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On the Propagation of Free Topographic Rossby Waves near Continental Margins.

Part 1: Analytical Model for a Wedge!

HsiEN WANG Ou?
WHOIIMIT Joint Program in Oceanography, Woods Hole, MA 02543
(Manuscript received 10 December 1979, in final form 21 March 1980)

ABSTRACT

An analytical model has been constructed to study the propagation of free waves of subinertial frequency
in an infinite wedge filled with a uniformly stratified fluid. The problem is found to transform into the
corresponding surface gravity wave problem in a nonrotating homogeneous fluid with the roles of the sur-
face and bottom boundaries interchanged. Analytical solutions are thus available for waves that are either
progressive or trapped in the cross-wedge direction, forming respectively continuous and discrete spectra
in frequency space. The separation occurs when the nondimensional wave frequency o (scaled by the
inertial frequency f) equals the Burger number S, defined here as (N/f) tan6*, where N is the Brunt-
Viisila frequency and tan* is the bottom slope. Since an infinite wedge has no intrinsic length scale, the
only relevant nondimensional parameters are the wave frequency o and the Burger number S. Thus,
stratification and bottom slope play the same dynamical role, and the analysis is greatly simplified.

For the progressive waves, asymptotic solutions are obtained for both the far field and small S. Since
the surface boundary condition is neglected in the far field, the solution there is similar to the edge wave
solution found by Rhines (1970) in an infinitely deep ocean. The asymptotic solution for small S, on the
other hand, clearly shows the refraction phenomenon and the presence of amplitude minimum as the apex
is approached. Since the asymptotic solutions check very well with the calculations of the general solu-
tion, the qualitative behavior of the progressive waves are fairly predictable over the parameter range
§ = O(1). The various wave properties associated with the general solution can be understood to a great
extent by assuming quasi-geostrophy. The rigid upper surface is found to account for the onshore heat
flux generated by these incoming waves.

For the trapped waves, the eigenfrequencies decrease when § decreases and approach the value
(2n + 1)7' when § approaches zero where n is the mode number. The modal structure broadens as §

increases to some critical value above which no such coastally trapped modes exist.

1. Introduction

There have been considerable efforts (e.g.,
Thompson, 1971; Rhines, 1971; Thompson and
Luyten, 1976) directed toward finding the evidence
for bottom intensified topographic Rossby waves
since they were first proposed in theory by Rhines
(1970). Recently, after an extensive analysis of the
current meter data obtained near site D (39°10’'N,
70°W), Thompson (1977) concluded that the low-fre-
quency motions there are dominated by linear topo-
graphic Rossby wave dynamics. Furthermore, the
observed offshore phase propagation is consistent
with the assumption that these waves are generated
offshore and radiate their energy shoreward toward
the shelf. Since the analytic solutions of Rhines
(1970) are valid only when the bottom slope is small
or the ocean is infinitely deep, they do not apply to
the slope region where the bottom slope is typically
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one or two orders of magnitude greater than that
over the continental rise. ]

To extend Rhines’ analysis to a finite-slope and
finite-depth regime, we consider in this paper (Part 1)
the propagation of free topographic Rossby waves in
a wedge filled with a uniformly stratified fluid. The
problem is found to be mathematically identical to
the corresponding surface gravity wave problem in
a nonrotating homogeneous fluid with the roles of the
surface and bottom boundaries interchanged. Ana-
lytical solutions are therefore available for both pro-
gressive (Peters, 1952) and trapped waves (Ursell,
1952) and their properties can be studied. Since the
progressive waves can channel the kinetic energy of
the deep ocean onto the coastal regions, they are im-
portant in understanding the process of dynamical
coupling across the continental margins. This proc-
ess, however, will be discussed in more detail in a
companion paper (Ou and Beardsley, 1980, Part 2)
where a numerical model incorporating realistic
topography and bottom friction will be presented.
The trapped wave solutions, on the other hand, are
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FiG. 1. The wedge in the dimensional, nondimensional and
transformed spaces.

important for the understanding of the local oceanic
response to the atmospheric forcing near the coast.
Coastally trapped waves of subinertial frequency
have been found numerically by Wang and Mooers
(1976) and Huthnance (1978) for a continuously strat-
ified ocean with a variable bottom. Huthnance has
also obtained an analytical solution for the special
case of a parabolic bottom and uniform stratifica-
" tion. Our solution is for a different geometry, and
some of the general features he has discussed are
also observed in our case.

