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ABSTRACT

An analytical method is developed to compute the diffraction of a barotropic Kelvin wave by a localized
topographic irregularity on an otherwise flat-bottom ocean with an arbitrary vertical stratification.
The bump topography is assumed to be small in height compared to the water depth of the flat-bottom
ocean. It is found that all baroclinic mode Kelvin waves will be generated downstream of the bump,
with the first baroclinic mode having the largest amplitude. At subinertial frequencies (w < f) localized
disturbances are also generated with higher vertical modes trapped nearer to the bump. At superinertial
frequencies (w > f) cylindrical Poincaré waves with certain anisotropy are generated at (x = xo,
y =0)and (x = —xy, y = 0), where (x,,0) is the center of the bump topography, and the y axis is the
coastline. The Poincaré waves favor the lowest few modes, with the baroclinic modes having stronger
tendencies to be directionally anisotropic. The baroclinic Poincaré waves radiating offshore from the
bump topography could contribute to the internal wave field in the open ocean and provide an alterna-
tive mechanism to dissipate the barotropic tides. Order-of-magnitude estimates show that an energy flux of
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~0.09 W per centimeter coastline could be converted from the M2 tide in the eastern Pacific.

1. Introduction

In recent years there has been considerable
work on the effects of coastal irregularities on
the propagation of the barotropic tides, modeled
by Kelvin and Poincaré waves. These studies are
best summarized by LeBlond and Mysak (1978).
Buchwald (1968) employed the Wiener-Hopf tech-
nique to study the diffracted wave field due to a
Kelvin wave incident on a right-angle corner. At
subinertial frequencies (w < f) he showed that a
Kelvin wave propagated around the corner without
loss in amplitude, while at higher frequencies
(w > f) the amplitude of the incident wave was
reduced and anisotropic cylindrical Poincaré waves
were generated at the corner. It should be noted,
however, that a much more general method was
developed earlier by Williams (1959) to study prob-
lems concerning the diffraction of electromagnetic
waves by wedges. Using Williams’ technique, Pack-
ham and Williams (1968) showed that Buchwald’s
conclusions held for bends of all other angles
except w/(2n + 1), n =1, 2. .., in which case
the superinertial Kelvin wave propagated around the
corner without a reduction in amplitude. A similar
result was obtained by Roseau (1967) using a differ-
ent integral transform method. Miles (1972) further
obtained the phase of the transmission coefficient of
the diffracted Kelvin wave field.
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The diffraction of a Kelvin wave by small coastal
and topographic irregularities on an otherwise
rectilinear coast was studied by Pinsent (1972).
Howe and Mysak (1973) and Mysak and Tang (1974)
also dealt with extensive irregular coastlines by
treating small irregularities as a stationary, random
zero-mean function.

All of the results described above were baro-
tropic free Kelvin waves. Moreover, all the studies
other than that of Pinsent were concerned with
coastal irregularities. Although their results can
easily be transformed into the case of a single
baroclinic mode, the problems concerning the
coupling of barotropic and baroclinic modes of
Kelvin waves by topography were not addressed.
The aspect of energy transfer from the barotropic
to the baroclinic components of the Kelvin wave is
of interest, since for all practical purposes the
transferred energy is lost from the surface Kelvin
wave (in particular, the surface tide) and effectively
represents its dissipation. In this respect studies
were concentrated on the case of normal incidence
of tides onto a continental slope (Rattray, 1960; Cox
and Sandstrom, 1962; Baines, 1974; Sandstrom,
1976). While their models may be used to account
for a large portion of tidal dissipation of the world
ocean, it is ‘also true that propagation appears
longshore in some area (e.g., eastern North Pacific
Ocean) in the form of Kélvin waves (Platzman,
1979). This provides us with the incentive to study
the diffraction of a barotropic Kelvin wave by a
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F1G. 1. The geometry of the hydrodynamic system.

localized topographic irregularity in a stably
stratified coastal ocean. To focus our attention to
the mesoscale phenomenon, our scope is confined
to the bump size on the order of the baroclinic
Rossby radius of deformation [i.e., O(100 km)].
Fig. 1 shows the geometry of the hydrodynamic
system.

Conceivably, the impingement of a barotropic
Kelvin wave on a localized bump will generate

- baroclinic mode Kelvin waves in the forward
direction. For w > f, Poincaré waves will also be
generated in the form of two-dimensional cylindrical
waves, which may contribute to the internal wave
field in the open ocean. Nevertheless, the quan-
titative behavior of the diffracted wave fields was
not addressed in the previous literature. It is of note
here that the effects of a small longshore topography
on the wind-forced and free internal Kelvin waves
were addressed by Killworth (1978), in which
ultralow-frequency (o <€f) waves in a linearly
stratified ocean were considered.

