Diffie-Hellman Key Exchange Protocol,

Its Generalization and Nilpotent Groups.

by
Ayan Mahaanobis

A Dissertation Submitted to the Faculty of
The Charles E. Schmidt College of Science
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Florida Atlantic University
Boca Raton, Florida
August 2005

Acknowledgements

My doctoral studies started in New Zealand under the supervision of Douglas Bridges. From there
I had to move to the United States to work under the supervision of Fred Richman in constructive
mathematics. Though | changed my research topic from constructive mathematics and Fred is no
longer my dissertation director, he stayed the course with me as a guide and a mentor. | take this
opportunity to thank him for his kindness and generosity and above all for giving me the opportunity
to work with him.

Ronald Mullin has been a very good friend, philosopher and guide for me. He not only initiated
me into cryptography but stayed with me as a member of my dissertation committee. It was a real
honor to work with him not to mention the Erdés number | got because of him.

Spyros Magliveras was the dissertation director for this dissertation. | enjoyed long stimulating
conversations with him. He helped me both emotionally and financially through the process of
writing this dissertation. | take this opportunity to thank him.

I thank Tomas Schonbek and Heinrich Niederhausen for their help and support in the process of
writing my dissertation. Special thanks to my parents for their support and my friends for keeping
me sane.

ABSTRACT

Author: Ayan Mahalanobis

Title: Diffie-Hellman Key Exchange Protocol,
its Generalization and Nilpotent Groups

Dissertation Advisor: Dr. Spyros Magliveras

Degree: Doctor of Philosophy

Year: 2005

This dissertation has two chapters. In the first chapter we talk about the discrete logarithm
problem, more specifically we concentrate on the Diffie-Hellman key exchange protocol. We survey
the current state of security for the Diffie-Hellman key exchange protocol. We also motivate the
reader to think about the Diffie-Hellman key exchange in terms of group automorphisms.

In the second chapter we study two key exchange protocols similar to the Diffie-Hellman key
exchange protocol using an abelian subgroup of the automorphism group of a nonabelian group.
We also generalize group no. 92 of the Hall-Senior table, for arbitrary prime p and study the auto-
morphism group of these generalized group. We show that for those groups, the group of central
automorphisms is an abelian group. We use these central automorphisms for the key exchange we
are studying. We also develop a signature scheme.

Table of Contents

1 The Discrete Logarithm Problem

1.1 Introduction e e
1.2 The Discrete Logarithm Problem
1.2.1 Diffie-Hellman key exchange . .
1.3 Attacks on the Discrete Logarithm Problem.
1.3.1 Generic Attacks.
1.3.2 Special Attacks: Index Calculus Methods.
1.4 The Diffie-Hellman Problem
1.5 The EI-Gamal Signature Scheme
1.5.1 The EI-Gamal Signature Scheme
1.6 Conclusion

2 Key Exchange Protocols

2.1 Introduction
2.2 Some Notation and Definitions
23 KeyExchange e
2.3.1 The General Discrete Logarithm Problem
2.3.2 The General Diffie-Hellman Problem
2.4 KeyExchange Protocol I
2.4.1 Comments on Key Exchange Protocol I
2.5 KeyExchange Protocol Il
2.5.1 Comments on Key Exchange Protocol Il

2.6 Key Exchange using Braid Groups

2.7 Some useful facts from group theory. . .
2.8 Signature Scheme based on the conjugacy problem
2.8.1 Comments on the above Signature Scheme

2.9 Aninteresting family of p-groups

2.9.1 The Automorphisms of Gy(m, p)
2.9.2 Description of the Central Automorphisms
2.10 Using key-exchange protocol I
2.11 Using key exchange protocol Il
2.12 Conclusion

Bibliography

P N O1T01TwWwWwERE R

Chapter 1

The Discrete Logarithm Problem

1.1 Introduction

It is reasonable to assume that people in any civilization, anywhere in this world tried to conceal
information in written form as soon as writing was developed. This is probably the first and primitive
form of encryption but is only one half of cryptography, the other half is the ability to recreate the
original message from its concealed form. Cryptography is not hiding a message, so that no one
can find it, but rather to leave the message in public in such a way that no one except the intended
recipient understands the message. The first recorded use of cryptography for correspondence was
by the Spartans who (as early as 600 BC) employed a cipher device called “the scytale” to send
secret communications between military commanders. The scytale consisted of a wooden baton
wrapped with a piece of parchment inscribed with the message. Once unwrapped the parchment
shrunk and appeared to contain some incomprehensible marks; however, when wrapped around
another baton of identical dimensions the original text appears.

Military uses of cryptography were the main motivations behind the study of cryptography in
the old days. It was a secret endeavor, mostly undertaken by big governments, who could hide all the
efforts and create smokescreens necessary to hide a lot of people, activities and active researchers.

In those days most of the cryptosystems were private or symmetric key cryptosystems. In this
two users Alice and Bob select a key in advance, which is their private key, then they use the key in
a private key cryptosystem to communicate data over the public channel. Military establishments
and diplomatic offices normally have staffs, procedures and protocols in place to handle this key se-
lection by two users and ways to change these keys periodically. Secret or private key cryptography
is still the backbone of modern day cryptography, but it falls short of todays needs. We explain this
with an example.

Let us assume that BankAtlantic™ in Boca Raton, U.S.A wants to transfer a sum of money
to a rather obscure bank, State Bank of India™, Chittaranjan, India, online. It is impossible that
BankAtlantic™ has already negotiated with all banks on earth private keys for secret communica-
tion and has procedures in place to change those keys periodically. So the only other alternative is
to send a trusted courier to Chittaranjan, India with the key before these two banks can exchange
the money. This is clearly a major problem for online commerce, How can two entities unknown to
each other agree on a key?.

The answer to the question raised above is the public key cryptography. We explore public
key cryptography in terms of the Discrete Logarithm Problem, or more specifically, in terms of
the Diffie-Hellman Key Exchange Protocol, which is the most primitive idea behind public key
cryptography. In the Diffie-Hellman key exchange protocol, two users unknown to each other can

1

set up a private but random key for their symmetric key cryptosystem. This way there is no need for
Alice and Bob to meet in advance, or use a secure courier, or use some other secret means, to select
a key.

Using the discrete logarithm problem involves computing g" from g for some given n € N in
a group G. It is normally seen as an operation in the group G = (g). In this thesis we propose a
“change in attitude”, instead of computing g" from g, we will compute the function g — g". This
might seem silly at first, but our fundamental contribution in this thesis is to show that once we settle
with the understanding that the discrete logarithm problem refers to a function in general and to an
automorphism in most cases, there is an easy and obvious way to generalize the Diffie-Hellman key
exchange protocol to non-abelian nilpotent groups. The reader will notice that from now onwards
we will start switching between an operation in a group and function between the same group every
now and then. This is to point out that they are the same thing in context of the Diffie-Hellman key
exchange protocol and to prepare and motivate the reader for the later chapter, where we exclusively
talk about functions(automorphisms).

A one way function between sets A and B is a function f : A — B such that it is easy to
compute f(a) for any given a € A, but given f(a) it is computationally infeasible to compute a. The
most famous one way function is the exponentiation, in which a function f : G — G is defined as
f(g) = g* a € N, where G = (g) is a cyclic group. Notice that the representation of the group
is important, because for a finitely presented cyclic group G = (g | g" = 1), an automorphism
f : G — Gisgiven by f(g) = g*, where gcd(n, k) = 1. If someone makes g public then k is clearly
visible and hence the automorphism becomes easy to find. On the other hand if one represents the
group G, as a group of matrices(say), then g* is a matrix and k is not visible. The most commonly
used groups are the multiplicative groups of a finite field and a cyclic component of the group of an
elliptic curve, we discuss these later in this chapter.

A trap door function f : A — B isafunction between a set of plaintexts A and a set of ciphertexts
B which have two sets of information, public information and private information. With only the
public information the function f behaves like an one way function. With both the public and the
private information, it is easy to compute the image and the preimage for the function. The famous
trap door function RSA uses factoring integers.

There are four major issues with any public key cryptosystem:

Confidentiality: A message sent from Alice to Bob cannot be read by anyone else.
Authenticity: Bob knows that only Alice could have sent the message he just received.
Integrity: Bob knows that the message from Alice has not been tampered with in transit.

Non-repudiation: It is impossible for Alice to turn around later and say she did not send the mes-
sage.

To see why these four properties are important, think of Bob as Alice’s stock broker. Alice sends
Bob an instruction to sell one thousand stocks when the stock hits a certain price. This information
should remain confidential, because not only it reveals Alice’s personal information but also stock
holdings of Alice and the price she chose. Bob has to be sure that the message came from Alice
not from an imposter, he might get in trouble later for selling Alice’s stock without her permission.
Bob should be sure that the message has not been altered, i.e., Alice wants to sell one thousand
stocks not one hundred or ten thousand. It should be impossible for Alice to turn around later and
say, “l never said sell”. In other words we require transactions to take place between two mutually
distrusting parties over a public network.

In this chapter our main concern is the discrete logarithm problem and the cryptosystems using
the discrete logarithm problem (DLP for short), more specifically, the Diffie-Hellman key exchange
protocol. The essential idea behind the Diffie-Hellman key exchange is: once two entities unknown
to each other can securely and trustfully establish a key for a secret key cryptosystem between
them (like the Advanced Encryption Standard). They can then transfer data using a secret key
cryptosystem.

1.2 The Discrete Logarithm Problem

Let G be a cyclic group generated by g. Then it is easy to compute g" for any positive integer n
in O(log n) steps, using the repeated squaring method*. In many instances finding n from g and
g" is an exceptionally hard problem with exponential complexity. The degree of difficulty or the
computational complexity of the problem depends mostly on the representation of the group, as
finding n is trivial in the cyclic group (Zx, +). It is interesting to note that though any two finite
cyclic groups of same order are isomorphic, i.e., there is a isomorphism between G and Zy for a
suitable k € N, computing the image of an element g" in G under this isomorphism entails solving
the discrete logarithm problem. A large variety of groups are used and studied for use in the discrete
logarithm problem:

a. Subgroups of Z7 for some prime p.
b. Subgroups of F, for prime p, especially when p = 2.
c. Acyclic subgroup of the group of an elliptic curve E, () over the finite field F, with equation

y2=x3+ax+b, a,b eFp, also see [8].

o

. The natural generalization of the group of an elliptic curve to the Jacobian of a hyperelliptic
curve.

. Abelian Varieties.

@D

=h

Ideal class group of an algebraic number field.

1.2.1 Diffie-Hellman key exchange

In 1976, Whitfield Diffie and Martin Hellman [18] introduced a key exchange protocol using the
discrete logarithm problem. In this protocol Alice and Bob will set up a random secret key for
their private key system, using a public but authenticated channel. They decide on a cyclic group
G of order n and a generator g of the group in public. To set up a key Alice chooses a random
integer a € [1,n] and sends Bob g2, similarly Bob computes g° for random b € [1,n] and sends it
to Alice. The secret key is g2, which Alice computes by computing (gb)a and Bob by computing

(g®P. Notice that an adversary Oscar notices the set {g, g2, g}, which is now public information.
If Oscar can somehow compute or have some non-negligible information about g2 from the public
information then the scheme is broken.

1Though it is easy to compute g", it is often not easy enough for practical purposes. Then special purpose bases in Fan
for apositive integer n called the optimal normal bases and their aternates are used [51, 52].

3

This author noticed a misconception in literature; it comes from the implication that the se-
curity of the discrete logarithm problem and hence the Diffie-Hellman key exchange protocol is
tied somehow to the fact that the discrete logarithm problem is an one way function. This is not
true. Though exponentiation is an one-way function, and one way functions have many important
uses,? it is not the property of being one-way that provides the security to the discrete logarithm
problem. The claim of security in one-way comes from given f and f(a) find a, but in the discrete
logarithm problem, we already know g and g". The challenge in the discrete logarithm problem is
finding n, i.e., to find f from a and f(a). There is another serious challenge to the Diffie-Hellman
key exchange protocol, given g, g2 and g® find g2, known as the Diffie-Hellman Problem, DHP for
short. We write this in terms of functions. Let A be a non empty set and H is a set of functions
f:A— Asuchthat f og =go f (we will henceforth denote f o g by fg) for all f,g € H. Then
the Diffie-Hellman key exchange protocol can be expressed as follows: choose a € A, and make it
public. If Alice and Bob want to decide on a key using A, a and 4 then Alice chooses a random
f € H and sends Bob f(a), similarly Bob chooses a random g € 9 and sends g(a) to Alice. They
both compute f(g(a)) = g(f(a)) which is their private key or shared secret. In this case an adversary
sees a, f(a) and g(a). Let X = {b: f(a) = b for some f € H}. Then the challenge is to compute
g(y) for all y € X from the action of g on a, i.e., g(a). If we think of A as a group and H a subgroup
of its automorphism group, then X is the orbit of a under the action of 4 on A. In case of a A
being a group of prime order and a a generator of A. The orbit of a under H, the group of auto-
morphisms of A, is A. This fact provides some evidence in the direction that for cyclic groups DHP
is equivalent to DLP. There is another major issue with the Diffie-Hellman key exchange protocol,
known as bit security. Suppose a 128 bit AES key is to be established, then how does one ensure
that no information about these bits are computable from the public information g, g2 and g°? The
importance of these thoughts is easy to see. If an adversary can compute half of the bits then there
is no point in establishing a key. We shall go in detail on this issue in the next section.

