

∏ ∏
 

When , the above equation becomes: 0x =

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 1

1 1

1

1 1

1

1 1

0 1 1

11 1

11 1 1
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He then gives the share instead of the given share( )1 1s + ∆ ( )1 1s f= . The k participants 
will now construct a polynomial with the constant 

term ( ) ( ) ( ) ( )
1

1 1

10 0 1 1
k k

j j
j i j i

j jf k
j i k j i

+

= =
≠ ≠
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⎛ ⎞⎜ ⎟+ ∆ −∆ −∆ +⎜ ⎟⎜ ⎟− −⎝ ⎠⎜ ⎟

⎝ ⎠
∏ ∏ . The cheater however can get 

the correct secret by subtracting the last three terms from the above result.  The honest 
participants will get the wrong secret unless the above term is equal to zero. 
 



Now we would like to find a bound for the probability of cheating in our scheme. The 
following theorem will also illustrate the benefit of the modified Tompa and Woll attack 
as described above.  
 
Theorem 6.3 The proposed scheme prevents the modified Tompa and Woll attack with a 
probability ( )1t t− . 
 
Proof Sketch First notice that if the cheater wishes to cheat during the pooling of ’s (the 
first shares) then he will be detected in step 1.2 and the recovery phase will stop leaving 
the ’s ( the remaining shares ) of the honest participants undetermined. This leaves him 
with no choice but to send his first share unmodified. Now only one of the elements of 
the -tuple is the remaining piece of the original share . As the cheater has already 
submitted his correct first share, so he has to submit his modified share such that it only 
differs from his original share  in the last 

iS

is

t is

is p t⎡ ⎤⎢ ⎥  bits. Suppose the cheater decides to 
cheat during the submission of the j th element of the t -tuple. Assuming that this is in 
fact the remaining piece of the share i.e. is ij ite s= , he does as follows: Using the 

modified Tompa and Woll attack as described above, compute , where (0, itcon s′′ )
0 iS=  and all its bits are zero. Now let 

( ) ( ) ( ) ( ), , , 0,i i it i it i ij it ijs r con S s r con S s con S e con s e′′ ′′ ′′+ = ⇒ = − = −  

If mod 0p t ≠ then remove the last p t t p⎡ ⎤ −⎢ ⎥ bits from it ijs e′′ − . Use this r  in the 
modified Tompa and Woll attack. Now, three cases might occur: 
 
Case 1 The ’s have not yet been pooled. In this case no one can construct the secret as 
the last pieces of the individual shares have not been pooled.  

its

Case 2 The cheater is lucky and ij ite s= . The probability that this might happen is 

( )1 ! 1
!

t
t t
−

= .   

Case 3 The cheating is done after the ’s have been pooled. In this case, the cheater can 
also cheat to modify the hidden permutation during the submission of the last element of 
the -tuple. However, whatever the situation may be, as the correct share has already 
been pooled, the honest participants can also construct the secret by trying at most 

different combinations of the correct pooled elements of the t -tuple and can 
eventually know the secret value. 

its

t

1t −

 
The above proof can be generalized to any set of 1k − cheaters. Notice that if any cheater 
or set of cheaters are detected without the submission of the ’s, the Dealer can 
redistribute new shares to the honest participants over their secure channels and discard 
the old secret, so that the cheaters cannot guess the honest participant(s) share by 
guessing the undetermined part. The situation in case 3 of the above theorem can be made 

its



more convenient for the honest participants, if a validity check for the constructed  secret 
is introduced. Such a check can also work as a cheating detection technique.  
 
7. Computational Complexity 
 
In the secret generation phase, any noticeable extra computational cost other than the 
threshold scheme is the computation of the one way hash function. The hash function has 
to be applied nt times on inputs of length p t⎡ ⎤⎢ ⎥  and times on inputs of length n

( )1t p⎡ t− ⎢ ⎤⎥ . As indicated in [4] for the hash function ( ).h to be collision free, the 

output should be at least 128 bits. Thus this phase also includes computation of jT and T , 
times modulo 128 bits if we assume the prime 1t + p to be 128 bits. In addition to that, 

another polynomial evaluation modulo p′ is required. However this computation can be 
done fairly quickly if we assume the Dealer to have enough computational resources.  
 
In the secret construction phase, the hash function is employed kt times on inputs of 
length p t⎡⎢ ⎤⎥ and times on lengthk ( )1t p t⎡ ⎤− ⎢ ⎥ bits, and the check in step 1.3 requires 

128-bit modulo divisions and reductions. The extra computation cost caused by the 
hash function can be reduced if another deterministic cheating detection and 
identification technique can be employed whose efficiency does not depend upon the size 
of the input.  

tk k+

 
Finally, a note on the ranking of the permutations in tR . Algorithms exist to compute both 
the ranking and unranking functions in ( )O t  arithmetic operations or better. See, for 

example [16].  The reordering of the t - tuples can be done in worst case 

time[17] and the computation of the inverse permutation 
( logO t t )

1
xσ −  can be done in time. ( )O t

 
8. Conclusion & Discussion 
 
In this paper, we have proposed a cheating prevention scheme with an adjustable 
probability of cheating. The scheme employs dividing the secret share into parts and 
reshuffling these parts randomly such that no participants know the exact sequence. The 
resulting scheme has a probability of cheating proportional to the number of divided parts. 
The total size of individual shares is always less than twice the size of the secret. In a 
practical application, if the original secret is 512 bits,  then the shares of participants can 
be divided into 17 parts, one 480 bits long and each of the remaining 16 parts 32 bits long. 
The probability of successful cheating is 1 16 0.0625≈ . It should be noted however that 
once the permutation σ has been revealed during the secret construction, cheating can be 
done straightforwardly in the next construction of the secret. Such a situation can be 
counteracted by using a black box implementation which is suitable for all secret sharing 
schemes. Computation wise this scheme is suitable for the thin client fat server scenario 
in which the server can do the more expensive computations. 
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