Section 2 will be devoted to the formulation of
the problem. In Section 3 the analytical solution
will be developed by employing a normal mode de-
composition in the vertical direction, a Fourier
transform in the longshore direction, and Green’s
function technique (Chao et al., 1979; Chao and
Janowitz, 1979) in the onshore-offshore direction.
Asymptotic solutions away from the topography
for a delta-function bump and an extended bump
case are obtained explicitly. An order-of-magnitude
estimate of energy transfer from barotropic to baro-
clinic modes is given in Section 4. Results and
conclusions are briefly summarized in Section S.
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2. Formulation

We consider a model coastal hydrodynamic
system with continuous density stratification and a
localized topographic irregularity A'(x’,y’) super-
imposed on an otherwise flat-bottom ocean floor
(z' = 0). The linearized, inviscid, f-plane equation
for the conservation of potential vorticity in terms
‘of the pressure field follows (Wang and Mooers,

1976), i.e., .
9% o*
+ !
(6x’2 dy'? )p

02 . 1 a N\ _
+ (6t'2 f) ( ’2(z)az p) 0, (I
where x’ is positive offshore, y’ longshore north-
ward, z’ vertically upward, and N'%(z’) is the square

of the local Brunt-Viisilé frequency (see Fig. 1).
We nondimensionalize the variables z’ by the
depth of the ocean H,t' by f~', N' by Npay, (x',y)
by the internal Rossby radius of deformation
(Ri = N H/f), and bump topography A’ by its

" maximum height 4,. Assuming a monochromatic

wave solution P'(x,y,z,t) = P(x,y,z)e ", the non-
dimensional governing equation becomes

N?Z 3z

2)__

a2 0°
( "0z

A -—)P + (1~
ax®  9y?

For a deep ocean (H ~ 4 km) at latitude 30°N,
the onshore/offshore scale of the barotropic Kelvin
wave is the external Rossby radius of deformation
(R, = (gH)'"?/f =~ 2700 km), which is a substantial
fraction of the width of a typical ocean basin. The
internal Rossby radius of deformation (R,) is on the
order of 100 km, which is very small compared to
R,. In scaling (x",y") by R;, we have implicitly
assumed that the topography-induced response is
predominantly baroclinic. This is, in fact, the case
for a bump size of O(100 km), as we will see later
in the next section.

The boundary conditions associated with Eq. (2)
are as follows:

a<1 6P)=0. @)

1. No normal flow at the coast, or

x =0, 3)
®
2. The disturbance vanishes far offshore, or
x—oo, P—0, 4
3. Free surface condition at the top, i.e.,
z =1, ()

P, + SIN(1)P = 0.
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4. No normal flow at the bottom, i.e.,

z = eh(x,y),
[(P, + LP,,)ehI
2 )

+ (Py - —i—PdT)ehy]‘ . ®
(O]

N2

P, =
l—w

Here € = hy/H is assumed to be small compared
to 1, and the stratification parameter .S is defined as
Ri/R,, which is a very small parameter. For o < 1,
the boundary condition 4 specifies a coastally
trapped disturbance. For w > 1, Egs. (2) and (4)
give us a radiation condition, in which cylindrical
Poincaré waves are outgoing as x — «. In addition
to boundary conditions (3)-(6), appropriate radia-
tion conditions as |y| — o also must be specified
to make the problem well posed.

We now expand the regular perturbation (i.e.,
Born’s approximation) in a power series of ¢, i.e.,

P = Py(x,y,z) + eP*(x,y,z) + O(e?). @)

It follows that Py(x,y,z) satisfies the same govern-
ing Eq. (2) and boundary conditions (3)-(5), except
that the boundary condition (6) is replaced by a
homogeneous one, i.e.,

POZ=07 Z:O. (8)

The factor (1 — «?) in the denominator of Eq. (6)
will not cause a breakdown of our perturbation as
o~ 1, because velocity components (u,v) in the
(x,y) directions, which are inversely proportional
to (1 — w?), are supposed to be well-defined quan-
tities. The zeroth-order solution is assumed to be a
free, barotropic mode Kelvin wave traveling in the
—y direction, with pressure field defined as

Py(x,y,2) = A(Z) exp(—A12x — iwAg"2y), (9)
where A(z) [=A(0) = 1] is the vertical structure
modified by stratification, and A,'2 ~ O(S) is the
barotropic (lowest) mode eigenvalue of the vertical
decomposition (LeBlond and Mysak, 1978). In
dimensional form \,'? = (gH)~"? which is the in-
verse of the phase speed of barotropic Kelvin
waves modified by the stratification. A brief ac-
count of vertical normal mode decomposition will
be given in the next section.

To O(e), the wave diffracted field by the
topographic irregularity P*(x,y,z) is governed by
the same set of Egs. (2)-(5), except that the
bottom boundary condition (6) is replaced by an
inhomogeneous one, i.e.,

iN?
z = 0’ P: = — 7\01/2P0(X,y’0)hy- (10)
: @
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For convenience, we will drop the asterisk from
now on with the understanding that P represents
the diffracted wave field.