It is probably prudent to point out here that, Bob and Alice need to be sure about the identity of
the other person, i.e., they must use an authenticated channel. It is possible that Oscar pretending to
be Alice might start the protocol and get a secret key established with Bob, who gives the secret to
Oscar, an imposter, instead of Alice.

Security of the Diffie-Hellman key exchange.

The three important security concepts on which the security of the Diffie-Hellman key exchange
protocol depends. They are written below with decreasing computational strength. In this section,
let G be a cyclic group of order n generated by g.

Discrete Logarithm Problem: If from g and g Oscar an adversary can compute a, then he can
compute g2 and the scheme is broken.

Diffie-Hellman Problem: Suppose from the information g, g and gP with or without solving the
discrete logarithm problem, Oscar can compute g2° then the protocol is broken. It is still an
open problem if DHP is equivalent to DLP.

Decision Diffie-Hellman Problem: Suppose we are given g, g2, g° and g%, DDH is to answer the
guestion, deterministically or probabilistically, Isab = ¢ mod n?

2Consider a multi-user computer system where each user needs to authenticate himself with a password, to log in.
If the passwords are stored in the computer then the fi le containing those passwords needs to be heavily protected. On
the other hand if we take a one way function f and store f(a) for a password a, and then each time a user types in his
password b we compute f(b) and match it with the password fi le. Then the password fi le is not that important, because
all one seesin the password fi leis f(a) and it is hard to fi nd a from that.

4

Clearly any solution to the discrete logarithm problem implies a solution to the Diffie-Hellman
problem and any solution to the Diffie-Hellman problem implies a solution to the decision Diffie-
Hellman problem. So, the decision Diffie-Hellman problem is the weakest in terms of computational
complexity and is currently the most researched attack.

1.3 Attacks on the Discrete Logarithm Problem.

Let G be a cyclic group of order n, generated by g. Let g* = a for x € [1,n]. We are given g and
a, the DLP (the discrete logarithm problem) is to find x = logga. Here g is called the base for the
discrete logarithm problem. It is often customary to define the DLP in a cyclic group, but it can be
defined in any group G. Fix a base g € G and work in the cyclic group (g). The easiest of the attacks
is to produce an ordered list {g¢ : k = 1,2,---,n} and compare a with elements in the list to find
X. This attack takes O(n) space and at least n operations to compute the list, i.e., time complexity is
O(n). Any attack has to beat this space-time complexity. There are two kinds of attack to solve the
discrete logarithm problem:

1. Generic Attacks: These attacks work for any cyclic group, i.e., these attacks treat the group
as a finitely presented group [9, 36, 44, 63]. There is another way to look at generic attacks.
We think of the group G as an oracle, which can compute the product gh of two elements g
and h in G, it can compute the inverse g~ for any element g € G and it can test equality for
any two elements in the group. So in this context the algorithm for a generic attack makes
oracle calls to perform group operations. The following are the known generic attacks®:

a. Shanks baby-step giant-step.
b. Silver-Pohlig-Hellman.
c. Pollard’s p method.
d. A-method.
2. Special Attacks: These attacks are not generic because they need more information than is
provided by the oracle, i.e., these attacks depend on the particular group or a family of groups
in which exponentiation is working for that particular cryptosystem. A good example is index

calculus attacks on the discrete logarithm problem on Zj, or Fg, where pis a prime and g = p".
In this case the attack uses the representation of the group.

1.3.1 Generic Attacks.

The most common generic attack to the discrete logarithm problem is based on the index search
algorithm, popular in computer science. Suppose there is an ordered list of n + 1 elements {g;}.,,.
Let us try to find the index of a in this list. We further assume that o : g; — giz1 mod n is efficiently
computable. Then choose a positive integer M and compute and store the table

{a,0(@),0%(@).- - .M (a)} .

3The work with generic attacks is almost complete with Victor Shoup's paper [60], who found atight lower bound for
the complexity of a generic attack in Silver-Pohlig-Hellman attack. However thereis still some interest with paralleliza-
tion of these attacks asin [66].

Then go,dm,gom - - - IS computed one after the other and compared with the table above, if there is
a collision of gjy with o/(a) then the index of a is iM — .

In practice the integer M is chosen close to +/n and then the space complexity is O(+/n) and
the time complexity is O(+4/nlogn). Shanks baby-step giant-step algorithm for solving the discrete
logarithm problem is a particular case of the index search algorithm. In this case take g as the
generator of the group and the index is the exponent of g, o is defined as multiplication by g. So
index search applies to solve the discrete logarithm problem, but is exponential in both space and
time complexity.

One can reduce the space complexity to nothing by going probabilistic using Pollard’s o method,
which is far more practical. Still the heuristic time estimate is the same as for the baby-step giant-
step algorithm [9, 44]. It is straightforward to see that Shank’s algorithm can be used to calculate a
multiple of the order of g in time O(+/nlog n) by solving logy 1 where 1 is the identity of the group.
Now suppose that

K
n:l_[pj’i where p; < p2 < -+ < pk (1.2)
i=1

are the prime factors of n, and «; is the largest power of p; dividing n. The x in the discrete logarithm
problem is computed modulo n, hence if one can compute x modulo p;" for each i, then using the
Chinese remainder theorem one can compute x modulo n. Let X’ = x mod p® and we compute x’.
Let

X' = Xo+ X1p + XoP? + - -+ + Xq_1p®"F mod p? (1.2)
be the p radix expansion of x” for some p € {p1, P2,--- , Pk} and « the corresponding «;. Clearly
O<xi<pfori=0,1,---,a—-1. Since x = X’ + p“t for some integer t. Notice now that

ap = (gX’+pat)ﬂp = gn_élmp‘y_lt_ (1.3
Since
nx’ X
— =n (FO + X1+ XoP A+ e+ Xqu1PPT2 p“‘lt), (1.4)
we have o -
gr ™™t =g since the order of g is n. (1.5)

Hence one computes a® and = g% and then use Shanks baby-step giant-step to find xo. Clearly,
the order of ¢ is p, and hence the complexity of the discrete logarithm is that of a group of order p.
Once Xg is computed one computes

ag_XO = gxlp+~-~+p“"

hence (ag‘m)p_n2 = g%. Then finding X, is the same as computing the discrete logarithm in £ as n
and p? is known. Similarly, one can proceed to find x; for all i by solving the discrete logarithms
in* . Further details of this process (the Silver-Pohlig-Hellman algorithm) can be found in [36,
Chapter V] or [9, 40, 44, 54, 63].

The Silver-Pohlig-Hellman algorithm shows us that groups in which all the prime factors are
“small” should be avoided for use in the discrete logarithm problem. In other words the groups ac-
ceptable for use in any cryptosystem, assuming the discrete logarithm problem to be a hard problem,
should have at least one large prime factor in their order. The largest prime factor of the order of the

“4|sthere an efficient parallel implementation of Silver-Pohlig-Hellman algorithm? This question isinteresting because
to compute x; one needs to compute x;_1, making the algorithm recursive by nature.

6

group is going to provide the security as is clear from the Silver-Pohlig-Hellman algorithm. This
is one argument in favor of using only subgroups of prime order, for a large enough prime. This
algorithm is the reason that once F,, where 2" — 1 is prime, was thought ideal for cryptosystems
using the discrete logarithm problem. Victor Shoup in [60] shows that Silver-Pohlig-Hellman is the
best generic algorithm one can expect with respect to running time.

It is clear that the above algorithm only works if the order of the group is known. We now show
that any algorithm to compute the discrete logarithm can be used to compute the order of the base
element g. Let us assume that we can compute the discrete logarithm to the base g € G and we
prove that there is a non-deterministic algorithm to compute the order of g.

Choose an integer m; it helps if one can make a guess and choose m to be bigger than the order
of g. Then pick arandom yg € {(m,m+ 1,m + 2,---,2m} and compute g* in G and then compute
Xg = Iogg g%. If ng = Xg — Yo = 0 then the choice of m was too small, make m := 2m and start all
over again. If ng # 0, then choose another yo at random and find n;. Then the order of g is a factor
of the gcd(ng, n1). After several computations of n;’s their GCD will yield the order® of g.

We just proved that computing the discrete logarithm is as hard as computing the order of an
element. Hence if we can find a group G such that computing order of an element g is a hard
problem and can build a cryptosystem whose security depends on computing that order, then that
cryptosystem is at least as secure as computing the discrete logarithm in the cyclic group generated
by g.

This idea can serve as a motivation for the work of Wei, Trung, Magliveras and Hoffman in [69],
though they didn’t mention this as their motivation. The idea behind their cryptosystem is not new.
It is very much similar to the idea of Kevin McCurley in [43]. The central idea is to work in the Zj,,
where n = pg, p and g are primes and Zj, is the group of units in the ring Z,. Then they find an
element « € Z;, such that to find the order of @ one needs to factor n. The claim of Wei et. al. is that
the cryptosystem is as secure as RSA and the discrete logarithm in a prime field, taken together. We
will see later RSA is “a little less” secure than the discrete logarithm problem in a prime field with
the same modulus that of RSA. Hence the primes to be chosen have to be at least 1024 bits, making
n large. On the other hand, since the security depends on two theoretical problems with the same
complexity, this cryptosystem is like using RSA twice or DLP in a prime field twice.

1.3.2 Special Attacks: Index Calculus Methods.

The special attack we have in mind is known as the Index Calculus Method, it works for the mul-
tiplicative subgroups of the finite fields and the class groups of imaginary quadratic number fields.
We describe here the attack for Zj, and F where K is a positive integer. This method is normally
attributed to Kraitchik, who wrote about it in the 1920’s [44, 58], but the modern version was redis-
covered by Adleman in [1]. This method is probabilistic rather than deterministic.

Let G be a group generated by g of order n. Let S := {91,092, -+ ,Om} be a set of elements of G.
Then the index calculus methods involves two precomputations. First we compute equations of the
form

m .
[=g (1.6)
j=1

51t is worth pointing out here the relevance of non-deterministic algorithms in computational mathematics, a deter-
ministic algorithm of the above would have amost certainly included in it an algorithm for the well ordering principle
for naturals, no one believes that such an algorithm exists.

or equivalently

m

Zaij loggg; =bi mod n .7

=1
where a;; and b; are positive integers. The computation in this step is the same as finding b;, such
that g% factors in the set S. Clearly g® is a random element of the group, for a randomly chosen
bi. So, in other words we are choosing random elements from the group and trying to factor them
into S. In the second stage we solve the set of linear equations for log,gj, i.e., find the discrete
logarithm for each gi. This completes the precomputations. Now suppose we want to find logga
then we construct relations of the form

m
[o] =ag® (1.8)

=1
where ej and e are positive integers and e is chosen randomly. This is equivalent to saying that we
m
find an integer e such that ag® factors in the set S. Equation 1.8 implies that }, ej log,gj = e+logy a,
=1

further implying

m
logga = Zej logggj —€ (1.9
=1

Two questions arise automatically,

1. How to find g1, 02, - - - , gm, SUch that equations of the form of Equation 1.6 can be formed effec-
tively and efficiently? This step will be mentioned henceforth as the database, because we
are creating a database of linear equations in g1,02, - , Om.

2. How to solve the set of linear equations, i.e., the database created above with equations like
Equation 1.7, for log, gi?

Forming the database and solving the set of linear equations is known as the precomputations, in
this step the discrete logarithms of the elements g1,02, - - , gm are found, which are needed only
once for each new logarithm found later and hence can be stored in a slow device.

The first of these questions limits the index calculus method mostly to the multiplicative group of
finite fields, where we know how to effectively generate these g1, 9o, - - - , m. The second question is
more intriguing. Parallel to the index calculus method in finite fields there is a factoring algorithm
for integers, but we will not explore factoring algorithms in this thesis. The precomputation has
to be done only once for a particular group, so complexity of the precomputation is one of the
security conditions in the discrete logarithm problem. Once the precomputation stage is computed
the computation of the final stage i.e., Equations 1.8 and 1.9 is not that tedious or time consuming.