2. The formulation of the model

We consider an infinite wedge filled with a uni-
formly stratified fluid as shown in the top panel of
Fig. 1. The superscript asterisk represents variables
in the dimensional space and 6* is the angle of the
wedge. The linearized equations for an inviscid,
hydrostatic and Boussinesque fluid are
3

uf — fo* = —pk,
vy + fu* = —pj,
0=-p —p'¢ | , 2.1

Uiy + 0f +wh =0
2
f J—
ply ——w* =0

where N and f are the Brunt-Viisilid and inertial
frequencies, both of which are assumed constant,
and g is the gravitational acceleration. Assuming
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a rigid surface and an impenetrable bottom, the
boundary conditions are given by

¥ =0

z*¥ = —y* tanf*

w¥* =0 at 2.2)
w* = —v* tan6* at
Nondimensionalized by the scalings
(x*,y*,z*) = L(x,y,z tanf*) )
(u*,0*,w*) = V(u,v,w tang*)
t* =f4
p* =(fVL)p

= ()
g tang*

(23

and assuming a solution of the form
p ~ p(y,z)et*r—n, (2.9

the problem is reduced to solving the equations

1 - o?
Py — k*p + —S—;——Pzz =0, (2.5)
p.=0 at z =0, (2.6)
S? k
2= = + — at z=-y. (2.7
p T oz(py ap) y. @.7)

In the above equations, V is the velocity scale, L
can be any length scale, and § = (N/f) tané* is the
Burger number. Since an infinite wedge has no in-
trinsic length scale, the only relevant parameters
are the nondimensional wave frequency o and the
Burger number S. Hence, stratification and bottom
slope play the same dynamical role and the analysis
is greatly simplified.

For 0 < o < 1, we can map this wedge of unit
slope into a wedge of slope tanw through the trans-
formation (see Fig. 1)

N
x'=—x
k'
k
=Rz L Q8
k si :
g = sinw O+ 2)
k' J
where
k' = o/sinw, 2.9
tanw = S(1 — o?)~V2 (2.10)
Egs. (2.5)-(2.7) become
Pyy + Pz — k"p =0, (2.11)
p.=0 at z' = -y’ tanw, (2.12)
p.=p at z' =0, (2.13)
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where the subscript n represents the normal deriva-
tive. These equations are identical in form to the
equations governing the velocity potential for an
inviscid, irrotational surface gravity wave in a homo-
geneous fluid (e.g., Stoker, 1957), except now the
surface and bottom boundaries have been reversed.
In Fig. 1, the x’, y’ and z’ axes are drawn for the
case k > 0. The case k < 0 must be excluded for
bottom-trapped waves because of the boundary
condition (2.13).

- In the far field where y’ > 1, the solution to the
above equations is approximately given by

p =p(y')e”,
where p satisfies

ﬁy’y’ + (1 - k’z)p- = 0.
These waves can propagate in y’ only when
k' <1,

which can be shown, from (2.9) and (2.10), to be
equivalent to
o=<S.

2.149

Since the buoyancy force is the only restoring mech-
anism in the far field, this criterion is similar to the
short-wave cutoff frequency found by Rhines (1970)
for bottom-trapped edge waves in an infinitely deep
ocean. This cutoff frequency divides the (S ,0) space
into two regions as shown in Fig. 2; one region in
which waves are progressive iny’ and the frequency
takes on continuous values, and the other region in
which waves are trapped iny’ toward the apex of the
wedge and the frequency may take on only discrete
values.
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3. Continuous spectrum

The problem of progressive surface gravity waves
impinging on a uniformly sloping beach at an arbi-
trary incidence angle has been solved by Peters
(1952). Since we have shown that the two problems
are mathematically identical, his solutions are di-
rectly applicable. The two independent standing
wave solutions (corresponding to s = 1 and 2 in the
following expressions) are given by contour integra-
tion on the complex { plane,

xs = (i)

y f Le(Lr)g(Lry) expng + rri/Ody
. (& + ir )+ ir)
where
cexpl - L[ &
g(&n) = eXpl T jo v+ 2
X 1n<vM —r v )dv} (3.2)
vt v -t

is defined in the sector —7/2 — 2w < argl < w/2
+ 2w where it is analytic,

n, =y iz’
Py re = WB[1 = (1 — k)2 3.3)
p="nlw
and Iy, I, =T- Tt are the contours shown

in Fig. 3.
Since Peters has shown that these two solutions
are sinusoidal in y’ and #/2 radians out of phase

<
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FiG. 2. Separation of (S,0) space into the regions of continuous and discrete
spectrum by the short-wave cutoff. The analytical solution has been numerically
evaluated for the cases shown by the solid dots and the eigenfrequencies of the
first four trapped modes are shown by the solid curves.
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FiG. 3. The contours of integration for the analytical solution
of progressive waves.

with each other in the far field, a progressive wave can
be constructed from them in a straightforward way.