3. Analytical solution

Before the vertical modal decomposition can be
carried out, we first define the vertical normal
modes G,(z) as the normalized eigenfunction of
the following equation:

UL dg) e -0,
dz\N*(z) dz

where A, is the eigenvalue of Eq. (11) subjected
to the boundary conditions

z=0, dG,/ldz=10
dG,ldz + S?3N*(1)G, =0

The G,’s are normalized such that

1y

] .12

z =1,

Jl Gl2(2dz = 1 (13)

0
for alln = G.

We now carry out the vertical decomposition as
follows. First we multiply Eq. (2) by G.(z) and inte-
grate vertically from z = 0 to z = 1. After twice
integrating the last term on the left-hand side of
Eq. (2) by parts, and utilizing the boundary condi-
tions (5), (10) and (13), it follows that

8t @ i(1
(— * _‘)Pn + h(@? — P, = X

ox? dy?
X A*Gn(0)h, exp(—Xo"2x — iwho'?y) (14)

along with the boundary conditions

- )

(0]

x=0, Ppy+—P,=0
w

(15)
x—>w P.—0
The P,’s are defined such that
P(x,y,2) = 3 Pu(x,y)Gu(2). (16)

n=0

Eq. (14), along with the boundary conditions (15),
can now be solved by applying a Fourier transform
in the longshore direction:

{ $(k,x) J _ 1 J+°° - {Pn(x,y)
S"(k,X) \/57_7'- —x Rn(xsy)

where R,(x,y) is the inhomogeneous term in (14).
It follows that

¢n.z'.r - [k2 - (w2 - l)xn]d)n = Sn(k’x)’

where ¢, satisfies the same boundary conditions as

]dy, a7n

(18)
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FiG. 2. Diagram of branch cuts and poles in the complex k-plane for (a) w >'1and (b) w < 1, respectively.
. The contours of integrations are also shown.

P, in Eq. (15). Eq. (18) can readily be solved in
terms of the Green’s function technique (Chao and
Janowitz, 1979). We first define a Green’s function
Ga(x,¢,k) such that

Galk ) = f Cax LOSHkDAL  (19)
The Green’s function G(x,{,k) is defined as
- _ b1 (X <)Pua(x>)
G(xsc’k) - D(k) > (20)

where x. (x-) is the smaller (larger) between x and
{. The functions ¢,,, ¢,. are homogeneous solutions
of Eq. (18), with ¢,, satisfying the boundary con-
dition at z = 0, and ¢, satisfying the boundary con-
dition as x — oo, The function D(k) is the Wronskian
of Eq. (18), defined as

D(k) = dnitbna, ~ Do, Q1)

The forrhal solution of P,(x,y) can be expressed as

1 (=
Pu(x,y) = e J et
m J-»

x J " Gulx L k) Sulk D) dLdk.

0

(22

It is straightforward to find ¢, as
(k% — a,)V? — klw
k% — a,)V? + klw
+ expl—(k* — a?)"2x] (23)

bu = expl(k® — a,?)"*x]

and ¢,, as

b2 = exp[—(k* — a,%)'%x], 24

where o, = [\, (0? — 1)]2. The Wronskian D(k) can
also be computed from (21) as
20k/lw — (k2 — )]
(k% — )" + klw
It is seen that the singularities in the integration
of (22) in the complex k-plane consist of a simple

pole at k =k, = w\,'? and two branch points at
k = *a,. The pole at k = wA,'? satisfies the dis-

D(k) = (k* = a2,

(25)

" persion relation of the nth baroclinic mode Kelvin

wave. In compliance with the radiation condition,
we include a small friction parameter o such that
w = wy + io. It then follows that a small positive
imaginary part has to be added to «, and k,. The
singularities and branch cuts in the complex k-plane
as 0 — 0 for > 1 and o < 1 are illustrated in
Fig. 2. For w > 1, the branch cuts are defined from
k=a, tok— 4+ and from k = -, to k —» —
such that (k? — o,)"2 — ‘k| as k — =, while for
o < 1, oy, is positive imaginary, the branch cuts are
defined from k = a, to k — +io and fromk = —q,
tok — —iw, and the branch is illustrated in Fig. 2b.

Regrouping the integrand of Eq.' (22) by using
(23) and (24), it follows that

-1 b o
P,(x,y) = —— j dg J e~y
) 227 Jo ]
y Sn(k,0)
(k2 — an2)1;‘2
(k* — )" + klw
k= a2 — klw

~0o0

[exp[—(k2 ~ a)2(x5 ~ x2)].