Clearly the larger the number m, the greater the probability that Equations of the form (1.6) and
(1.8) can be formed. But if m is too large then, since there have to be significantly more than m
equations of the form (1.6), solving that many linear equations adds to the complexity of the index
calculus algorithm. There are two bottlenecks in this algorithm:

a. Forming enough equations of the form of Equation 1.6.

b. Solving the above mentioned system of equations.

Index calculus in ZE

Let us assume that Zj, is generated by g. To form equations of the form 1.6, take a set of m primes
{p1, P2, , Pm}- The usual practice is to take the first m primes. Take an arbitrary random integer

m
r € [1, p — 1] and compute the least integer z = g" mod p. If z = [] pﬁ, where ¢j € {0,1,2,---}
i=1

then we have an equation as in Equation 1.6. If z doesn’t factor into tiwe set then we throw away that
z and pick another random r and proceed as before.

It is clear at this stage that the bigger the m, the probability of finding more equations of the
form of Equation 1.6, increases. On the other hand while solving the system of linear equations as
in Equation 1.7, the bigger the m, the higher the cost of computation. The number of equations,
like Equation 1.6, should be greater than m. There are many strategies available to solve the set of
linear equations, we refer the reader to [44, Section 5.1] or probably the best survey written on the
discrete logarithm problem [53] or the paper by Kevin S. McCurley in [55]. We mention a few facts
about the complexity of the discrete logarithm problem in Z},. This might not be the best complexity
analysis of the facts, to date, but historically whenever there is a new method for factoring integers,
the same method can be adapted into an index calculus method for prime fields. It has been the
case that the discrete logarithm for prime field is always “a little more” secure than RSA, where the
prime in the prime field is of the same size as the modulus of RSA.

Let us define
L(p) = exp(+/log plog log p). (1.10)

Then McCurley proves in [44, Page 62] that if trial division is used in the index calculus method
and 2m equations are generated then the time complexity is

L (p)2e+L/(@9+o) (1.11)

Carl Pomerance in his paper titled Factoring in [55] uses the quadratic sieve factoring method and
states heuristically that the running time to factor an integer n such as n = pg, where p and q are of

the same size is
exp(1 + o(1)(+/log nlog log n)) (1.12)

After establishing a relationship between the complexity of RSA and that of the discrete logarithm
in prime fields, it is easy to find suitable primes for a secure Diffie-Hellman key exchange in prime
fields, once one accepts that RSA with modulus of same size is secure. These days, the industry
standard for a modulus for RSA is 1024 bits. So using a prime of 1024 bits should provide an
adequate security to any cryptosystem using the discrete logarithm problem, for example, the Diffie-
Hellman key exchange. However in [54], Odlyzko claims that for long lasting security one needs to
amend the size of the modulus of RSA to 2048 bits.

Index calculus in Fy Cryptologic protocols are most interesting over an extension of the binary
field. The reasons are easy hardware as well as software implementations of the protocol. There is
a lot of interest these days on implementations of finite fields of characteristic 2 (see for example
[45, 51, 52]), as a hardware model. In this section we will not talk about representations of finite
fields; rather, we will talk about the index calculus method in F;k. There is the usual index calculus
whose running time can be analyzed completely, as in [53]. Then there are improvements made
by Blake, Fuji-Hara, Mullin and Vanstone in [6, 7] and by Coppersmith in [15]. To emphasize the
improvements we quote a paragraph from [15].

Throughout this paper we will use for our example the field GF(21%7). The primitive
polynomial involved is P(x) = x'2”+x+1. The Diffie-Hellman key exchange algorithm,

9

as described above, has been implemented in this field. To build the database necessary
to take logarithms in this field, Adleman’s algorithm seems to take two weeks; a mod-
ification due to Blake, Fuji-Hara, Mullin and Vanstone takes about nine hours, and the
present scheme takes eleven minutes.

Blake et. al. [6] and Coppersmith [15] attacks the first bottleneck of Adleman’s algorithm [1], i.e.,
trying to find conditions where one finds polynomials which are easier to factor completely into
irreducible polynomials of “low” degree. The clever point made by Blake et. al. is: the probability
that a polynomial of small degree will factor completely into irreducible polynomials of low degree
is much higher than that for a polynomial of much higher degree. Hence if one could find a way
to choose randomly polynomials of lower degree, then the complexity of forming relations for
precomputations goes down quite a bit.

In [6] the authors use the extended Euclidean algorithm to find for any polynomial g(x) of degree
at most (n — 1), two polynomials t(x) and r(x), such that degrees of t(x) and r(x) are less than or

2
will factor into irreducible polynomials of smaller degree is much higher than that of factoring g(x)

into irreducible polynomials of low degree.

In other words, if they choose a database D of all irreducible polynomials of degree less than
or equal to b, then using the above method it is much faster to compute the linear equations as in
Equations 1.6 and 1.7. This is a contributions to the practical side of the index calculus algorithm by
Blake et. al. . There is a serious theoretical contribution made in [6] which motivated Coppersmith
in [15], known as systematic equations. It follows from the following theorem:

equal to n-t and g(x) = % They then prove heuristically that the probability that t(x) and r(x)

Theorem 1.3.1. Let f(x) be an irreducible polynomial of degree n, over F = GF(q) and let g(x) be
an arbitrary polynomial over GF(q). If m(x) is any divisor of f(g(x)) then the degree of m(x) is a
multiple of n.

Proof. See [6] page 283. °

Let P(x) be the defining polynomial for the field F = GF (2"). Further assume that P(x) =
X" + Q(x) where Q(x) is a polynomial of low degree. Then one can write

XK= x¥"Q(x) mod P(x) (1.13)

where k is the smallest integer greater than n of the form 2', | € N. Then for any polynomial g in the
field g (x<) = g(x)¥, since F is of characteristic 2. Thus

g (X "Q(x)) = g(x)* (1.14)

Now take an irreducible polynomial g(x) of small degree in F, then there is a high probability that
the polynomial g (xk‘”Q(x)) factors in the database and from the above equation there are many
linear equations of the form of Equation 1.7. Blake et. al. work to create a database for GF(2%%7).
In that case there were not enough systematic equations found by the above rule. They also failed
to give any systematic approach to create these systematic equations. There are some better ways
known today than to go for trial division of g(x), for example see [53]. Coppersmith found a way to
to create systematic equations of degree less than equal to n3, see [15, Section 1V].

10

1.4 The Diffie-Hellman Problem

Itis clear that if one can solve the discrete logarithm problem then one can solve the Diffie-Hellman
problem. Is the other direction true? This has been one of the fundamental questions concerning
the security of the Diffie-Hellman key exchange protocol. In this section we talk about some of
the ideas described in [12, 39]. We won’t go to the explicit details in describing the “Black Box
Fields”, neither do we feel that that description is important. It is a more graphic description of
a field, other than that it serves no purpose. The question we begin with is, is the Diffie-Hellman
problem as secure as the discrete logarithm problem? This is the same as asking does solution of
the Diffie-Hellman problem yields to a solution of the discrete logarithm problem? We feel that the
problem is not well posed as what does solution of the discrete logarithm problem or solution of
the Diffie-Hellman problem means. After all they all have solutions, it is finding the solution that
matters. That is where computational complexity of the algorithm that finds the solution comes into
play. We qualify these algorithms in terms of log n where n is the order of the group G = (g). We
follow Boneh and Lipton in [12] to show that if the discrete logarithm problem is exponential in
log n then the Diffie-Hellman problem is also exponential in logn. This is very encouraging news
for the elliptic curve cryptography, in which no subexponential algorithm is known for the discrete
logarithm problem, hence in current understanding of the problem, the Diffie-Hellman problem is
also exponential. In other words if one believes in the security of the discrete logarithm problem,
then one has every reason to believe in the security of Diffie-Hellman problem in the group of elliptic
curves.

Let G be a cyclic group generated by g which is of order p, where p is a prime. Then every
element of G can be expressed as g", n € [1, p]. Addition and multiplication in G are defined
respectively as follows:

gn + gm — gn+m (115)

g"-g"=g™ (1.16)

Clearly (G, +,) is a field. Notice that computing the sum is the same as the operation in the cyclic
group G. Hence assuming that one can compute the Diffie-Hellman problem, or there is a Diffie-
Hellman oracle which when given g2, g® computes g2 with out any computational cost, we can
define a field on G and compute sum and product for any two elements in G. We will denote
(G, +,) by “the field G”. Corresponding to the field G there is a map 7 : G — F, defined as
g* > x. Hence T computes the discrete logarithm of g*. On the other hand it is easy to compute g*
corresponding to any x € Fp.

With the use of the Diffie-Hellman oracle, the field G for all computational purposes behaves
like a field of order p. Hence one can define an elliptic curve y? = x3 + ax + b over the field G,
we denote the elliptic curve over the field G by E,p. It is clear that all algorithms for an elliptic
curve that use the operations of sum, product and testing of equality of the field can be used in this
scenario. In particular Schoof’s algorithm to compute |E 4| can be used.

We select a and b such that a curve of smooth order is found, i.e., the largest prime divisor of
|Eapl is less than or equal to exp /log ploglog p. Boneh and Lipton in [12] prove that it can be
expected after exp ((3 + o(1)) y/log ploglog p) tries. Then they use the fact that the abelian group
corresponding to the elliptic curve has at most two minimal set of generators. They further prove
that the probability that two arbitrarily chosen points generate the whole abelian group is at least
Q(1/ log? p).

Then they provide an algorithm [12, Theorem 3.1] to compute the discrete logarithm, i.e., 7. The
algorithm is subexponential in log p. Now assume there is an oracle that solves the Diffie-Hellman
problem in subexponential time in log p since the algorithm for computing 7 is subexponential hence

11

one can solve the discrete logarithm problem in subexponential time. We know that is not the case
in many groups, for example, the groups of a elliptic curve. Then there is every reason to believe
that there is no subexponential algorithm for the Diffie-Hellman problem, i.e., the Diffie-Hellman
oracle with subexponential time can’t be built. Of course, this whole analysis fails as soon as one
finds a subexponential algorithm for the discrete logarithm problem in elliptic curves, but till then
the Diffie-Hellman problem is as secure as the discrete logarithm problem for groups like the group
of an elliptic curve where there is no subexponential algorithm for the discrete logarithm problem
known. Boneh and Lipton in [12, Theorem 4.4] states these facts more formally in the language of
computational complexity, we refer an interested reader to that.

1.5 The EI-Gamal Signature Scheme

We start this section quoting the abstract from FIPS PUB 186 - Digital Signature Standard (DSS)
available online at http:/security.isu.edu/pdf/fips186.pdf.

This standard specifies a Digital Signature Algorithm (DSA) which can be used to gen-
erate a digital signature. Digital signatures are used to detect unauthorized modification
of data and to authenticate the identity of the signatory. In addition, the recipient of
signed data can use a digital signature in proving to a third party that the signature was
in fact generated by the signatory. This is known as non-repudiation since the signatory
cannot, at a later time, repudiate the signature.

This chapter began with the requirements for any public key cryptosystem. We see that Diffie-
Hellman key exchange protocol with a secure signature scheme satisfies this requirement. In a
signature scheme there is a public list, like a phone book, available. Each user chooses a public and
a private key. The public key is made available along with the name or some other authentication of
a person or an organization, in the public list. Now if the user Alice wants to sign a message m, then
she first uses a hash function to reduce the message space to a fixed and small message size. Then
she signs the message using her private key. She then sends m and the hashed signed message to Bob.
Bob on receiving the message verifies it with the public key of Alice. If the message is authentic
then the verification algorithm is true, otherwise it is false. From the verification algorithm it should
be clear if the message is authentic and signed by Alice. We present now the EI-Gamal signature
scheme on which DSS is developed. The security of the scheme is based on the discrete logarithm
problem.

151 TheEl-Gamal Signature Scheme

Let p be a prime and « be a primitive element of Z;. Then the public information of Alice is @ and
B where a® = B. The secret key is a. To sign a message m, Alice selects a random integer k € Z’;)_l,
where Zy, is the ring of units in Z,. To compute the signature for m, Alice does the following:

€ mod p.

5§ = (m—ayk?* mod (p-1).

\<
Il

Then the signature for the message m is the pair (y, 6). As described earlier the usual practice is to
hash m with a public hash algorithm rather than using m. It makes computing signature faster but

12

the hash function might add vulnerabilities to the signature scheme. The integer k should never be
made public, if it becomes public then it is easy to compute

a=(m-ké)y* mod (p-1).