Before we discuss the general solution (3.1), we
will present next the asymptotic solutions for both
the far field and small S.

a. Asymptotic solutions

In the far field, the approximate solution of (2.11)

through (2.13) is given by
p = explz’ +i(1 — k)%l
or using (2.8),

(3.4

(1 — k"™)Y(y - z tan’w) (3.5)

If not for the hydrostatic balance assumed in our
case, this will be the edge wave solution found and
discussed to great lengths by Rhines (1970). With-
out elaborating on the details of the derivation, the
following wave properties can be easily observed
from (3.5). These waves are bottom trapped with
amplitude contours parallel with the bottom, and
phase lines tilted from the vertical by an angle that
increases for larger S and o. The bottom trapping is
stronger for larger § or smaller o. Since the fre-
quency depends only on the direction of the wave
number vector but not the magnitude of it, the group
velocity is perpendicular to the phase velocity. For
waves generated from some offshore source, the
wave crests must therefore propagate offshore and
to the left facing the apex. The angle between the
wave crests and the coast is smaller for smaller S and
larger o. The particle motion is rectilinear and
straddles the shoreline with the wavenumber vector,
giving rise to a negative Reynolds stress. The par-
ticle motion becomes more perpendicular to the
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isobaths when the frequency increases and is more
normal than tangential to the isobaths when o
> 0.71S.

To obtain an asymptotic representation of the
solution (3.1) when S is small, we follow closely the
method employed by Friedrichs (1948) in the cor-
responding surface gravity wave problem. Since he
has considered the case of normal incidence, an
extension of his method is necessary in our case
where the incidence angle is arbitrary. Readers are
referred to Appendix B for the derivation of the fol-
lowing results.

Let R, and R, denote the ratio of the cross-wedge
wavelength and pressure amplitude to their asymp-
totic values in the far field. It is shown in Appendix
B that

Ry = M1 — k')'¥B,
Ry = Y41 = K™)MGO) ™

S O

e o

where r,, r, are given by (3.3),

(3.6)

1
Jj) = AB"‘(—? - )\2))\K'()\)
ry
K(\) = BA {(tanh™*Ar; + tanh™iAr,)
Ar d
+ J tanh“v—v L
° g , (3.8
Ara
+ J tanh™ 1y 2— -z In(r,rs)
o 14 2
A =14+ rrA
B =1—ryA° ]
and A is related to the spatial coordinate y’ by
N A
Sy’ ~ wy' = —tanh™! — | 3.9
y y' = ” (3.9

since w ~ § in this asymptotic limit.

We plot in Figs. 4 and S the contours of constant
R, and R, as functions of k' and e = wk'y’. For this
asymptotic case we are considering, £’ =~ ¢/§, and
€ = (Sk)y is the distance from the apex multiplied
by some constant factor. Fig. 4 shows that the cross-
wedge wavelength decreases as the wave approaches
the apex. This refraction phenomenon is due pri-
marily to the increased vortex stretching as the water
depth decreases. Since the lower frequency waves
have their amplitude more confined to the bottom,
they don’t feel the presence of the upper surface
until relatively closer to the apex.
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FiG. 4. Contours of R ,, the ratio of the cross-wedge wavelength to
its asymptotic value in the far-field.

As a consistency check on the dispersion relation,
note that in the far field where Sy’ > 1, (3.9) implies
that A = 1/r,. From (B.17) in Appendix B, the cross-
wedge wavenumber /' is

I’ = B/,
~ (1 = k'),

which agrees with the solution (3.4).

In the near field, where the motion becomes more
barotropic, we expect the local dispersion relation
to approach that for barotropic topographic waves.
Since Sy’ < 1 in the near field, (3.9) implies that

(3.10)
(3.1

Sy’ = N < 1. (3.12)
Using (3.10), (3.12) and (2.8)-(2.10), it is trivial to
show that '
o = k/(l%),
or in dimensional units
tang* k
5 ~ J tand* (3.14)

hoor
This is the dispersion relation for barotropic topo-
graphic Rossby waves when ! > k which, of course,
holds in the near field. The refraction phenomenon
follows clearly from (3.14) which, in addition, shows
that [ ~ 72, i.e., the wavelength decreases as a
square root of the local depth.