X exp[—(k? — a,D)V* (x5 + x2)] ]dk. (26)
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We next consider a change of variable by means
of which (26) can be considered from a more general
point of view (see, e.g., Noble, 1958). We first con-
sider the case that w > 1. For simplicity suppose
that o — 0 and «, is then real and positive. The
transformation & = —a, cosf, where k = kg + ik;
and 8 = u + iv, transforms the complex k-plane cut
along the real axis from — to —«, and from +a,
to + into the region 0 s p < 7, —0 <p < ® in
the B-plane. We have then

k = —a, cosf J
(k? — a,)V? = —ia, sinB)

and therefore the change of variable k = —a, cosf
in the integral (26) gives

27

Po(x,y) =3:J2—L— j " f S~ COSB, 0)
w 0 r

X [exp[ianrl cos(8 — 6,)]

—cosfB — iw sinf
cosf3 — iw sinf

X explia,rs éos(,B -~ 03] ]dﬁ, (28)

where I is the contour of integration in the 8-plane
as shown in Fig. 3, and where

X — X
ri=[(x> —x)? + "%, tanf = 2 —=
Y . (29)
Xs + x
ry=[(x> +x)? +y21'2, tanf, = —=
y

Eqgs. (28) and (29) give the formal solution of the
posed problem.

To simplify the analysis, it is conceptually useful
to consider first a delta-function bump of the form

Ch(x,y) = Vpdx — x0)8(y), (30

where V, is the volume of the bump. In other words,
we keep the volume of the bump fixed but shrink the
size of the bump to zero. Although the delta-func-
tion bump introduced will make our normal mode
expansion divergent, as we will see later, it provides
some basic properties of the solution. Also, the
delta-function solution can be easily integrated to
obtain results for complicated and extensive bump
topographies. '

Using Egs. (14), (17) and (30), the inhomogeneous
term in (18), i.e., S.(k,x), can be computed as

—_ 2
Sa(k,x) = J‘;’L ! (k- V)
s

X VAeGn(0) exp(—Ae2x)8(x ~ xo) (31)
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FiG. 3. Image of Fig. 2a in the complex B-plane, under the
transformation k = —a, cosg for w > 1. T is the image of the

original contour of integration. I'* is the path of steepest descent
passing through 8 = 6.

and the double integrals in (28) can be reduced to a
single integration:

+iVb w? -1

(0]

Pu(x,y) = VoG (0) exp(—Xq"%x0)

X f (o, COSB + wAy''?)
r

x {exp[ianrl cos(8 — 6]

cosB + iw sinf
cosB — iw sinf

« expliayr, oS8 — 6] }dﬁ, 62)

where x- (x.) in (29) is the larger (smaller) between
x and x,.

Eq. (32) is the complete solution for the delta-
function bump. A general idea of the nature of the
diffracted waves may be obtained by considering
the asymptotic form of P,(x,y) for large r, and r,.
This can be accomplished by the method of steepest
descent (for details see Noble, 1958; Buchwald,
1968). We notice that the transformed exponents in
the braces of (32) have saddle points at

B=013 B=02

for the first and second term, respectively. The path
of steepest descent makes an angle of 135° with the
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FiG. 4. Illustration of the physical process of diffraction by a localized
topographic irregularity.

w axis, while the asymptotes of the path of steepest
descent are the lines u = 6, , = 7/2, so that the path
of steepest descent passing through 8 = 6, , has the
form of I'* in Fig. 3. The contribution from the
saddle points in (32) is then

. +iV, 0 — 1
Py(x,y) ~ —2

Ao"*G (0) exp(—Xo'%xo)

8 [(an cosb; + wh')HM(ayr;)

— (a, cosb, + wAy'?)

% cosé, + z.w an02 HP(ayry) ] .33
€c0sl,; — iw sinf,
where H{" is the Hankel function of the first kind.
Notice that a pole at B [8 = 7 — i cosh™!(k,/
a,)], which corresponds to k = k, = @V, in the
complex k-plane, exists in the second integrand of
(32) and represents an nth mode diffracted Kelvin
wave. When 0 < 6, < 6* = /2 + cos™[(w? — 1)/w?]?
the contour I' can be deformed into I'* without cap-

turing the pole. As 6, increases from 6*, the pole at B
will be captured, so that the contribution from the
residue at point B must be taken into consideration.
The nth transmitted baroclinic Kelvin wave is then

Po(x,y) = {+ioV, PG (0)( N2 — N'%)
| x expl—(Ao!® + A\,12)xo]}
X exp(—A2x — iwh,2y), (34)

where the term in braces gives the amplitude of the
transmitted wave.

The physical explanation for the results in (33)
and (34) is simple. The P¥(x,y) is a Kelvin wave
generated by the bump. One can see from (34) that
the topographic irregularity does not generate
barotropic Kelvin waves, i.e., P¥%,=0. For
xo > 0, the series Y-, P¥G,(z) converges abso-
lutely. On the other hand, P,(x,y) consists of two
outgoing cylindrical Poincaré waves radiating from
(x4, 0) and (—x,, 0), respectively, and traveling with a
phase speed w/a,. It is also of note here that

H o) ~ (o) ™2 explior),
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for
r=rye>1

35)

is isotropic. The factors associated with H {V(«a,r;)
and H{"(e,r,) in (33) represent the anisotropy of
Poincaré waves. Fig. 4 illustrates the physical fea-
tures associated with the asymptotic solution.