Once a is known the system is completely broken.
To verify the signature Bob gets (p, «, 8). Then he does the following:

Check to see if O<y<p otherwise reject.
Compute Vi = 79°.
Compute v, =a™ mod p.
If Vi =Vo accept, otherwise reject.

To see why the signature scheme works, notice that
m=ké+ay mod (p-1)

Hence,

am = ak6+ay
— akéala'y
o
= ¥p.
Because, 8 = @® mod pandy = o mod p.

Once Alice signs a message and it is verified by her public key, she can’t refuse that she signed
the message. The public key in this case is very similar to “her own signature”. On the other
hand verification of the signature involves computing a™. Hence if the message m is different from
the one she signed then the verification algorithm will reject the message. So if the verification
algorithm accepts the message then two facts are established; the fact that Alice sent the message
and that the message is authentic.

1.6 Conclusion

We began this chapter with the need for a public key cryptosystem and the necessary conditions a
public key cryptosystem must satisfy like, confidentiality, authenticity, integrity and non-repudiation.

We have shown that the Diffie-Hellman key exchange protocol along with the EI-Gamal signa-
ture scheme satisfies all these needs. This makes a complete cryptosystem.

There is one major development in this chapter. We noted that, “the operation of exponentiation
in a cyclic group of prime order is an automorphism”. Since the DLP involves exponentiation,
hence we can see the whole concept of the DLP in a group of prime order as computing the image
of an automorphism of the group. In the next chapter we show that this idea leads us to an easy
generalization of the Diffie-Hellman key exchange protocol to nilpotent groups.

There are couple of interesting concepts about the security of the DLP which we didn’t had the
opportunity to explore in this dissertation. They are the decision Diffie-Hellman problem and the
differential power analysis.

13

Chapter 2

Diffie-Hellman key exchange protocol
and non-abelian nilpotent groups.

2.1 Introduction

In this chapter we generalize the Diffie-Hellman key exchange protocol from a cyclic group to a
finitely presented non-abelian nilpotent group of class 2. Similar efforts were made in [3, 4, 34] to
use braid groups, a family of finitely presented non-commutative groups [5, 17], in key exchange.
Our efforts are not solely directed to construct an efficient and fast key exchange protocol. We also
try to understand the conjecture, “the discrete logarithm problem in a cyclic group is equivalent
to the Diffie-Hellman problem in a cyclic group”. We develop and study protocols where, at least
theoretically, non-abelian groups can be used to share a secret or exchange random private keys
between two people over an insecure channel. This development is significant because nilpotent or,
more specifically p-groups, have nice presentations and computations in those groups are fast and
easy [62, Chapter 9]. So our work can be seen as a nice application of the advanced and developed
subject of p-groups and computations with p-groups.

The frequently used public key cryptosystems are slow and use mainly number theoretic com-
plexity. The specific “cryptographic primitive” that we have in mind is “THe DiscRETE LOGARITHM
ProeLem”, DLP for short. DLP is general enough to be defined in an arbitrary cyclic group as
follows. Let G = (g) be a cyclic group generated by g and let g" = h. We are given g and h,
DLP is to find n [63, Chapter 6]. The security of the discrete logarithm problem depends on the
representation of the group. It is trivial in Zy, but is much harder (no polynomial time algorithm
is known) in the multiplicative group of a finite field and even harder (no subexponential time al-
gorithm known) in the group of elliptic curves which are not supersingular [8]. However with the
invention of sub-exponential algorithms for breaking the discrete logarithm problem, like the in-
dex calculus and Coppersmith’s algorithm, multiplicative groups of finite fields are no longer that
attractive, especially the ones of characteristic 2.

Discrete exponentiation is also used in many other groups like in elliptic curves, in which case
a cyclic group or a big enough cyclic component of an abelian group is used. In this chapter we
propose a generalization of the DLP or more specifically the Diffie-Hellman key exchange protocol
in situations where the group has more than one generator, i.e., in a finitely presented nonabelian
group. Let f be an automorphism of a finitely presented group G generated by {a1, ay, ..., an}. If one
knows the action of f ona € G, i.e., f(a), it is still difficult to tell the action of f on any otherb € G
i.e., f(b). We describe this in detail later under the name “general discrete logarithm problem”. In
this chapter we work with finitely presented groups in terms of generators and relations and do not

14

consider any representation of that group. However, this seems to be a good idea for future research.

Now suppose for a moment that G = (g) is a cyclic group and that we are given g and g" where
gcd(n,|G|) = 1. DLP is to find n. Notice that in this case the map x — x" is an automorphism. If
we conjecture that finding the automorphism is finding n then one way to see DLP, in the language
of group theory, is to find the automorphism from its action on one element. This is the central
idea that we want to generalize to nonabelian finitely presented groups, especially nilpotent group
of class 2. This explains our choice of the name “general discrete logarithm problem”.

To work with a finitely presented group and its automorphisms the following properties of the
group are needed.

e A consistent and natural representation of the elements in the group.
e Computation in the group should be fast and easy.

e The automorphism group should be known and the automorphisms should have a nice enough
presentation so that images can be computed quickly.

We note at this point that for a p-group the first two requirements are satisfied [62, Chapter 9].

2.2 Some Notation and Definitions

We now describe some of the definitions and notation that will be used in this paper. The notation
used are standard:

o G will denote a finite group. Z = Z(G) denotes the center of the group G.
e G’ =[G, G] is the commutator subgroup of G.

e Aut(G) and Aut.(G) are the group of automorphisms and the group of central automorphisms
of G respectively.

e ®(G) is the Frattini subgroup of G, which is the intersection of all maximal subgroups of G.
e We denote the commutator of a, b by [a, b] where [a, b] = a~tb~tab.

e The exponent of a p-group G, denoted by exp(G), is the exponent of the largest power of p
that is the order of an element in G.

The following commutator formulas hold for any element a,b and ¢ in any group G.
(a) aP = afa, b]

(b) [ab,c] = [a,c]P[b.c] = [a. c][a c,b][b,c]; it follows that in a nilpotent group of class 2,
[ab, c] = [a, c][b,c]

(©) [a,bc] = [a,c][a,b]® = [a,c][a, b][a, b, c]; it follows that in a nilpotent group of class 2, [a, bc] =
[a, b][a, c]

(d) [a,b]™ = [b,a]
The proofs of these formulas follow from direct computation or can be found in [32].

Definition 2.2.1 (Miller Group). A group G is called a Miller group if it has an abelian automor-
phism group, in other words, if Aut(G) is commutative then the group G is called a Miller Group.

15

Definition 2.2.2 (Central Automorphisms). Let G be a group, then ¢ € Aut(G) is called a central
automorphism if g~¢(g) € Z(G) for all g € G. Alternately, one might say that ¢ is a central
automorphism if ¢(g) = gzy where z4 € Z(G) depends on g.

Apart from inner automorphisms, central automorphisms are second best in terms of having a
nice description. So they are very attractive for cryptographic purposes, since it is easy to describe
the automorphisms and compute the image of an arbitrary element.

Theorem 2.2.3. The centralizer of the group of inner automorphisms is the group of central auto-
morphisms. Moreover a central automorphism fixes the commutator subgroup elementwise.

This theorem first appears in [21] who refers to [26] and [70].
Definition 2.2.4 (Polycyclic Group). Let G be a group, a finite series of subgroups in G

C=Gp>G1>2G>G3>...2G,=1

is a polycyclic series if Gj/Gj.1 is cyclic and Gj,1 is a normal subgroup of G;. Any group with a
polycyclic series is called a polycyclic group.

It is easy to prove that finitely generated nilpotent groups are polycyclic and so any finitely
generated p-group is polycyclic. Let a; be an element in G; whose image generates Gj/Gj,1. Then
the sequence {ag,as,as,...,an} is called a polycyclic generating set. It is easy to see that g € G
can be written as g = aj°aj'aj”...a,", where «; are integers. If g = aj’aj*aj®...a," where
0 < aj < mj, mj = |Gj: Gj,1] then the expression is a collected word. Each element g € G can
be expressed by a unique collected word. Computation with these collected words is easy and
implementable by computer, for more information on this topic see [62, Section 9.4] and also [23,
polycyclic package].

2.3 Key Exchange

We want to follow the Diffie-Hellman key exchange protocol using a commutative subgroup of
the automorphism group of a finitely presented group G. The security of the Diffie-Hellman key
exchange protocol in a cyclic group rests on the following three factors:

The discrete logarithm problem.
The Diffie-Hellman problem.
The decision Diffie-Hellman Problem [9, 11, 22, 61, 67].

We have already described the discrete logarithm problem. The Diffie-Hellman problem is the
following: Let G = (g) be a cyclic group of order n. One knows g, g2 and g°, and the problem is to
find g?. It is not known if DLP is equivalent to DHP. The decision Diffie-Hellman problem (DDH)
is more subtle. Suppose that DHP is a hard problem, so it is impossible to compute g2 from g2,
g° and g. But what happens if someone can compute 80% of the shared secret from g2, g° and g,
then the adversary will have 80% of the shared secret, that is most of the private key. This is clearly
unacceptable. It is often hard to formalize DDH in exact mathematical terms, see [11, Section 3],
the best formalism offered is a randomness criterion for the bits of the key. In DDH we ask the
question: given the triple g2,g® and g% is ¢ = ab mod n? But there is no known link between
DDH and any mathematically hard problem for the Diffie-Hellman key exchange protocol in cyclic
groups.

16

Clearly, solving the discrete logarithm problem solves the Diffie-Hellman problem and solving
the Diffie-Hellman problem solves the decision Diffie-Hellman problem.

As is usual, we denote by Alice and Bob, two people trying to set up a private key over an
insecure channel to communicate securely and by Oscar an eavesdropping adversary. In this thesis
the shared secret or the private key is an element of a finitely presented group G.

2.3.1 The General Discrete Logarithm Problem

Let G = (a,ap,...,ay and f : G — G be a non identity automorphism. Suppose one knows
f(a) and a € G then GDLP is to find f(b) for any b in G. Assuming the word problem is easy or
presentation of the group is by means of generators, GDLP is equivalent to finding f(a;) for all i
which gives us a complete knowledge of the automorphism. So in other words the cryptographic
primitive GDLP is equivalent to, “finding the automorphism f from the action of f on only one
element”.

2.3.2 The General Diffie-Hellman Problem

Let ¢,y : G — G be arbitrary automorphisms, such that ¢y = ¢ and assume one knows a, ¢(a)
and y(a). Then GDHP is to find ¢(y¢(a)). Notice that GDHP is a restricted form of GDLP, because
in the case of GDHP one has to compute ¢((a)) for some fixed a, not ¢(b) for an arbitrary b in G.
We now describe two key exchange protocols and do some cryptanalysis. We denote by G a finitely
presented group and S an abelian subgroup of Aut(G).

2.4 Key Exchange Protocol |

Alice and Bob want to set up a private key. They select a group G and an element a € G \ Z(G)
over an insecure channel, i.e., a and G are public. Then Alice picks a random automorphism ¢a € S
and sends Bob ¢a(a). Bob similarly picks a random automorphism ¢g € S and sends Alice ¢g(a).
Both of them can now compute ¢a(¢s(a)) = ¢s(da(@)) which is their private key for symmetric
transmission.

24.1 Commentson Key Exchange Protocol |

Though initially it might seem that we don’t have enough information to know the automorphisms
oa and ¢g, it turns out that if we are using inner automorphisms, then the security of the above
scheme actually rests on the conjugacy problem.

Let ¢a(a) = xtax for some x and let ¢g(a) = y~tay. Then ¢a(#s(@)) = (xy)ta(xy). Since, a,
oa(@) and ¢g(a) are known, if the conjugacy problem is easy in the group then anyone can find x
and y and break the system.

In the key exchange protocol | Oscar knows G and a. If the automorphisms in use are central
automorphisms, then he also sees ¢a(a) = azs, a2 and ¢p(a) = azyy 2. Oscar can find zy, o and zy a.
Now if G is a special p-group (G’ = Z(G) = ®(G)) then Z(G) is fixed elementwise by both ¢ and
¢B. Then

Pa(9B()) = Pa(aZpg.a) = 8ZpyaZppa (2.1)

Oscar knows a and can compute z4, 2 and e, 2 and can find the private key ¢a(¢s(@)). In the
literature all examples of Miller p-group with odd prime p are special (see Section 2.9) and the
above key exchange is fatally flawed for those groups.