In Fig. 5, we notice that the wave amplitude goes
through a minimum before it becomes infinite near
the apex. The singularity at the apex is necessary
for the progressive wave solution since all the in-
coming energy has to be absorbed there without
reflection. The presence of amplitude minimum is
also commonly observed in the theory of surface
gravity waves. Although it is the outcome of the in-
teraction between the incoming bottom intensified
waves with the rigid upper surface, the physical
basis of it is not clear. Since the lower frequency
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Fic. 5. Contours of R,, the ratio of pressure amplitude to
its asymptotic value in the far field. The thick broken line in-
dicates the location of the minimum.

waves are more isolated from the upper surface, the
amplitude minimum is seen to be less pronounced
and occurs closer to the apex.

b. The general solution

The general solution (3.1) can be simplified con-
siderably when the transformed slope angle w equals
m/2n, where n is an integer (see Appendix A for de-
tails). The simplified expression is numerically
evaluated for the cases shown by the solid dots in
Fig. 2. Since the asymptotic solutions for both far
field and small S check very well with these calcu-
lations, the qualitative behavior of the progressive
waves are fairly predictable over the whole range
S =< O(1). It is therefore sufficient to present only
the solution for the case n = 3 and k&’ = 0.3 with k
set to 27, or equivalently § = 0.57 and o = 0.15.

The normalized pressure field is plotted in Fig. 6,
where the solid and broken lines represent the

P
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" F1G. 6. Analytical solutions of the pressure field for the case
S = 0.57 and o = 0.15, with k set to 2#. Amplitude has been
normalized to 1 at the bottom in the far field.
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F1G. 7. As in Fig. 6 except for the longshore velocity u.

amplitude and phase contours, respectively. In the
far field, consistent with the asymptotic solutions,
the waves are bottom intensified with amplitude con-
tours parallel to the bottom, and phase lines tilted
from the vertical axis by an angle closely predicted
from (3.5). The rigid surface requires that both am-
plitude and phase contours intersect the surface at
right angles. This leads to the more barotropic ap-
pearance of the wave amplitude and the more verti-
cal phase lines as the apex is approached. The
refraction phenomenon is clearly shown by the
shortening of the spacings between phase lines.
Along the bottom, the amplitude encounters a mini-
mum before it becomes singular approaching the
apex. This minimum has a value of 0.91 and occurs
aty = 0.075, which agrees with Fig. 5.

The normalized velocities and some other wave
properties are plotted in Figs. 7-12. Some simple
derivations assuming quasi-geostrophy can help
explain the qualitative behavior of these fields. Let

p = |ple®,

> Y

AMPLITUDE
=== PHASE

Fi1G. 8. As in Fig. 6 except for the offshore velocity v. The nor-
malization factor is 0.27 if |u| = 1 at the bottom in the far field.
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F1G. 9. As in Fig. 6 except for the vertical velocity w.

The normalization factor is 0.27.

then quasi-geostrophy implies
v=ikp =k \ple““’*’”z’, (3.15)

u=-p,=(lpl3+Z|p|H"*
x exp{illy + tan"'(!|p|/|p|)1}: (3.16)

As the apex is approached, lv | therefore varies very
much like |p |, while |u | increases more rapidly due

. to the combined effect of increasing |p |, and/. Since

—-a/2 < tan"'(!|p|/|p|,) < 0, the motion becomes
counterclockwisely polarized and the ellipse eccen-
tricity increases moving up the slope. Consistent
with the above discussions, the Reynolds stress uv is
negative and increases in magnitude toward the
apex. Because the upper surface is rigid, the phase
lines of w are more vertical than those of v. This
accounts for the positive vp or the onshore heat flux
generated by these incoming waves.

4. Discrete spectrum

Stokes (1846) has obtained an edge wave solution
for surface gravity waves trapped near the apex of
a wedge, and Ursell (1952) has shown that the Stokes’
solution is only the fundamental mode (n = 0) of a
discrete spectrum of possible edge wave modes.
With minor modification of Ursell’s solution, the
solution for the nth mode in our problem is given by

p = exp[—k'(y’ cosw — z' sinw)] + > A,

m=1
x {exp[—k'(y’ cos(2m — Dw + z’' sin(2m — )w)]
+ exp[—k'(y’' cos2m + Do

- z' sin@m + Dw)]}, 4.1)
where

m tan(n — | + Do
= (-1
Apn = (—1) ll;Il tan(n + Do

, (42
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F1G. 10. As in Fig. 6 except for the ellipse eccentricity.

