
 1

An Overview of the Web++ Framework

Bing Swen (Sun Bin)
Dept. of Computer Science Technology, Peking University, Beijing 100971, CHINA

bswen@cs.pku.edu.cn

Abstract
This paper presents an overview of the Web++ framework, a new mechanism of hypertext resource transmission specifically
designed to further improve Web performance. The three components of the framework are described, along with results from
experimental implementation and tests, which shows that the new architecture can be significantly faster than HTTP, with the
improvement of transmission time around 70% to 400% and the same magnitude of packet savings. This, together with the full
compatibility feature, validates the potential of the framework as a possible development direction to meet the challenges of
future Web evolution.
Keywords: World-Wide Web, HTTP, Performance, Hypertext, Resource transmission

1 Introduction
The Word-Wide Web (hereafter the Web for short) is hitherto the most important application form of resource

access on the Internet, with its load being dominant on most all TCP/IP networks. The future development of the
Web is full of technical challenges since its existing architecture has come close to its limits and new technologies
must be compatible with this architecture of tremendous use and investment. It is well known that HTTP/0.x and
HTTP/1.0 [27] interact with TCP/IP in a low-efficiency manner, due to the initial protocol design of connection
establishment per URL when retrieving resources. Retrieval of a complete Web page requires separate requests for
formatted text and each linked objects, thus making network traffic bursty. In the past years much work has been
done to address this issue [11-13, 16-19, 24, 28, 29], eventually leading to the new HTTP version [10]. HTTP/1.1
[22] significantly improves the efficiency of TCP use by introducing the mechanisms of persistent connection,
request pipelining and fine control of caching.

Though a few other minor improvements and tune-ups are still possible to experiment and test [6, 8, 13, 17, 32,
33], it seems that there is little room left to further greatly improve Web performance under the existing HTTP
infrastructure. As Web loads keep increasing quickly, the performance limits of present Web framework has
emerged in many aspects. Though link speeds are also gradually increasing, the traditional “one request for one
resource” transfer model is far from optimization in terms of network use. Actually, the structural characteristics of
“hypertexted Web pages” still provide a great potential for performance improvement. A Web page is composed of
multiple files, and they can be efficiently retrieved within a single transaction when sufficient information is
available for the client to construct appropriate requests. The key point is to design a simple yet sophisticated
mechanism to describe the detailed meta-information of each object in a compact form. Based on these
considerations, this paper presents a novel mechanism to improve the Web and at the same time retain the
simplicity and full compatibility. We call it the Web++ [37,38], with emphasis on its compatibility with the
existing Web.

2 Web++ Overview
The framework of Web++ includes three components:
- A new URL scheme sttp for identifying resources on the Web++. An STTP URL has the general format sttp:

// host : port / path ? parameters. The default port of STTP service is 90. An example is sttp: // wpp.org
/index.stml.

- The Structured Hypertext Transfer Protocol (STTP), defining a message set of requests and responses for the
transmission control of resources on the Web++.

- The Structured Hypertext Markup Language (STML), for describing the structural information of Web pages,
including information of the root page file, number and types of the linked objects, entity attributes of each object,
file offsets and sizes of partial update, etc. With the meta-information description in STML, STTP can transfer
resources in an efficient way.

The basic idea behind the Web++ is very simple. Namely, before sending a page file to the client, the server
first processes the page into a more compact format (structured hypertext) with sufficient meta-information of each
element related to the page, so that the client can handle them directly, without any repeated network transmission.
We will refer to this process as STML compilation (or encoding) in this paper. On the other hand, the client also

 2

presents sufficient meta-information about its desired objects to the server for the optimization of the compilation.
Such processing of Web page allows the server and client to have a good knowledge of the contents that are
transmitted. This helps make a more efficient use of TCP connection, and introduce new possible functionality to
the Web as well.

Introducing a new URL scheme here is necessary for the client to differentiate between new request methods
and those of HTTP (though using HTTP/1.1’s Upgrade header helps switch protocols from HTTP to STTP, that
would be an inefficient choice. See discussion below).

2.1 Typical STTP Transactions

By default, a request for an STTP URL will specify the server to send back an STML description of the URL
rather than a single Web page file. Major STTP transactions are performed within two messages, that is, one
submission and one reply. The typical 2-message process of a client to retrieve a Web page (sttp://host/xdoc) is as
the following.