17

2.5 Key Exchange Protocol 11

In this case Alice and Bob want to set up a private key and they set up a group G over an insecure
channel. Alice chooses a random non-central element g and a random automorphism ¢ € S and
sends Bob ¢a(g). Bob picks another automorphism ¢g € S and computes ¢g(¢a(g)) and sends it
back to Alice. Alice knowing ¢a computes ¢/;1 which gives her ¢g(g) and picks another random au-
tomorphism ¢y € S and computes ¢ (¢s(g)) and sends it back to Bob. Bob knowing ¢g computes
¢! which gives him ¢ (g) which is their private key. Notice that Alice never reveals g in public.

251 Commentson Key Exchange Protocol 11

Notice that for central automorphisms, ¢a and ¢g, ¢a(g) = 94, g, Since g is not known we don’t
know z4, g but if G is special (Z(G) = G” = ®(G)) then ¢s(9Zpa.g) = 9Z¢s.gZsa.g from which z,, 4 can
be found. Then ¢ (pB(9)) = 9ZggZsn.g. NENCE ONE can find gz,, g Which is ¢ (g) and the scheme
is broken. As one clearly sees, this attack is not possible if the group is not special.

The reader might have noticed at this point that all the attacks are GDHP. So certainly in some
groups GDHP is easy.

As we know, any automorphism in G can be seen as the restriction of an inner automorphism in
Hol(G), see [37, 68] for further details on the holomorph of a group, hence solving the conjugacy
problem in Hol(G) will break the system for any automorphism. On the other hand the operation
of Hol(G) is twisted so it is possible that the conjugacy problem in Hol(G) is difficult even though
it is easy in G. Any cyclic group is a Miller group so success of the holomorph attack would prove
insecurity to the DLP, so we believe that the holomorph attack won’t be successful in many cases.
Though more work needs to be done on this.

2.6 Key Exchange using Braid Groups

In [34] a similar key exchange protocol has been defined. In this section we mention some similar-
ities of their approach with ours. We also mention how our system generalizes their system using
braid groups. See also [14].

We define braid group as a finitely presented group, though there are fancy pictorial ways to
look at braids and multiplication of braids. An interested reader can look in [5, 17]. The Braid
Group By with n-strands is defined as:

Bh = <0'1,0'2, consOne1: oiojo =ojoioj ifli- jl =1, oo =ojoj ifi— j| > 2>

In [34] the authors found two disjoint subgroups A and B of the group of inner automorphisms
Inn(By,), such that for ¢ € A and ¢ € B, ¢((9)) = ¥(4(g)). Then the key exchange proceeds similar
to key exchange protocol | above with the restriction that Alice chooses automorphisms from A and
Bob chooses automorphisms from B. There is also a different approach to key exchange in braid
group as in [3, 4].

In the same spirit as [34] we can develop a key exchange protocol similar to key exchange
protocol I, where we take two subgroups A and B in Aut(G) such that for ¢ € A and y € B,
o((9)) = vw(4(g)). The use of inner automorphisms is only possible when the conjugacy or the
generalized conjugacy problem (conjugator search problem) is known to be hard.

There are significant differences in our approach to that of the approach in [34]. In [34] the
authors choose a group and then try to use that group in cryptography. We, on the other hand,
take as fundamental concept the discrete logarithm problem, generalize it using automorphisms of

18

a non-abelian group and then look for groups favorable to us. The fact that the central idea in braid
group key exchange turns out to be similar to ours is encouraging.

It is intuitively clear at this point that we should start looking for groups with an abelian automor-
phism group, i.e., Miller groups.

2.7 Some useful facts from group theory.

The term Miller Group is not that common in literature. It was introduced by Earnley in [19].
Miller was the first to study groups with abelian automorphism group in [48]. Cyclic groups are
good examples of Miller groups. G.A. Miller also proved that no non-cyclic abelian group has an
abelian automorphism group.

Charles Hopkins began a list of necessary conditions for a Miller group in 1927 [28]. He com-
plained that very little is known about those groups. The same is true today. Except for some
sporadic examples of groups with abelian automorphism groups, there is no sufficient condition
known for a group to be Miller.

We now state some known facts about Miller groups which are available in the literature and which
we shall need later. For proof of these theorems which we present in a rapid fashion, the reader can
look in any standard text books like [32, 56] or the references there.

Proposition 2.7.1. Let G be a non-abelian Miller group, then G is nilpotent and of class 2.

Proof. It follows from the fact that the group of inner automorphisms is abelian and G/Z(G) =
Inn(G). °

Since a nilpotent group is the direct product of its Sylow p-subgroups S p, and Aut(A x B) =
Aut(A) x Aut(B) whenever A and B are of relatively prime order, it is enough to study Miller p-
groups for prime p.

Proposition 2.7.2. Let G be a p-group of class 2, then exp(G’) = exp(G/Z(G)).

Proposition 2.7.3. In a p-group of class 2, (xy)" = x"y"[y, x]mnz;ll. Furthermore if exp(G’) = n'is
odd, then (xy)" = x"y".

By definition in a Miller group all automorphisms commute. Since central automorphisms are
the centralizer of inner automorphisms, we have proved the following theorem.

Theorem 2.7.4. In a Miller group G, all automorphisms are central.

It follows that to show a group is not Miller, all we have to do is to produce a non-central
automorphism.

Proposition 2.7.5. If the commutator subgroup and the center of G coincide then every pair of
central automorphisms commute.

Proof. Let G be a group such that G’ = Z(G). Then let ¢ and v be central automorphisms given by
#(X) = Xz4,x and Y (X) = Xz x Where 24 x, 2y x € G’. Then

U(B(X)) = U(X2g,x) = Y(X)Zgx = X2yxZpx = XZpxZy,x = SW(X)).

19

Definition 2.7.6 (Purely non-abelian group). A group G is said to be a purely nonabelian group
(PN group for short) if whenever G = A x B where A and B are subgroups of G with A abelian, then
A = 1. Equivalently G has no abelian direct factor.

Let o : G — G be a central automorphism. Then we define amap f, : G — Z(G) as follows:
f,(9) = gto(g). Clearly this map defines a homomorphism. The map o — f, is clearly a one-one
map. Conversely, if f € Hom(G, Z(G)) then we define a map o ¢(g) = gf(g), x € G. Clearly o ¢ is
an endomorphism. It is easy to see that

Ker(of) = {xeG: f(x)=x71}
Hence it follows that o¢ is an automorphism if and only if f(x) # x~* for all x € G with x # 1.

Theorem 2.7.7. In a purely non-abelian group G, the correspondence o — f, is a one-one map of
Aut;(G) onto Hom(G, Z(G))

Proof. See [2]. °

Notice that for any f € Hom(G, Z(G)) there is a map f’ € Hom(G/G’, Z(G)) since f(G’) = 1.
Furthermore notice that corresponding to f’ € Hom(G/G’,Z(G)) thereisamap f : G — Z(G)
explained in the following diagram

f/
G —— G/G' — Z(G)

where 7 is the natural epimorphism.
Let G be a p-group of class 2, such that exp(Z(G)) = a, exp(G’) = b and exp(G/G’) = c and let
d = min(a, ¢). Notice that from the fundamental theorem of abelian groups

G/G' =A1®A®...®A; where A = (a)

Z(G)=B1®By®...®Bs where Bj = (by)

r,s € N be the direct decomposition of G/G’ and Z(G). If the cyclic component Ay = (ax) has
exponent greater or equal to the exponent of b € Z(G), then one can define a homomorphisms

f:G/G" — Z(G) as follows
f(a) = b where i=k
Y711 where i £k
From this discussion it is clear that for f € Hom(G, Z(G)), f(G) generates the subgroup
R={z€Z(G): |zl < p% d=min(a,c)}

Definition 2.7.8 (Height). In any abelian p-group A written additively, there is a descending se-
quence of subgroups
A>pA>p?A>...op"A>p™lAo ...

Then x € A is of height n if x € p"A but not in p™**A. In other words the elements of height n are
those that drop out of the chain in the (n + 1) inclusion.

For further information on height see [31].
For a class 2 group we have

exp(G/G’) > exp(G/Z(G)) = exp(G’)

20

it follows that ¢ > b. Hence if d = min(a, ¢) then either d = b ord > b.

Let height(xG’) > b, then xG’ = ypr’ for some y € G. Then for any F € Hom(G,G’),
F(yG’)pb = 1 implying xG’ € F~1(1). Conversely, let height(xG’) < b. Then from the previous
discussion it is clear that there is a F* € Hom(G/G’,G’) such that xG’ is not in the kernel of F’,
consequently there is a F € Hom(G, G’) such that x ¢ ker(F). Combining these two facts we see
that:

K= (] F)={xeG: height(xG") > b}
FeHom(G,G’)

Proposition 2.7.9. K C R

Proof. In a class 2 group, if x € K then xG’ = ypr’ for some y € G and exp(G/Z) = b and
G’ C Z(G), hence x € Z(G).

Let x € K, then height(xG’) > b, hence there is ay € G such that ypr’ =xG’ie x = ypbz
where z € G’ and y** € G’ and ¢ > b. We have

ch _ (ypb)pczpc _ (ypc)pb _ 1
Hence |x| < min(p?, p®) which implies that x € R. This proves that K C R. .

Proposition 2.7.10. For a PN group G of class 2, if Aut¢(G) is abelian then R C K.

Proof. InaPN group, using theorem 2.7.7 and the notation there, two central automorphisms o~ and
7 commute if and only if f,, f. € Hom(G, Z(G)) commute. Then for any f € Hom(G, Z(G)) and
F € Hom(G,G’) we have that f o F = F o f = 1 because f(G’) = 1. Then F o f(G) = 1 proving
that R € K. o

Combining the above two propositions, we just proved that in a PN group G of class 2, if
Autc(G) is abelian then R = K. As discussed earlier there are two cases d = b and d > b. Adney
and Yen prove that:

Proposition 2.7.11. If G is a non-abelian p group of class 2, and Aut.(G) is abelian with d > b,
then R/G’ is cyclic.

Proof. See [2, Theorem 3]. o

Theorem 2.7.12. Adney and Yen [2].
n

Let G be a purely non-abelian group of class 2, p odd, let G/G’ = [T{xiG’). Then the group Aut:(G)
i=1

is abelian if and only if |

(i) R=%
(ii) either d =b ord > b and R/G’ = (x*'G)
Proof. See [2, Theorem 4]. o

From the proof of Proposition 2.7.5 it follows that in a group G with Z(G) < G’, the central
automorphisms commulte.

Theorem 2.7.13. The group of central automorphisms of a p-group G, where p is odd, is a p-group
if and only if G has no abelian direct factor.

Proof. See [57, Theorem B] and its corollary. .

21

At this point we concentrate on building a cryptosystem. We note that Miller groups in particular
have no advantage over groups with abelian central automorphism group. It is hard to construct
Miller groups and there is no known Miller group for odd prime which is not special, so we now
turn towards a group G such that Aut(G) may not be abelian but Aut(G) is abelian. We propose to
use Autc(G) rather than Aut(G) in the key exchange protocols described earlier.

2.8 Signature Scheme based on the conjugacy problem

Assume that we are working with a group G with commuting inner automorphisms, for example, a
group of class 2 with abelian inner automorphism group.

Alice publishes @ and 8 where 8 = a~taa, a,a € G and keeps a a secret. To sign a plaintext
x € G she picks an arbitrary element k € G and computes y = kak~* and then computes 6 such that
x = (6k)(ay)~1. Now notice that

xaxt = (k) (ay)a((@k)(@y) ™)™
(6k)y talaayk 161

= sy~ ta tkaktayst Inner automorphisms commute
= 6y_la_1yay6_l

= satyas~t

= s(kpk1)o~t y = kak™! = a~lya = kgk™?

So to sign a message x € G Alice computes 6§ as mentioned and sends x, (kd). To verify the message
one computes L = xax* and R = 6kB(5k) 2. If L = R then the message is authentic otherwise not.

There is a similar signature scheme in [33], where the authors exploit the gap between the com-
putational version (conjugacy problem) and the decision version of the conjugacy problem (conju-
gator search problem) in Braid Groups. We followed the ElGamal signature scheme closely [63,
Chapter 7].

2.8.1 Comments on the above Signature Scheme

If one can solve the conjugacy problem in the group then from the public information « and 8 he
can find out a and our scheme is broken. The conjugacy problem is known to be hard in some
groups and hence it seems to be a reasonable assumption at this moment. There is another worry:
if Alice sends k and ¢ separately then one can find a from the equation x = (6k)(ay) ™2, since y is
computable. However, this is circumvented easily by sending the product 6k not 6 and k individually
and keeping k random.