and k' and o satisfy the conditions
k' = [sinRn + D)™,
0 < o, =7/[22n + 1]

4.3)
4.4

The first condition gives the eigenfreqﬁency of the
nth mode,

o, = sinw/sin(2n + o, 4.5)

the first four of which are plotted against S in Fig. 2.
The second condition is required by the assumption
that the solution is coastally trapped and gives the
critical value of w below which the nth mode is
allowed. In the limit as S approaches zero, o is
small and

g, — 2n + 1) (4.6)

This agrees with the short-wave limit of Reid’s (1958)
result for his second class, barotropic edge waves
in a wedge. Since Reid retained a free surface in
his model, the agreement with our rigid-lid model
is expected only for short waves where the surface
stretching effect is negligible. The increase of the
eigenfrequencies with stratification agrees with the
intuition that the stratification imposes an additional
restoring force.
In (y,z) space the solution (4.1) becomes

= exp(—ky) + Y A%, exp(—ky cos2muw)
m=1
X cosh(kz tanw sin2mw), (4.7)

where
A2, = 2A .

The general modal structure of this solution will be
discussed next.

Since the consecutive higher terms in the summa-
tion decay more slowly in y, they dominate the solu-
tion as we move offshore. And since they alternate
in sign, nodes are introduced, the number of which
equals the mode number n. The modal structure
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FIG. 11. As in Fig. 6 except for the Reynolds stress uv. The
magnitude has been normalized so that |u| = 1 at the bottom in
the far field.

also becomes more bottom trapped offshore because
of the increasing depth and the stronger bottom trap-
ping of the higher terms.

The u and v velocities are given by

“=7 ﬁ [exp(—ky) + > Abhnexp(—ky cos2mw)

o m=1

x cosh(kz tanw sin2mw)], (4.8)

" n
v = ! [exp(—ky) + 3 AL,exp(—kycos2mw)
a m=1
X cosh(kz tanw sin2mw)], (4.9)
where
A%, = AL (cos2mw — a)/(1 — o), (4.10)
Ad, = A2, (1 — ocos2mw)/(l — o). (4.11)

Since A%, < A%, < AY,, the nodes of u occur
farther offshore while those of v occur closer inshore,
than the corresponding nodes of p. The first node of

Z

_9'(x1o’3)

F1G. 12. As in Fig. 11 except for the offshore density flux vp.
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Fi1G. 13. Values of all the A,, and A,,’s as a function of w/w,.

v occurs right at the apex due to the impenetrable
boundary.

To study the dependence of these modal structures
on w, we plot in Fig. 13, all the A,,, values for the
second mode. As w or equivalently § increases, we
see that all the A,,,’s decrease in magnitude. Since

KY
b

12 -

1.0 —

SECOND NODE
. VP/

. v .{IRST NODE
Pjt——
L L I | l

y \%
02 04 06 08 1.0

w/We

FI1G. 14. Nodal positions of p, u and v for the second trapped
mode, as a function of w/we. :
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the y-decay rate is also reduced, we infer that the
modal structure broadens in y with nodes being
pushed offshore. This is clearly shown in Fig. 14
where the nodal positions are plotted. This effect
would be the strongest for # which also becomes
less depth-dependent than the other variables. In
the limit w — ., p and v are no longer coastally
trapped, and the second node of « is pushed to in-
finity since A% — 0.
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APPENDIX A
Reduction of the Analytical Solution

The analytical solution (3.1) can be simplified
when w = #/2n where n is an integer. Peters (1952)
showed that with /#({) defined by

h(0) = Lg(L,rI(L + ir), (A1)
where g({,r) is given by (3.2), then I({) = Ink(Q)

satisfies
2n
ln[l + (5) ]dv
v

(A2)