First, the client checks the local cache to see if the Web page has been visited, and if not, it tries to get the
page together with all the related objects by sending a single (possible selective) S-GET request, expecting a single
response from the server with the message body being a full STML document generated for the page;

If the page is already cached, then the client generates a partial STML document (head-part) listing the
meta-information of all the interesting objects related to the page (including the page itself) obtained since the last
visit, and send an S-COMPARE request, expecting a single response with an STML document containing all the
necessary information of update for modified objects.

In each case, there are only two messages needed to transmit: one request (S-GET or S-COMPARE) and one
response, which makes the most efficient page retrieval model. For a typical Web page with 10 linked objects (such
as images, scripts, applets, style sheets, etc.), there are at least 11 requests and 11 responses (totally 22 messages)
needed to transmit between an HTTP client and server (together with mutual acknowledgement for each packet).
Though the request pipelining method usually helps reduce the latency, this model is far from optimization in terms
of number of messages and usage of bandwidth. With STML and STTP, the number of messages is kept to the
minimum: there are only one request and one response for the transmission of the 11 objects (the Web page file and
all the linked objects), eliminating the other “stupid” 10 requests and responses. In section 3.3 we will see that the
S-POST process can also be performed within two messages. Thus STTP reduces the network traffic by greatly
reducing the number of client requests and keeping most of the packets in full size.

2.2 STML Summary

STTP servers and clients try to exchange sufficient information about a Web page and each object related to it.
In order to record the structural information of Web pages, we need to introduce a very simple markup language
called STML (the Structured Hypertext Markup Language). Roughly speaking, an STML document is a "hypertext
of hypertexts", that is, a set of hypertexts that related to the same root hypertext. (The set may or may not be
"closed" with respect to the closure of links.) Thus STTP may also be called the protocol for the transmission of a
set of hypertexts. (For a summary of STML syntax see [37] and appendix B.) Here is an example,

[stml]
[head]
[root Name= "/index.html" Content-Type="text/html" Content-Encoding= "czip" ETag= "0-54e-383712c4" Offset-Size=
"2371/55720" Linked-Object="-text/html, +*/*"]
[object Name= "/../img/logo.jpg" Content-Type= "image/jpeg" Content-Encoding= "czip" ETag= "0-b7f-39e37ad2"
Offset-Size= "62083/27960" /]
[/root]
[/head]
[body]
[object Name= "/index.html"]
 ...compressed content...
[/object]
…
[object Name= "/logo.bmp"]
 ...compressed content...
[/object]
[/body]
[/html]

2.3 STTP Messages

 3

STTP uses the same message format as that of HTTP (the generic message format of [34]). The client uses
request messages to retrieve resources, and the server answers the requests using response messages.

For the access of resources described in STML, STTP Currently introduces three requests: “STML GET”,
“STML COMPAE” and “STML POST”, corresponding to three new methods for STML document retrieval,
namely S-GET, S-COMPARE and S-POST. The method S-GET is used to retrieve an STML description of a
resource, usually for the first time retrieval. The following is a "selective" S-GET:

S-GET /xpage STTP/1.0
Host: w++.w++.org.cn
Linked-Object: head-only, -image/*, +image/gif, -audio/*

S-COMPARE is used to realize the most efficient cache-based Web page revisiting model. It constructs a

partial STML document for update comparison of all objects related to the revisiting page. For example, when user
specify an URL sttp://wpp.org/index.html that has been visited, the client issues the following message:

S-COMPARE /index.html STTP/1.0
Host: wpp.org
Linked-Object: -text/html -text/xml +image/* local-only
ETag: 0-85f-724334c4 // ETag of the original STML document

[head]
[root Name= "/index.html" Content-Type="text/html" Offset-Size="502/27371" ETag= "0-54e-383712c4"
Linked-Object="-text/html, +*/*"]
[object Name="/logo.jpg" Content-Type="image/*" Offset-Size="27960/66808" ETag= "0-23f-626854c4" /]
[object Name= "/menu.js" Content-Type="text/*" Offset-Size="94920/8033" ETag="0-31d-652413c4" /]
[/root]
[/head]

The S-POST method is used when the client needs to send some data to the server for processing, similarly to

HTTP POST method. STTP supports a caching based post method so that the client may get rid of extra interactions,
keeping the total messages to the minimum (that is, two messages). This is achieved using the S-POST method
together with a new header, Followed-By. For example,

S-POST url-1 STTP/1.0
Host: wpp.org.cn
Linked-Object: …
Followed-By: url-2 // next stop after posting

[head] …… [*head-part for url-2*] [/head]

……post-body……

An STTP client should understand all HTTP responses in addition to the new ones, which begin from status

code 600. STTP status code has the following categories:
 100 ~ 599: HTTP status code
 600 ~ 999: STTP status code
 6xx: successful
 7xx: redirection
 8xx: client error
 9xx: server error
For example, 600 – STML transfer OK; 704 – STML not modified (ETag’s the same); 71x – STML partial update,
where 710 – only root page modified; 711 – only linked object(s) modified; 712 – linked objects added; 713 –
linked objects removed.