2.9 An interesting family of p-groups

It is well known that cyclic groups have abelian automorphism groups. The first person to give an
example of an non-abelian group with an abelian automorphism groups is G.A. Miller in [48] which
was generalized by Struik in [64]. There are three non-abelian groups with abelian automorphism
group in Hall-Senior table [25], they are nos. 91, 92 and 99. Miller’s example is no. 99. In [29],
Jamali generalized no. 91 and 92. His generalization of no. 91 is in one direction, it increases the
exponent of the group.

22

Jamali in the same paper generalizes group no. 92 in two directions, the size of the exponent
and the number of generators. His generalization was restrictive in that it works only for the prime
2. There are other examples of families of Miller p-groups in literature, the most notable one is
the family of p-groups for any arbitrary prime p given by Jonah and Konisver in [30] which was
generalized to an arbitrary number of generators by Earnley in [19]. There are examples by Martha
Morigi in [50] and Heineken and Liebeck in [27] also. All these examples of Miller groups given
in [19, 27, 30, 50] are special groups i.e., the commutator and the center are same. For special
groups the key exchange protocols does not work as noted earlier. So there is no Miller p-group,
readily available in literature, for arbitrary prime p which can be used right away in the construction
of the protocol. The only other source are groups nos. 91, 92 and 99 in Hall Senior table [25]
and their generalizations, notice that these groups are not special but are 2-group. Of the three
generalizations, the generalization of no. 92 best fits our criterion since it has been generalized in
two directions, viz. the number of generators and exponent of the center and moreover it is not
special and Z(G) = A x G’ where A is a cyclic group. So once we generalize it for arbitrary primes,
it has “three degrees of freedom”, the number of generators, the exponent of center and the prime;
which makes it attractive for cryptographic purposes.

In the rest of the section we use Jamali’s definition in [29] to define a family of p-groups for
arbitrary prime. So this family is a generalization of Jamali’s example and assuming transitivity of
generalizations, ultimately a generalization of group no. 92 in the Hall-Senior table [25]. We study
automorphisms of this group and show that the group is Miller if and only if p = 2, but groups
in this family always have an abelian central automorphism group which is fairly large. We then
attempt to build a key exchange protocol as described earlier using the central automorphisms. We
start with a definition of the group.

Definition 2.9.1. Let Gn(m, p) be a group generated by n + 1 elements {ag,as,as, ..., an}, let p be
any prime and m > 2 and n > 3 be integers. The group is defined by the following relations:

p_ pm _ P _ ; P _ P
a,=1 a, =1, a =1 for 3<i<n, a _,=a,
[a,a0] =1, [an.ag] =a;, [ai1,a0] =a” for 3<i<n

[ai,aj] =1 for 1<i<j<n.

Proposition 2.9.2. We show that [ag, a"] = [ao, &;]" is true in G for i > 2.

Proof. Clearly the proposition is true for n = 1. Assume that the proposition is true for n =k, i.e.,
[a0, a¥] = [ao, &]¥. Then

[a0, "]
[a0, [0, ai][[ao, ak, a]

[a0, ai]***[[a0, ai]*,]
ETC)

since [aj,a;] = 1 for 1 <i,j < n. This proves the proposition by the principle of mathematical
induction. o

It follows from the above discussion and the relations in the group Gn(m, p) that [ao, [a0,&]] =
[ao, al'f] = 1 for all i where k is either i + 1 or 1 depending on i. This implies that in the group G any
commutator in the generators of weight 3 is zero.

23

We take an example to demonstrate that in G,(m, p) for generators
Xl’ yl’ X2’ y2 € {ao’ ala a29 ceey an}

[X1X2,y1y2] = [X1, yal[X1, y2l[X2, y1l[X2, y2].
Notice that
[X1X2, y1y2] = [X1, yayal[[X1. y1y2]. X21[X2, y1y2]
Now
[X1,y1y2] = [X1, Y2l[X1, Yall[X1. Y2l, yal = [X1. y2][X1, Y1l

Then clearly, [x1,y1y2][[X1,Y1Y2], X2][X2, y1y2] becomes [x1,y1y2][X2,Yy1y2]. Using similar argu-
ments as before it follows that [x1, y1y2] = [X1, Y1l[X1, Y2] and [X2, y1y2] = [X2, Y1l[X2, y2]. The rest
follows from direct computation. We used commutator identities from Section 2.2.

Lemma 2.9.3. The group Gn(m, p) is a PN group.

Proof. We denote Gn(m, p) by G. Let G = A x B where A is an abelian group. Then G/B = A an
abelian group, hence G’ ¢ B. From the fact that G = A x B, it follows that g € G has a unique
expression of the form g = ab where a € Aand b € B. Then for any x € A

Xg = xab = axb = abx = gx

i.e., X € Z(G). This implies that A € Z(G). Now recall that in G, Z(G) = <a§> x G’, from which it
follows that Z(G) € GP = AP x BP. Since A C Z(G) so A C AP x BP, this implies that A € AP which
proves that A = 1. °

The following facts about the group Gn(m, p) follows:

a Gp(m, p)’ the derived subgroup of G,(m, p) is an elementary abelian group
(a1,a5,...ahy ~ zp %

b Z(Gn(m, p)) = (a5 x G".
¢ Gn(m, p) is a p-group of class 2.

d Gp(m, p) is a PN group.

Proposition 2.9.4. Gn(m, p) is a polycyclic group and every element g € G,(m, p) can be uniquely
expressed in the form g = ag’aj*aj’a3’ ... ay", where
O<aj<pfori=0,1;0<ar<p™0<a<p?fori=3,4,...,n.

Proof. Let us define Go = Gn(m, p) = (ag,az,as,...,an), G1 = (a1,as,...an) and similarly Gy =
(ak, ak:1, . .., any for k < n. Since Gy is a finitely generated abelian group, it is a polycyclic group
[62, Proposition 3.2]. It is fairly straightforward to see that

Gi>Go>...> Gy (1)

is a polycyclic series and {ay, ..., an} a polycyclic generating sequence of G1.

It is easy to see from the relations of the group that G1 is normal in Gg and Go/G1 is cyclic and
generated by (agGy). It follows that (a;Gi,1) = G;/Gi;1 and |a;iGij,1| = |aj| fori =0,1,2,--- ,a, and
hence any element of the group has a unique representation of the form g = a°a;*&b* ... &h" where
0<pB0,B1<p,0<Bsr<pMand0 < g < p?for3 <i < p. We would call an element represented
in the above form a collected word. See also [62, Chapter 9, Proposition 4.1]. °

24

Computation with Gp(m, p): In our group Gn(m, p), which is of class 2, i.e. commutators of weight
3 are the identity, computations become real nice and easy. Let us demonstrate the product of two

_ Q01 @2 403,04 _ B0, B2 B34 -
collected words g = a%°al*aj?a3%aj and h = a°a;*ab2as a*. To compute gh we use concatenation

and form the word aZ°ad*aj?al®aj*alod; aba°a,* and note that a;’s commute except for ag hence

one tries to move ag towards the left using the identity

p -
apdja; for 1<i<n
ajap = aoai[aj, ao] = i+l f -
apaja; for i=n

Further note that since commutators are in the center of the group, aip+l or a; can be moved any-
where. Once ag is moved to the extreme left the word formed is the collected word of gh. This
process in the literature is often referred to as “collection”. Computing the inverse of an element
can be similarly achieved.

We now prove that the group of central automorphisms of the group G,(m, p) for an arbitrary
prime p is abelian. For the sake of simplicity we denote Gn(m, p) by G for the rest of the chapter,
and use notation from Theorem 2.7.12.

Lemma2.95. InG, R =Z(G) = K.

Proof. Using the notation from theorem 2.7.12, we see thatinG,a=m-1,b = 1 and ¢ = m hence
d =m-1. Clearly, R = Z(G) hence K C Z(G).

Let x € Z(G), if x € G’ then height(xG”) = oo and we are done. If not then x = z1z, where z; € (azp)
and zo € G’. Then XxG’ = z:G’ and hence height(xG”) > 1. °

It is easy to see that R/G’ = Z(G)/G’ = (a§G’> and hence from theorem 2.7.12 we have proved the
following theorem:

Theorem 2.9.6. Aut.(G) is abelian.

2.9.1 The Automorphisms of G,(m, p)

In this section we describe the automorphisms of groups of this kind. The discussion is in, more
than one way, an adaptation of Jamali’s work in [29].

From Proposition 2.7.3 it follows that replacing ao by a-%,ag we have thataj) = (a,P))al = 1 for
an odd prime p. Since all the commutator relations remains the same we have a new representation
for the group Gn(m, p), for an odd prime p as follows:

m 2 .
al=1 a) =1, a¥ =1 for 3<i<n, aj=1

[a1,a0] =1, [an,a0] =a1, [ai_1,80] =a’ for 3<i<n.
[ai,aj] =1 for 1<i<j<n.

This representation proves that Gn(m, p) is a semidirect product of its subgroups H = <aj, a, ..., an)
and (ap). We will use this new representation as it simplifies some relations in the group G(m, p).

We in our understanding of the automorphisms would only consider the case p > 2. The case
for p = 2 is already been taken care of by Jamali in [29]. Henceforth p refers to an odd prime.

We now look at H = (aj,ap,...,an) an abelian group of maximal order in G, i.e., of index
p. Now assume that K is another abelian subgroup of maximal order in G, we show that H = K.
Since in a p-group subgroups of maximal order are normal, both H and K are normal. Let x € K and
x ¢ H, then (x,H) = Gand Z(G) = Cs(x)NCg(H). Now from [56, Theorem 5.41] we know that for

25

a maximal abelian subgroup H of a p group G, Cg(H) = H, hence we have that Z(G) = Cg(x) N H.
Since x € K and K is an abelian subgroup hence K € Cg(x) hence H N K € Cg(x) N H = Z(G).

Now notice that HIIK
HK| = JHIKI
[HN K]

and because the index of Z(G) in H is greater than p we have that

IHIIK]
1Z(G)|

[HK| > > |G|
This contradicts the fact that x ¢ H and hence K € H, from the maximality of K it follows that
K=H.

This proves that H = (aj,ap,as,...an)y is the uniqgue maximal abelian normal subgroup of
G and hence is a characteristic subgroup. It follows that the HP is also characteristic subgroup.
Corresponding to H we define two decreasing sequences of characteristic subgroups { Ki}i”:‘ol such
that

Ko=Hand Ki/KP, =Z(G/KP) (1<i<n-1)

and {L;} such that
lo=HandLi={h: heH, hPe[G,Li_.1]}(1 <i<n-1).

It follows from the fact H = (a1) @ (az) @ ... & (an) that HP = (a},a}, ..., ah). From the relations
in the group Gn(m, p) it follows that all the nontrivial commutator of G,(m, p) belongs to HP except
for the [an, ag] = a;. Hence K1 = (a1, ay, ..., ah). A similar analysis reveals that:

Ki =(aj,ay,...,ani,a’ ,ahyl<i<n-1

nei+1 "
Ll = <a1,V, a37 L 7an>

Li =(as,v,a5,...,a" ,ai2,...,an) 2<i<n-1
pl’TFl .
where v = a, .For3<i<nwe have

a;,aP ab) = (v,a;,G').

Knoi N Li-2 = (ag,v,a5,...aP P

A1
Also Kn_> N Lo = (ap, G’).
Since (v, aj, G’) and (ap, G’ are characteristic subgroups, for any 6 € Aut(G),
(@) = a'gzz where ze€ G’ and k, e N (2.2)
f(ai) =alviz where ze G, kieN, 0<ri<p i=3,4,...,n
There are some conditions on k, and k;. To begin with, if 8 is an automorphism then the order of g
is equal to the order of 6(g), which implies that gcd(k;, p) = 1 for all ki, and we may choose k;, such
that0 <kj < pfori=3,4,...,n.

Let 6(ao) = e el ... a where 0 < o, 1 < p, 0 < B2 < pmand 0 < B < p2for3 <i<n.
Since 6(aj)) = 1 we have

1=al2a* . .af" since the order of ag and a; is p

implies that p™1|8, and p|g; for i = 3,4,...,n. Hence 6(ag) = a'(‘)"v’z where0 <kg<p,0<r<p
andz e G

26

Notice the relation [a;, ag] = aip+l fori=2,3,...,(n-1) implying that [6(a;), 8(ag)] = 6(aj+1)P =
a1, It follows from Equation 2.2 and Section 2.2 that [afz1, a%2,] = aP for 24, 2, € Z(G) which
is the same as [a!“,a'(‘)"] = aﬂ“fl, which implies that [a;, ag]*k = aﬂ“fl. Recall that G is a p-group
of class 2.