) 1 > L
1 “", = — —
(&) = = = L e
for

- T argl < T
7 AT
When w = @/2n, Eq. (A2) becomes

o 2n
I(Lei™r) = — %J F—f?ln{l + (%) Jdv

o0 2n
—LJ llﬂHG)%
‘ 27 )_e v — L v

-_ J M (integration by parts)
7Tl = r 2n
1+ )]
v
= — _{_I_J M (u = vlr)
mi ) ull + u®7]
=nIn(—if) + 2n
> lr:iruk — 0 (residue theorem) (A3)
k=1 U H (uk - uk')
k=1
'k
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where X1 = I(X"r - X—)] . (B2),(F8)
uy = expl—im2k — 1)/2nl, k=1,...,2n. Xe = X+ T X-
Since it can be trivially shown that In the limit n — o, (B1) becomes
2n 1 1 l‘ 1/2 1 i 1/2
- = — o~ — - L R -4 —
we 11 G = ) = =2, x- L () ( : “) ( g rz)
k'#k 1 i -1/2 1 i —1/2
. . X —_— o — -_— —
Eq. (A3) implies | ({ "1) (C rz)
I(Zei™™ r) = n In(—il) — kg} In(ru, — i), (A4) y exp{n@ .
or
1
1) - L + H(c,rz»]dc, (B3),(F22)
. . ®
= In— {* expl—im(1 + n)/2] . (As) where
_; 18 d
u {rup + Cexp[—im(1 + 1/n)2]} H(Lp) = J tan~(ur) - ap ilnr. (B4),(F26)
or B 0 ® 2
gL {texpl—im(1 + n)/2] The saddle point { is given by
cHir [T {rue + Cexpl—in(1 + 1/n)/2]} o' = H'(&r) +,H (&r2)V
k=1 (1 = rye/8?), (BS),(F44)
- e (A6) ©F by setting { = ix?,
11 (= réo) @y’ = NA~Xtanh—'Ar, + tanh™'\ry), (B6),(F46)
k=1
h where
where 1k A =141\, (B7)
& = exp[zw(-z- + 7)] . B=1-rm. (B8)

Substituting (A6) into (3.1) yields
_ns | BTl expnl + roaW )d{
Xs = (i) .

_ (A7)
BT (L = rl)(E = rale)
k=1

The evaluation of x, can be reduced to a summation
of its residues using the residue theorem, but the
evaluation of y, involves contour integration which
must be numerically calculated.

APPENDIX B
Asymptotic Solution for Small §

Since the derivation below follows very closely
that of Friedrichs (1948), we will only write down
some key results and the corresponding equation
number in Friedrichs’ paper (preceded by a
capital F).

Let

X= EJ
r:

where all the notations have been defined in (3.3) and
Appendix A. Then x,, of (A7) are simply given by

gt exp(n + riam/di

[T (€= ri )L — ra&)
k=1

, (BD,(F3)

The solution (B3) can then be approximated by,
1 1 1/2
X+ ~ (ryr2)™ (— F )\)(— F )\)

ry ra
(1
X |—=x

A) emareon
o

x exp{tim“K(h) + i-ﬂ ;. (B9),(F52)

where

i\ = AB (_1_2 - )\2)AK’()\), (B10),(F49)
r

1
KN
Ary

.d
= BA '(tanh™!Ar, + tanh~\r,) + [ tanh~!y 2z
0 14

Are
+ J tanh—1y 22 — -72’- In(ryrz).  (B11),(F48)
0 14

In the far field, where wy’ > 1, Eq. (B9) becomes
Xo ~ Arira) ™ exp(~2Cay" N1 ~ kY 2may®

x expi[(l ey + 2y -’ﬂ . (BI2),(F67)
- _
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X ~ 2(rir2)™(1 — k") 4Q2ma)"?

x exp[—i[(l — ey 2 %” . (B13),(F68)
w

where
C=ry+r,,
ry—F re? — rg® r
D - (Lot o e 2
o+ ry 2r2 ry
¥ m
+ == — —In(rya).
2ry 2

Accordingly, Eq. (B2) implies
X1z ~ F 20rra) (1 = k") Q2maw)'?

b .

X exp[—i[(l -k + —F %“ . (B14),(F69)
w

The two solutions are sinusoidal and differ in phase

by 90°.
We define the ‘‘local’’ cross-wedge wavelength as

A= 277[1 w"‘K()\)]—l (B15),(F31)
dy’

=2w\/B, (B16),(F32)
then the local cross-wedge wavenumber is given by
A" =2a/A" = B/ (B17)
The local amplitude can also be derived
r2—1 - A 1/2
AN = l(rt = [ 2—2
™ = |0 =0 (2
—1 + )\ 1/2 2 1/2
+ (7t A)(r” ) ]( ,m“’) . (B18),(F13)
rat = A JN)

From (B14), we can then derive that
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VoLuME 10
R, = A/AL,
= N1 — k™Y1 — Vak'AY), (B19)
Ry = An/Anls
B v/ e 4 r2_1 — A 1/2
= va(l — k"GO0 (ry —MﬁFTT)

-1 1/2
r_z_Li_) . (B20)

r !

+ (r7Y + )\)(
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