The computation for the case o < 1is very much
the same as above. In this case «, is positive imagi-
nary, the transformation (27) maps the k-plane, cut
as in Fig. 2b, on to the strip 0 < w < 7, illustrated

.in Fig. 5. The contour I' coincide with the line.

¢ = 7/2. The saddle point is at u = 6 as before and
the path of steepest descent I'* is parallel to the
imaginary axis. It can easily be shown that the con-
tribution from the saddle point is

P(x,y) ~ fi(0)r, V2 exp(— |, |r)
+f2(92)"2‘1’/2 exp(— lan|r2), (36)

which is localized near the bump topography, with
higher modes trapped closer to the bump. The dif-
fracted baroclinic Kelvin wave is still represented by
Eq. (34) for ® < 1, and is captured as 6 = =/2.

As we mentioned earlier, the diffracted Poincaré
wave fields in (33) are anisotropic in the 6, and 6,
directions. One can see from (33) that the factor

cosf, + iw sinb,

cosf, — iw sinf,

in H{"(a,r;) represents only a phase shift of the
diffracted Poincaré waves, while the factor («, cosé, »
+ wV\,) gives the polarization in the amplitudes
of waves. The two Poincaré waves H {"(a,r;) and

§P(ayry) reach the maximum amplitudesas 8, , — 0
and zero amplitude (i.e., the nodal line) as

o - 2]

Qy
'\0 w2 1/2
cos| —|— .
[ (')\n (02 - 1) :l

Thus, the scattering of the Poincaré waves favors
the backward direction (y — +) for a delta-func-
tion bump, consistent with the barotropic model of
Howe and Mysak (1973).

The forward-scattered amplitudes of baroclinic
Kelvin waves are also of interest. To O(e), the
amplitude of each baroclinic mode Kelvin wave is

linearly proportional to the frequency (w) and vol-
ume of the bump (V). For x, > 0, the series

012

37

> Pp(x,y)Gnu(2)

n=1

converges absolutely and is thus amenable for
numerical computation. If x, = 0, the series diverges
and our approach fails to give a uniformly valid re-
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F16. 5. Image of Fig. 2b in the complex B-plane under the
transformation & = —t’Ta,.l cosgB for o < 1. ['* is the path of
steepest descent.

sult. Of course, if x, = 0 the Green’s function tech-
nique developed in this section is not applicable in
the first place. '
The question as to which baroclinic mode is
dominant can be answered as follows. In the simple
case with N2 = constant, the boundary value prob-
lem (11)-(13) can be cast into a simple equation in
which the vertical normal modes can be expressed
in terms of trigonometry functions. For a typical
ocean N2 ~ 107° s7!, H ~ 4 km, S? is typically
as small as 1073, and the internal Rossby radius of
deformation is ~120 km. Therefore all vertical
modes other than the barotropic one can be com-
puted by assuming a rigid-lid at the surface, i.e.,

dG,ldz =0, z=1 for n=1. (38)
It follows that
Ao = S2, A, =nin¥n = 1) (39)
and the eigenfunctions are
Go~ 1, G.z)=+2cosnmz(n=1). (40)

From Eq. (40) it also follows that G,(0) =~ v2 for all
n = 1. Therefore, for a bump of volume V, localized
at x = x,, the factor
2017 = (M1 = N')

X exp[—(N'? + N 'B)xol  (41)

in Eq. (34) determines the amplitude of each baro-
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clinic mode. If we treat g(A,'?) as a continuous
function of A2, it can be seen easily that g(A,'?)
has only one maximum at

MI/Z = X()_l + )\01/2- (42)

Since A\,'? is a discrete set of numbers, we conclude
that the mth baroclinic mode with A} closest to
xo ' + A¢Y? has the maximum amplitude. For x,
= 0.3, x,7' + A% =< 3.1, while \,'/? ~ 7, it is thus
concluded that for all practical cases (x, = 0.3, say),
the first baroclinic mode has the largest amplitude.

One defect of the above result is that the Poincaré
wave field is not a convergent series, because in (33),
P, x a,'?, so that Y%, P,(x,y)G,(z) does not
converge. This is, of course, an artifact of the delta-
function solution. A realistic bump has to be intro-
duced to eliminate the divergence. As an example,
we next consider a bump of the form

h(x,y) = e=**q(x), (43)

im(w? - 1)
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where g(x) is centered at x = xo = 1/4q and is de-

fined as
cos[2am(x — xo)],

q(x) = - | Xo— V4a < x < x, + 1/4a (44)
0, otherwise. '

The borizontal dimension of the bump topography
is inversely proportional to a in this case. We notice
that, in carrying out the perturbation of Eq. (6),
h, ~ O(1) was implicitly assumed. Therefore, fol-
lowing Eq. (43), it is required that a ~ O(1) [bump
size ~ O(100 km)]. It also follows from (17) that

1 - o?