Theorem 2.9.7. Let 6 : G — G be a map then a necessary and sujficient condition for 6 € Aut(G) is

6(ao) = ag"VrOZo O<ko<p O<rg<p where zeG’
fax) = a'gzzz where ged(ka,p)=1; 0<ky<p™
0a) = a:“v”zi where 0<ri<p, ze€G

0(@1) = a'f where ki = kokn, mod p

where k; satisfy the equation kokj = ki;,» mod p,i=2,3,...,(n—1),0 < kg < pand gcd(ky, p) = 1
and 6 extended to all of G.

Proof. It follows from the earlier discussion that the above conditions are necessary.
To see that the conditions are sufficient first notice that for a 6 as defined above

6(ai+1)P = 0[ai, ao] = [6(ai), H@o)]
[a:(i 71, a|(()022] 21,22 € Z(G)

[ai,a0] since G is a p-group

— pki+1 _ ki+1 Fit14.)p
= @ = (ai+1v i1

This shows that the nontrivial commutator relation in G is satisfied for i = 2,3,...,(n — 1). The
case for i = n is similar. The order of the image of a generator is the same as that of the order of the
generator because gcd(ki, p) = 1 and the order of v'iz; is p. The other relation of commutativity of
the generators is also satisfied. So we just showed that if a potentially multi-valued map @ satisfies
the above relations between k; then it is an endomorphism of G.

We now assume that 6 is an endomorphism that satisfies the relations in the theorem, then
consider the subgroup of G defined as

ko ks kn

G* = (agovrozo, a'f, ay22,a3V"%23, ..., 87'V'""Zn)

where k;, v, rj and z; are as defined in the statement of the theorem. We propose to show that the
cardinality of G* is the same as the cardinality of G and since the image of 8 is G* that should prove
@ is an automorphism.

Let us define a subgroup of G* as follows:

G = (a'il, a'gzzz, a§3vr323, LAz

Since all elements of G’f are words in ag, a, ..., an hence G’f C H. We now propose to show that
H= Gi‘ by showing that a;,ap,...,an € G*{. Since ged(ky, p) = 1 hence if mq is the multiplicative
inverse of k; mod p then (a'f)m1 = a; implying that a; € G¥. Now we show that a e G¥ for
i > 1. Notice that aiplq € G’f then since ged(ki, p) = 1 hence by computing the inverse of k; to the
appropriate power of p and then raising ai'olq to that power of the inverse we get aiID € G*{. This proves
that a!“ € Gf. Since ged(ki, p) = 1 hence there are integers a, b such that ak; + bp = 1. This gives us
aj € G} foralli> 1.

It is clear that a'(‘)"v“’zo ¢ H otherwise ap € H hence we see that H is a proper subgroup of G*
and since H is of prime index in Gp(m, p) hence we have that G* = G. .

27

From the definition of central automorphisms we see that an automorphism is a central auto-
morphism if and only ifkg =1, k, =1 mod pfori=2,3,4,...,n.

We now provide an algorithm to compute an automorphism in G. Choose kg such that 0 <
ko < p and ky such that 0 < ko < p™ and gcd(ko, p) = 1 and then define ki,1 = koki mod p for
i=2,3,4,...,(n—1). Then use the above theorem to define the automorphism.

Consider the following automorphisms:

f(ag) = ako O<ko<p

0
Ba) = a2 O<ky<p
0(a) = a!q

Where k; satisfy the relation in the above theorem. Then we see that any automorphism is a au-
tomorphism of the above type composed with a central automorphism. Hence the order of the
automorphism group is (p — 1)? |Aut¢(G)|.

In [29, Proposition 2.3] Jamali proves that for p = 2, all automorphisms of G are central. We
just proved that for p # 2 there is a noncentral automorphism, take kg > 1 above, hence we have the
following theorem.

Theorem 2.9.8. The group Gn(m, p) is Miller if and only if p = 2.

2.9.2 Description of the Central Automor phisms

Notice that since G is a PN group, hence there is a one-one correspondence between Aut.(G) and
Hom(G, Z(G)). Since, Z(G) = (a}) x G’. Hence Hom(G, Z(G)) = Hom(G, (a})) x Hom(G,G"). It
follows: Aut:(G) = A x B where

A = {0 € Aut(G) : x“tor(x) € (@D))

B = {0 € Aute(G) : X 1o(x) € G’}

Elements of A can be explained in a very nice way. Pick a random integer k such that k = Ip + 1
where 0 < | < p™2 and a random subset R (could be empty) of {0,3, 4, ...n}, and then an arbitrary
automorphism in A is

o(a) =a1
o(az) = ak
a ifi¢R
(@) :{ a (agm'l)ri if icR
(2.3)

We use indexing in {0,3,4,...,n} to order R and 0 < r; < p is an integer corresponding to i € R.
Conversely, any element in A can be described this way.
The automorphism ¢ € B is of the form

a; if x=a

ajZz if X = gj iE{O,2,3,..-,n} (2.4)

$(x) = {

wherez € G’.

28

2.10 Using key-exchange protocol |

Let us briefly recall the key-exchange protocol described earlier. Alice and Bob decide on a group
G and a non-central element g € G \ Z(G) over an insecure channel. Alice then chooses an arbitrary
automorphism ¢a and sends Bob ¢a(g). Similarly Bob picks an arbitrary automorphism ¢g and
sends Alice ¢g(g). Since the automorphisms commute, both of them can compute ¢ a(¢s(g)), which
is their private key. The most devastating attack on the system is the one in which Oscar looking at
g, #a(g) and ¢g(g) can predict with some degree of certainty what ¢a(¢s(g)) will look like, i.e., a
GDHP attack.

Definition 2.10.1 (Parity condition for elements in G). Letg = af°a’ a?a® . .. & be an arbitrary
element of G,i.e. 0 <Bo < p,0<pB1 <p,0<B2<pMand0 < B < p?for3 <i < n. Then the
vector v := (Bo, B3, B4, . . ., Bn) is called the parity of g. Two elements g and g’ are said to be of same
parity condition if v =V’ mod p, where V' is the parity of g’.

Lemma 2.10.2. Letg € G and ¢ : G — G be any central automorphism then g and ¢(g) have the
same parity condition.

Proof. Notice that an automorphism ¢ either belongs to A or B or is of the form ¢(g) = 9f4(9)94(9)
where fy € Hom(G, Z(G)) and g4 € Hom(G, G”). So we might safely ignore elements from A, since
they only affect the exponent of a,. Also note that a; being in the commutator subgroup remains
fixed under any central automorphism.

So we need to be concerned with elements of B. From the description of B, from the fact that each
commutator is a word in p-powers of the generators and from the fact that G’ c Z(G), the lemma
follows. .

Now let us understand what an element in A does to an element g € G. We use notation from
Equation 2.3.

Lemma 2.10;3. ,Let, g = 'g(’a'ilagza? .. ¢ e Aand if
#(9) = a'g"aﬁlaiza'g3 ...a" then B; = B fori # 2 and
By =kB2+ p™* 3 riBi mod pMwherek =Ip+1,1¢€[0,p™2].
ieR

Proof. Notice that from Equation 2.3, it is clear that elements of A only affect the exponent of a»,

so B = i for i # 2 follows trivially. From the definition of A and simple computation it follows

that 8, = kB> + p™* ¥, ripi mod p™. .
ieR

In the key exchange protocol I, we will only use automorphisms from® A. As noted earlier there
are two kinds of attacks, GDLP (the discrete logarithm problem in automorphisms) and GDHP
(Diffie-Hellman problem in automorphisms). We have earlier stated that GDLP is equivalent to
finding the automorphism from the action of the automorphism on one element. It seems that for
one to find the automorphism discussed in the previous lemma, one has to find k, R and r;. Notice
that 8, = kB2 + p™1 _ZR riBi mod p™, is a knapsack in 8, and p™1, but solving that knapsack is

le

not enough to compute the image of any element, because R is not known so the B;’s are not known.
We shall show in a moment that the security of the key exchange protocol depends on the difficulty
of this knapsack, whose security is still an open question, but this doesn’t help Oscar to find the
automorphism, just partial information about the automorphism comes out.

1n light of Lemma 2.10.2, we believe that adding automorphisms from B is not going to add to the security of the
system.

29

Next we show that though it seems to be secure under GDLP, if the knapsack is solved then the
system is broken by GDHP. This proves that GDHP is a weaker problem than GDLP in Gy(m, p).
Let g = al’al al?al®...ap", then as discussed before for ¢,y € Aute(G), there are ki € N for
i=3,4,...,n:

koBa+p™? ¥ rif

#(Q) = agoallﬁaz ieR a§3+K3P o aﬁn*'knp (2.5)
k’gﬁ2+pm_l_z ri’ﬁi / ’
w(g) = &lala, IR a§3+k3p T (2.6)

From direct computation it follows that the exponent of a, in ¢(¥(g)) is

k2 [k'zﬂz +p™ f{ﬁi] +p™ >, 2.7)

ieR ieR

The exponent of ag,a; stays the same and the exponent of a; will be g; + (ki + ki)p mod p? for
3 < i < n. As mentioned before since we are using only automorphisms from A, i.e., ¢ and y are in
A, it follows that k; = ki’ =0fori=3,4,...,n.

Notice that g, Equations 2.5 and 2.6 are public, so Oscar sees those. Since the exponents of
ap, a1, as,...,an are predictable, hence the key, Alice and Bob want to establish the exponent of
az in ¢ (¥(g)), which is given by Equation 2.7. Since Oscar sees Equations 2.5 and 2.6, if he can
compute ko from ko8, + p™1 _ZR ri8i mod p™, then he can compute p™?* 'ZR riBi and the scheme is

IS e

broken. But, ko = Ip + 1 for some | € [0, p™?2] hence

kofiz + p™* > i mod p™
ieR
reduces to
Ba+1pBa+p™* > i mod p™,
ieR
Since 3> is public, Oscar can compute IpB,+p™* 3 ;8 mod p™. Notice that finding k> is equiva-
ieR
lent to finding |, hence one of the security assumptions is that there is no polynomial time algorithm
to find I from
IpB2 + p™? Z rig mod p™. (2.8)
ieR
In one instance, if the parameters i, I, r; and R are so chosen that Ipg> < p™? and IpBs +
p™1 > B < p™ then one can divide the whole expression in Equation 2.7 by p™? and the
ieR

e
remainder is IpB2 from which I can be found, since p and 3, are public. It seems that the best choice
for each of land B;, i = 1,2,...,n is a power of p such that Ipg, is greater than p™?.

2.11 Using key exchange protocol Il

We briefly recall the key exchange protocol Il. In this protocol Alice picks a random noncentral
element g € G and ¢a € A and sends Bob ¢a(g). Bob selects randomly ¢g € A and sends Alice
ds(éa(g)). Alice then computes ¢g(g) by computing ¢>/;1(¢B(¢>A(g))) and picks another random au-
tomorphism ¢y € A and computes ¢y (¢s(g)) and sends it to Bob. Bob computes ¢gl(¢H(¢B(g))) =
#n(g) which is their private key. Notice that Oscar never sees g.

30

Using notation from Equation 2.3 for the automorphisms in A, we see that with the exchange of
#a(Q), kK2B2 + p™1 3 riB mod p™ is revealed. Then with the exchange of ¢g(¢a(Q)),
ieR

k2 [kzﬁz +pm Z riﬁi) +pmt Z rBi = kokopz + p™ Z g+ p™t Z N

ieR ieR ieR ieR’
is revealed. When Alice computes ¢g(g) she computes ki, + 3 r{Bi. With the exchange of
ieR
$H(¢8(9)) Oscar sees

4 [k’zﬂz LAY r;ﬂi] +pT D B =Kk + P Y B+ P Y B

ieR ieR” ieR ieR”

and the key is
kyBa+ p™t > rl'B:.
ieR”
All the above operations are done mod p™. Since in the above key exchange protocol, g is never
revealed in public, so B> is not a public information, hence the knapsack attack similar to key
exchange protocol | is not possible.

2.12 Conclusion

In this chapter we studied a key exchange protocol using commuting automorphisms in a non-
abelian p-group. Since any nilpotent group is a direct product of its Sylow subgroups, so for our
work nilpotent groups can be reduced to p-groups. We argued that this is a generalization of the
Diffie-Hellman key exchange and hence a generalization of the discrete log problem. Other public
key systems like the EI-Gamal cryptosystem using discrete logarithm might be adaptable to our
methods. This is the first attempt to generalize discrete logarithm in the way we did. So there are
more questions than there are answers.