2.4 STTP Servers and Clients

There are a few interesting issues in designing and implementing STTP servers and clients.
The ubiquitous use of server-side scripts (e.g., as database access interfaces) provides a large amount of

dynamic contents in Web pages. Typically only a small part of a Web page is marked as dynamic content [2, 5, 20].
Therefore, partial update can be greatly helpful. With the combination of the Offset-Size attribute and the HTTP
Content-Range header, partial update of a single object can be efficiently realized in STTP. For example, in a Web
page (or non-root object) there are two parts (marked between specific tokens) corresponding to dynamic contents,

………<%!?# … #?!%> ………<%!?# … #?!%> ………

 4

0 r1 r2 r3 r4 r5
When constructing a response for this page, the server may indicate that the page has two parts that are dynamic
using a ‘+’ indicator at the corresponding offset/size values,

[object …… ETag = "0-54e-383712c4" Content-Range="0-r1/*, r1-r2/*, r2-r3/*, r3-r4/*, r4-r5/*"
Offset-Size="o1/s1,+o2/s2, o3/s3, +o4/s4, o5/s5" … /]

Then when revisiting the page, the client issues an S-COMPARE request with the information
[object …… ETag = "0-54e-383712c4" Range="r1-r2/*, r3-r4/*" …]

The server may then send only the dynamic contents for update (if the root page is not modified). In partial update
messages, the server should treat the entity tags of dynamic pages as weak validators [22], which are not affected
by dynamic contents.

If two Web pages share some related objects, then the requests for these pages are related by cache
information. Some techniques are necessary to handle related requests efficiently. As the first choice, the client may
use an S-COMPARE request with an “up-to-date” head-part to request the page. If the page has been visited and
cached, it then simply updates the cached head-part extracted from the STML document using the newly cached
objects, and everything goes the usual way. The other choice is to first get the root page description using a
head-only S-GET and then retrieve all the other objects via an ordinary S-COMPARE, as discussed in section 3.3.
This is usually the most reliable way for such a purpose, but needs two requests.

The server should treat the STML document ETags provided by client requests in a special way, that is, as a
“necessary condition” of update (or a sufficient condition of no update): if the client’s ETag is the same as that of
the STML document on the server side, then no update is necessary; if the two are not the same, then the server
needs to further make a thorough update check for each item listed in the head-part, possibly adding new linked
objects (712 response).

Since STML documents may be related (when an object is related to multiple pages), both the server and
client do not have to maintain full STML documents. The server should maintain only the head-parts of its Web
pages, and construct the corresponding body-part based on information of requests (though the body-part may be
cached after the first request). If the server detects that a local object related to a Web page has been modified, it
simply adjusts the Offset-Size values of the modified object and all the others that occur after the object. For a
single Web page, the server may choose to maintain a “complete head-part” that includes the descriptions of all the
linked objects, and then construct a version for each request by removing uninteresting objects according to the
Linked-Object information. For frequently visited and/or infrequently modified pages, the sever may pre-make
several versions of head-part corresponding to some most possible Linked-Object options to optimize performance.

The client should maintain a local cache for only the Etags, head-parts, and various information and contents
of linked objects extracted from STML documents, but not the documents themselves. Maintaining a cache for
STML documents on client side is not necessary and can be a big burden. The client would have to do “incremental
STML compilation” (rebuild the documents) for related pages when linked objects are updated, which is not a
trivial work – the offset-size values (offsets) of the linked objects are usually not maintainable, since the STML
documents may be stale, so are the ETag’s of STML documents. Since the ETag of an STML document on the
client side may be an old one, the server should not infer update and resend a whole STML document based only on
the (weak) ETag provided by the client’s request, as discussed above.