Salk,x) = Ao"*GA(0)(k — who''?)

V2a
X expl—A % — (k%2 — wA?)¥da%iq(x). (45)

The Poincaré waves can be obtained from (38) and
45), i.e.,

A 2G (0) exp(—AoY%xy) [(a,, cosf; + why'?)

€080, + iw sind,
cosf, — iw sind,

HP(a,rs) | ,

Pxy) =
exp[—(a, cosh, + wA,?*)*4a?]
(A2 + iy, sind,)? + 4a’n?
X exp[—(a, cosb, + wh,?)*4a?]
for

x > xo + 1/4a;

which is easily seen to form a convergent series with
the lowest few modes having the largest amplitudes.

The dependence of the amplitude of scattered
Poincaré waves on x, is determined by the expo-
nential exp (—Ay'*2x,), which is proportional to the
amplitude of the incoming Kelvin wave at x = x,.
Two Poincaré waves are still originated at (x,, 0)
and (—x,, 0) as in the case of delta-function bump.
The angular dependence of the amplitudes of
Poincaré waves is, however, sensitive to the size of
the bump. The factor (cosf, + iw sind,)/(cosb, — iw
X sinf,) affects only the phase of waves, hence the
amplitudes of Poincaré waves H{"(a,r;) and H"
X (aur,) have the same angular dependence on 8,
and #6,, respectively. Since A\,!?2 is smaller than
N2 (n = 1) by a factor of 100 or more, the cases for
barotropic and baroclinic Poincaré waves have to
be considered separately.

a. Barotropic Poincaré waves (n = 0)

In this case a; = [Ao(w? — 1)]¥? is smaller than
w)o'?, so that there is no nodal line for 0 < 6 < 7.
The basic features of the angular dependence of
barotropic Poincaré waves can be obtained as fol-
lows. Since a, ~ AM* < 1, it follows that

A2 — iay Sing,)? + da’nw?

(46)

ry, s > I/Qn.
a, cosd + w)\om)zj'
2a

exp[ - (
~ |cosh[(\g¥2 + ia, sin)/4a]| =~ 1

for a mesoscale bump {a ~ ‘O(1)]. The amplitudes
of Poincaré waves are only sensitive to the factor
(oy cOSB + why''?), which is maximumas § = 6, ,— 0
and decreases slowly as 6 increases from 0 to .
Therefore, the scattering of Poincaré waves favors
the upstream direction, as is the case of a delta-
function bump.

b. Baroclinic Poincaré waves (n = 1)

In this case since A,Y2 > A2, thus a, = [A(w?
— D] is usually much larger than w),"? unless
@ — 1. Therefore a nodal line at § = 90° + cos™!
X (who'?/ay) exists between 0 and 7 unless w — 1.
The angular dependence of baroclinic Poincaré
waves is distinctly different from the barotropic
case. For a, > 2a, the amplitudes of Poincaré
waves are essentially determined by the exponential

exp[—(a, cosf + wh,'?)?*4a?]

which has its maximum at cosf = 0 or 6 = /2.
Notice that the nodal line 8 = @ is also very near
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6 = /2. Therefore a two-peak structure approxi-
mately symmetric with respect to 8 is expected in
this case. For a, < 2a, the amplitudes of internal
Poincaré waves are more sensitive to the factor
(ary cOsO + wAyY?), which has its maxima at § = 0
and 7, with a nodal line at 8.

Fig. 6 shows the anisotropy of Poincaré waves
for three different sizes of the bump, as represented
by the factor

(a, €080 + wAo''?) cosh{(A,'? + ia, sinf/4a]
(A\o'? + ia, sind)? + 4a’n?

A=

X expl—(a, cosf + why'?)*4a?]

in Eq. (46). The frequency w is fixed at 1.5. In Fig.
6a we choosea = 0.3, which corresponds to a bump
size of 200 km for a baroclinic Rossby radius of
deformation R; = 120 km. In this case the barotropic
Poincaré wave dominates except near § = 82°, 102°
where the first baroclinic mode dominates. The baro-
tropic Poincaré wave favors the backscattering
direction as expected (Howe and Mysak, 1973).
Modes higher than n = 1 are too small compared to
the first baroclinic mode and can be neglected com-
pletely. In Fig. 6b a = 1 corresponds to a bump
scale of 60 km. The amplitude of the barotropic
Poincaré wave is reduced by a factor of 10 compared
to the previous case a = 0.3 (Fig. 6a). Higher baro-
clinic modes are becoming more important com-
pared to the first baroclinic mode, which is the
dominant modal response. All of the baroclinic
modes are approximately symmetric with respect to
their nodal lines at 6 = 90° + cos™'(wA,'¥a,). In
Fig. 6c a is further increased to 2.5, which cor-
responds to a bump size of 25 km. In this case the
barotropic response can be neglected completely.
The first baroclinic mode dominates over higher
modes only in the upstream and downstream direc-
tions (6 — 0, 7). Higher baroclinic modes are be-
coming increasingly important as a increases. Thus
a large (small) size bump tends to generate lower
(higher) modal response. As the size of the bump is
reduced to zero (i.e., delta-function bump), the
vertical modal expansion diverges for the Poincaré
wave fields.