We should try to find other groups and try our system in terms of GDLP and GDHP. As we
noted earlier, GDHP is a subproblem of the GDLP, and we saw in G,(m, p), GDHP is a much easier
problem than GDLP. Our example was of the form d > b in Theorem 2.7.12. The next step is to look
at groups where d = b. We note from theorem 2.7.13, if a p-group G is a PN group then Aut¢(G) is
a p-group and since p-groups have nontrivial centers, one can work in that center with our scheme.
In this case we would be generalizing to arbitrary nilpotentcy class but keep working with central
automorphisms.

Lastly we note that, if we were using some representation for this finitely presented group G, say
for example, matrix representation of the group over a finite field Fq, then the security of the system
in Gp(m, p) becomes the discrete logarithm problem [46, 47]. Since the discrete logarithm problem
in matrices is only as secure as the discrete logarithm problem in finite fields there is no known
advantage to go for matrix representation, but there might be other representations of interest.
There is one conjecture that comes out of this work and we end with that.

Conjecture 2.12.1. Let G be a Miller p-group for odd prime p, then G is special.

31

Bibliography

[1]

(2]

(3]

[4]

5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

L. Adleman, A subexponential algorithm for the discrete logarithm problem with application
to cryptography, Proceedings IEEE 20th annual symposium on foundations of computer sci-
ence, 1979, pp. 55-60.

A.E. Adney and Ti Yen, Automorphisms of p-group, lllinois Journal of Mathematics 9 (1965),
137-143.

I. Anshel, M. Anshel, B. Fisher, and D. Goldfield, New key agreement protocols in braid group
cryptography, CT-RSA 2001, Lecture Notes in Computer Science, no. 2020, Springer, 2001,
pp. 1-15.

I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography,
Math. Research Letters 6 (1999), 287-291.

Joan S. Birman, Braids, links and mapping glass groups, Annals of Mathematics Studies,
no. 82, Princeton University Press, 1974.

I. F. Blake, R. Fuji-Hara, R. C. Mullin, and S. A. Vanstone, Computing logarithms in finite
fields of characteristic two, SIAM Journal on Matrix Analysis and Applications 5 (1984),
no. 2, 276-285.

I. F. Blake, R. C. Mullin, and S. A. Vanstone, Computing logarithms in GF(2"), Advances
in cryptology (Santa Barbara, Calif., 1984), Lecture Notes in Computer Science, no. 196,
Springer, Berlin, 1985, pp. 73-82.

lan Blake, Gadiel Seroussi, and Nigel Smart, Eliptic curves in cryptography, London Mathe-
matical Society, Lecture Note Series, no. 265, Cambridge University Press, 1999.

lan F. Blake and Theo Garefalakis, On the complexity of the Discrete Logarithm and Dijfie-
Hellman problems, Journal of Complexity 20 (2004), 148-170.

Manuel Blum and Silvio Micali, How to generate cryptographically strong sequence of pseudo
random bits?, Siam Journal of Computing 13 (1984), no. 4, 850-864.

Dan Boneh, The Decision Diffie-Hellman problem, Algorithmic number theory (Portland, OR,
1998), Lecture Notes in Computer Science, no. 1423, Springer, Berlin, 1998, pp. 48-63.

Dan Boneh and Richard Lipton, Searching for elements in black box fields and applications,
Crypto 96, Lecture notes in Computer Science, vol. 1109, Springer-Verlag, 1996, pp. 283-
297.

32

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

Dan Boneh and Ramaratham Venkatesan, Hardness of computing the most significant bits
of secret keys in diffie-hellman and related schemes, Crypto 96, Lecture notes in Computer
Science, vol. 1109, Springer-Verlag, 1996, pp. 129-142.

Jung Hee Cheon and Byungheup Jun, A polynomial time algoritm for the braid Diffie-Hellman
conjugacy problem, Advances in cryptography — CRYPTO 2003, Lecture Notes in Computer
Science, no. 2729, Springer, Berlin, 2003, pp. 212-225.

Don Coppersmith, Fast evaluation of logarithms in fields of characteristic two, Transactions
on Information Theory 30 (1984), no. 4, 587-594.

Don Coppersmith, Andrew M. Odlzyko, and Richard Schroeppel, Discrete logarithms in
GF(p), Algorithmica 1 (1986), no. 1, 1-15.

Patrick Dehornoy, Braid-based cryptogrpahy, Contemporary Mathematics 360 (2004), 1-33.

Whitfield Diffie and Martin Hellman, New directions in cryptography, Institute of Electri-
cal and Electronics Engineers., vol. 1T-22, Transactions on Information Theory, no. 6, 1976,
pp. 644-654.

Bruce E. Earnley, On finite groups whose group of automorphisms is abelian, Ph.D. thesis,
Wayne State University, 1975.

Taher Elgamal, A public key cryptosystem and a signature scheme based on discrete loga-
rithms., Lecture Notes in Comput. Sci., 196, Springer, Berlin. (1985), 10-18.

T.A. Fournelle, Elementary abelian p-groups as automorphism group of infinite group, I.
Math. Z. 167 (1979), 259-270.

Steven Galbraith and Victor Rotger, Easy decision Diffie-Hellman groups, LMS Journal of
Computation and Mathematics 7 (2004), 201-218.

The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.3, 2002,
(http://www.gap-system.org).

Theodoulos Garefalakis and Daniel Panario, The index calculus method using non-smooth
polynomials, Mathematics of Computation 70 (2001), no. 235, 1253-1264.

M. Hall and J.K. Senior, The groups of order 2" (n < 6), Macmillan, 1964.

P. Hall, The Edmonton notes on nilpotent groups, Queen Mary college mathematics notes,
Cambridge, 1969.

Hermann Heineken and Hans Liebeck, The occurrence of finite groups in the automorphism
group of nilpotent groups of class 2, Archives of Mathematics 25 (1974), 8-16.

Charles Hopkins, Non-abelian groups whose groups of isomorphism are abelian, Ann. of Math
29 (1927), no. 1-4, 508-520.

Ali-Reza Jamali, Some new non-abelian 2-groups with abelian automorphism groups, Journal
of Group Theory 5 (2002), 53-57.

D. Jonah and M. Konvisser, Some non-abelian p-groups with abelian automorphism groups,
Archives of Mathematics 26 (1975), 131-133.

33

[31] Irving Kaplansky, Infinite abelian groups, The University of Michigan Press, 1969.

[32] E.I. Khukhro, p-automorphisms of finite p-groups, London Mathematical Society, Lecture
Note Series, no. 246, Cambridge University Press, 1997.

[33] Ki Hyoung Ko, Doo Ho Choi, Mi Sung Cho, and Jang Won Lee, New signature scheme using
conjugacy problem, http://eprint.iacr.org/2002/168, 2002.

[34] Ki Hyoung Ko, Sang Jin Lee, Jung Hee Cheon, Jae Woo Han, Ju sung Kang, and Choonsik
Park, New public-key cryptosystem using braid groups, Advances in Cryptology — CRYPTO
2000 (Mihir Bellare, ed.), Lecture Notes in Computer Science, no. 1880, 2000, pp. 166-183.

[35] Neal Koblitz, A course in number theory and cryptography, second ed., Graduate Texts in
Mathematics, no. 114, Springer-Verlag, New York, 1994,

[36] , Algebraic aspects of cryptography, Algorithms and Computation in Mathematics,

no. 3, Springer-Verlag, Berlin, 1998.

[37] A.G. Kurosh, The theory of groups, vol. 1 & 2, Chelsea Publishing Company, 1960.

[38] B. A. LaMacchia and A. M. Odlyzko, Computation of discrete logarithms in prime fields,
Design Codes and Cryptogrpahy 1 (1991), 46-62.

[39] Ueli Maurer and Stefan Wolf, On the complexity of breaking the Deffie-Hellman protocol, Ad-
vances in Cryptology - CRYPTO ’96, Lecture Notes in Computer Science, vol. 1109, Springer-
Verlag, 1996, pp. 268-282.

[40] , Secret-key agreement over unauthenticated public channels — part I: Definitions and

a completeness result, IEEE Transactions on information thoery 49 (2003), no. 4, 822-831.

[41] , Secret-key agreement over unauthenticated public channels — part 11: The simulata-

bility condition, IEEE Transactions on information thoery 49 (2003), no. 4, 832-838.

[42] , Secret-key agreement over unauthenticated public channels — part Ill: Privacy am-

plification, IEEE Transactions on information thoery 49 (2003), no. 4, 839-851.

[43] Kevin McCurley, A key distribution system equivalent to factoring, Journal of cryptology 1
(1988), 95-105.

[44] , The discrete logarithm problem, Proceedings of synopsis in applied mathematics 42

(1990), 49-74.

[45] Alfred J. Menezes (ed.), Applications of finite fields, Kluwer Academic Publishers, 1993.

[46] Alfred J. Menezes and Scott A. Vanstone, A note on cyclic group, finite fields and discrete
logarithm problem, Applicable Algebra in Engineering, Communication and Computing 3
(1992), no. 1, 67-74.

[47] Alfred J. Menezes and Yi-Hong Wu, The discrete logarithm problem in GL(n, g), Ars Combi-
natoria 47 (1997), 23-32.

[48] G.A. Miller, A non-abelian group whose group of isomorphism is abelian, Messenger Math.
43 (1913), 124-125.

34

[49] M.J.Curran, Semidirect product groups with abelian automorphism groups, J. Austral. Math,
Soc. Series A (1987), no. 42, 84-91.

[50] Martha Morigi, On p-groups with abelian automorphism group, The Mathematical Journal of
the University of Padova 92 (1994), 47-58.

[51] Ronald C. Mullin and Ayan Mahalanobis, An alternative representation of finite fields,
preprint.

[52] , Dickson bases and finite fields, Tech. Report CORR 2005-04, University of Waterloo,

2005.

[53] Andrew Odlyzko, Discrete logarithms in finite fields and their cryptographic significance, Ad-
vances in Cryptology: Proceedings of EUROCRYPT 84 (T. Beth, Cot N., and I. Ingemarsson,
eds.), Lecture notes in computer science, no. 209, Springer-Verlag, 1985, pp. 224-314.

[54] Andrew Odlyzko, Discrete logarithms: The past and the future, Designs Codes and Cryptog-
raphy 19 (2000), 129-145.

[55] Carl Pomerance (ed.), Cryptology and computational number theory, Proceedings of symposia
in Aplied Mathematics, vol. 42, American Mathematical Society, 1990.

[56] Joseph J. Rotman, An introduction to the theory of groups, Springer-Verlag, 1994.

[57] P. R. Sanders, The central automorphism of a finite group, J. London Math. Soc. 44 (1969),
225-228.

[58] Oliver Schirokauer, Damian Weber, and Thomas Denny, Discrete logarithms: the effectiveness
of the index calculus method, Algorithmic number theory (Talence, 1996), Lecture Notes in
Computer Science, no. 1122, Springer, Berlin, 1996, pp. 337-361.

[59] W.R. Scott, Group theory, Dover, 1964.

[60] Victor Shoup, Lower bounds for discrete logarithm and related problems, EUROCRYPT ’97,
Lecture Notes in Computer Science, vol. 1233, Springer, 1997, pp. 256-266.

[61] Igor E. Shparlinski, Security of polynomial transformations of Diffie-Hellman key, Finite fields
and their applications 10 (2004), 123-131.

[62] Charles Sims, Computation with finitely presented groups, Cambridge University Press, Cam-
bridge, 1994.

[63] Douglas Stinson, Cryptography: Theory and practice, 2 ed., CRC Press, 2002.

[64] Ruth R. Struik, Some non-abelian 2-groups with abelian automorphism groups, Archives of
Mathematics 39 (1982), 299-302.

[65] Edlyn Teske, Square root algorithms for discrete logarithm problem (a survey), Public-Key
Cryptography and Computational Number Theory, Walter de Gruyter, Berlin - New York,
2001, pp. 283-301.

[66] , Computing discrete logarithm with the parallelized kangaroo method, Discrete Ap-

plied Mathematics 130 (2003), 61-82.

35

[67] Maria Isabel Gonzalez Vasco and Igor E. Sharlinski, On the security of Diffie-Hellman bits,
Cryptography and computational number theory, Progress in Computer Science and Applied
Logic, Birkhduser, Basel, 2001, pp. 257-268.

[68] Maria S. Voloshina, On the holomorph of a discrete group, Ph.D. thesis, University of
Rochester, 2003.

[69] Wandi Wei, Tran van Trung, Spyros Magliveras, and Frederick Hoffman, Cryptographic prim-
itive based on groups of hidden order, Tatra Mountains Mathematical Publications 29 (2004),
147-155.

[70] H. Zassenhaus, The theory of groups, Chelsea, New York, 1958.

36