The diffracted Kelvin waves generated by the
extended bump topography deﬁned in (43) can also
be computed easily, i.e.,

Pf(x,y) _ +4iw173’2)t0”2G,,(0)()\n”2 — )\01/2)
X expl—(Ao"? + A,'%)x,]

coshf(A,'2 + \,1?)/4a]
(N2 + N2 + dain?

X exp{—[w’(\,'? — \'?)%)/4a%}
X exp(— A2 = iwk,'?y).

47
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Ax10*?
N

Axlo#z
1 c
1 a=2.5
w=1.5

n=1

=2
5

=4 \n=3

. n=o0 - 6
0 90° 180°

FiG. 6. The relative amplitudes of the barotropic and baro-
clinic Poincaré waves versus 6 for = 1.5 and (a) a = 0.3,
(b) a = 1 and (¢) a = 2.5. The amplitude A is defined in Sec-
tion 3.

One can see from (47) that the series

o

2 P(x.y)Gu(2)

n=1

converges faster than for the delta-function case,
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even as the bump topography approaches the coast-
line. This is, of course, a consequence of the finite
dimension of the bump. The scattering process
favors the lowest baroclinic mode, as in the previous
case of a delta-function bump. The amplitudes of
the diffracted baroclinic Kelvin waves are propor-
tional to the amplitude of the incoming Kelvin wave
atx = x,. Thus a bump closer to the shoreline tends
to generate larger amplitude Kelvin and Poincaré
waves.

4. Numerical estimates

One of the effective generation mechanisms of
internal tides is the interaction of the barotropic
tide with topographic features having scales of the
baroclinic wavelengths (Schott, 1977). The first cal-
culation was done by Munk (1966) applying the bot-
tom slope energy conversion model of Cox and
Sandstrom (1962). For the world ocean Munk got
5 x 10'' W. Recently Bell (1975) found an energy
flux of 0.9 erg cm™2 s~! from barotropic to baro-
clinic tidal components at the deep ocean rough
topography, which amounts to a total of 2.5 x 101! W
for the world ocean. The question as to how much
energy flux can be accounted for by the coastal tidal
~ scattering mechanism proposed in this paper will
now be addressed. '

In order to provide an adequate description of
representative bottom topography, some 8000 km of
profiles through abyssal hills in the eastern North
Pacific were analyzed by Bell (1975). Bell was
primarily concerned with internal wave generation
by topographic features with scales 0.3 ~ 3 km. At
such small scales our coastal wave scattering
mechanism may prove irrelevant, and the local gen-
eration mechanism is more appropriate. Using the
lower wavenumber end of the spectral estimates for
abyssal hills topography (from 10-1000 km) ob-
tained by Bell (1975), the rms height of the topog-
raphy in this band is roughly 125 m, while the
average scale of the topography is 50 km. This
estimate is subjected to some uncertainty due to the
sparsity of data points. The energy flux generated
by a bump is not sensitive to the shape of the topog-
raphy, so that a topographic function of Eq. (43)
is used to evaluate the order of magnitude of the
baroclinic energy flux. Numerical estimates show
that roughly 1.8 x 107 of the local M2 energy flux
over one average bump is transferred to internal
tides. Considering an energy flux of 2.4 x 10" W
and 16000 km coastline from 50°S to 60°N for the M2
tide in the eastern Pacific (Platzman, 1979), we
would expect 1.4 x 10® W of energy flux transferred
to internal tide from the eastern boundary of the
Pacific. This is equivalent to a 0.09 W energy flux
per centimeter of coastline, ~13% of the value
(0.7 W cm™!) reported by Schott (1977). Mesoscale
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bumps of horizontal scale 10! ~ 103km, therefore, is
not entirely negligible to the global internal wave
budget. Moreover, the mesoscale scattering mecha-
nism may be important for regions with a distinct
bump superimposed on a smooth ocean floor, and
where the slope conversion model of Sandstrom
(1976) is not important.

Recently, Mofjeld and Reed (1978) documented
a semidiurnal internal tides propagating seaward
from the Washington shelf break. The oscillations
were predominately first baroclinic mode, and did
not appreciably decay offshore. The mesoscale
scattering mechanism is certainly one of the pos-
sibilities. However, due to the complicated bathym-
etry in the vicinity, more observational work further
offshore and a better theoretical model including the
shelf slope would help to resolve the issue.

5. Conclusions

We have studied the effect of a localized topo-
graphic irregularity on the scattering of an incoming
barotropic Kelvin wave with a fixed frequency w.
The topographic irregularity is assumed to be small
compared to the water depth H, ie., hy/H < 1.
An analytical method to decompose the normal
modes in the vertical direction is developed. The
homogeneous equation (2) with inhomogeneous bot-
tom boundary condition (10) is then transformed
into an inhomogeneous governing equation (14)
which satisfies the homogeneous bottom boundary
condition (12). The problem is then solvable via a
Green’s function technique employed by Chao and
Janowitz (1979).

Notice that Eq. (2) satisfies an inhomogeneous
boundary condition [Eq. (10)] at the bottom, while
the general solution [Eq. (16)] satisfies a homogene-
ous boundary condition [Eq. (12)]. This is a con-
sequence of a finite transform (Courant and Hilbert,
1953). In our solution (16), P, takes a finite jump
from z = 0% to z = 0. The solution itself [i.e.,
P(x,y,z)], nevertheless, is continuous across z = 0%.
An identical result can be reached if we introduce
a function Y(x,y,z) satisfying the inhomogeneous
boundary condition, and let

P(X ,)’ ,Z) = Y(X ’y ’Z) + PH(X ,)’ 52)’ (48)

where P, satisfies the homogeneous boundary con-
dition. This method was used by Courant and
Hilbert (1953). Substituting (48) into the governing
equation (2), it follows

LP, = -LY, (49)

where L is the operator in Eq. (2). Therefore, Py
satisfies an inhomogeneous governing equation. If we
decompose (49) into normal modes as we did in Sec-
tion 2, the same governing equation [i.e., (14)] for
P, immediately follows independent of the func-
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tional form of Y(x,y,z) chosen. Therefore, the two
methods are equivalent.

For an incoming barotropic Kelvin wave of a super-
inertial frequency (w > f), the diffracted wave fields
consist of 1) all baroclinic Kelvin waves in the for-
ward direction, and 2) barotropic and baroclinic
Poincaré waves originated at (x4, 0) and (—x,, 0),
where x, is the center of the bump topography. For
o < f, only baroclinic Kelvin waves and some
localized disturbance which decays exponentially
away from the bump are generated, with higher
vertical mode responses trapped nearer to the bump.
The scattering process favors the first baroclinic
mode for the diffracted Kelvin waves. For o > f
and a bump size much larger than the baroclinic
radius, the barotropic Poincaré wave is the domi-
nant response radiating from the bump topography.
As the size of the bump is decreased, higher baro-
clinic modes become dominant, which is a clear
indication that higher modes are localized bottom-
trapped responses associated with small topographic
irregularities.

The baroclinic Poincaré waves tend to be direc-
tionally anisotropic, with higher modes more con-
centrated in two angular bands centered at 6 * e,
where 0 is the nodal line and ¢ is a small angle. Apart
from the reflection of internal waves from the con-
tinental slope as addressed by Rattray (1960) and
Sandstrom (1976), etc., the baroclinic Poincaré
waves generated by longshore topographic irregu-
larities and radiating offshore in the directions
ronghly normal to the coastline may contribute sig-
nificantly to the internal wave field in the open ocean
and provide an alternative way to dissipate the tides.

The delta-function solution and a finite-dimension
bump are considered. It turns out that the finite
dimension of the bump brings about a faster con-
vergence for the normal modes expansion than the
delta-function solution. However, a delta-function
solution is useful in a sense that, apart from being
the fundamental property of Eq. (14), it can be in-
tegrated easily to obtain the solution for the case of
an extensive bump topography.

The scale for the barotropic Kelvin waves is R,
~ 2700 km, while for a typical ocean, N'? ~ 1073 s7!,
and the scale for the first baroclinic Kelvin wave is

R =YH 120 km.
f

Therefore, the continental shelf and slope topog-
raphy, although negligible for the barotropic re-
sponses, cannot be neglected as far as the baro-
clinic responses are concerned. A more realistic
model would be to include the continental slope.
The dominance of the lower modal responses, as
inferred from a linear stratification, appears to be a
consequence of the fact that
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)\01/2 < )\11/2 < }\21/2 <€ o

and is likely to hold for other stratification pro-
files as well. The solution for an incoming wave other
than the barotropic one can also be obtained with
relative ease by specifying a baroclinic incoming
wave in (9) and in subsequent equations.

A rough numerical estimate shows that ~13% of
the observed internal wave energy flux could be due
to the mesoscale scattering mechanism discussed
in the eastern boundary of the Pacific, and there-
fore should not be completely neglected in the global
internal wave budget. The mechanism could also be
of regional importance at places where distinct

* bumps are superimposed on relatively smooth ocean

floors.
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