3 Web Compatibility
STTP is fully compatible with HTTP/1.x. STTP retains all HTTP requests and responses while supporting new

messages, so that STTP clients and servers can recognize all HTTP messages. This means HTTP is a strict subset
of STTP. The advantage of STTP's compatibility with HTTP is that HTTP and STTP clients/servers can coexist and
communicate with each other. An existing HTTP client can talk to an STTP server as if talking to an HTTP server,
and an STTP client can also talk to an existing HTTP server after getting the very first response (which requires
HTTP/1.x rather than STTP/1.x). This aim is very significant for saving the investment on both the server and client
sides of the Web, and crucial for the successful transition.

The most obvious behavioral difference is that by default, STTP clients use S-GET and S-COMPARE methods
to retrieve resources in STML format while HTTP clients use GET to retrieve a single object. The default port of
STTP service is 90, though other TCP ports can also be used. When retrieving resources on an STTP server via
HTTP, the client should explicitly specify the port number used by the STTP server. For example, using the
following URLs, sttp://wpp.org.cn/, and http://wpp.org.cn:90/, the client should present exactly the same content to
the user.

An STTP client may first use the sttp:// scheme to retrieve resources on a server. If the server returns status
code indicating HTTP client error (400, 403 or 405), then it should be an HTTP server and the client may then try
the http:// scheme. On the other hand, an STTP server can easily differentiate between HTTP and STTP clients
from the version field of the request line, in addition to the methods used.

 5

4 Related Work

We are not aware of any other work that uses a special transfer encoding together with a transfer control
mechanism to speed up HTTP transactions, though the performance problem of HTTP has been widely studied in
the last decade, and several methods have been proposed to improve Web latency.

To improve Web services on existing networks without any hardware update is to improve the transfer
protocols used by the Web. The lower-level TCP is a firm foundation of today’s Internet, so the source of possible
improvement is HTTP . The major aspects are: (1) connection reuse, to avoid or alleviate TCP slow-start, which is
represented by the work on Persistent HTTP (P/HTTP) [12, 16, 19]; (2) pipelining of client’s requests, to reduce
multiple request processing time [18]; (3) caching of server’s responses, which is the topic of much previous work
[6, 8, 17, 18, 31-33]. Most of the suggested improvement methods of significance have been integrated into
HTTP/1.1 [10, 22].

Web++ aims at new mechanisms to further reduce message transfer time and provide more efficient caching
support using transfer models of encoded Web pages. There are several previous works that are close to this aim.

The “collection resource” of WebDAV [25] uses a multipart/related MIME entity to represent a WebDAV
resource as a single document, based on an XML syntax for describing resources. Though it is useful, a collection is
not a compact and efficient description of Web pages. For example, there are no provisions for efficiently locating
and updating objects in a collection (at file-offset level). Collection is not intended to be an ideal format of transfer
encoding to enhance the performance of the Web.

The most relevant work related to STML is MHTML by Palme and Hopmann [21]. It defines the use of a
MIME multipart/related structure to aggregate a text/html root resource and the subsidiary resources it references,
and specifies a MIME content-header to reference each resource within the composite e-mail message. Though
claimed to be able to be employed by other transfer protocols (e.g., HTTP or FTP) to retrieve a complete Web page
in a single transfer, MHTML has several obviously insufficiencies to be seriously considered for that purpose. First,
it does not provide sufficient and/or efficient meta-information to completely describe the document elements of a
Web page, such as the information of number, size, offset, time of creation and modification, entity tag (ETag), etc
of each subsidiary resource (or linked object called by this paper). And thus second, it does not provide support for
caching the aggregated resources that have been retrieved, which is essential for the scalability of the Web. Finally,
as a media encoding specification, it dose not necessarily provide any transfer control methods for the access of
MHTML files.

Franks [35] proposed a primitive MGET method using multiple If-Modified-Since header for the various
objects requested. Before sending an MGET request the client must first get the base HTML file using a normal
GET request. Padmanabhan and Mogul [19] proposed GETALL and GETLIST methods to make pipeline requests
along with a simple scheme of Web page preprocessing. Both MGET and GETALL/LIST have fundamental
inefficiencies as in the case of MHTML: no sufficient meta-information is provided for each linked object; the
component extraction is primitive at best; and so that no effective support for object caching, partial revalidate and
update, content encoding, etc.

The most recent relevant work to the idea of "batch-fetching" a web page and all of its related objects is the
proposal to use bundles to transfer Web pages, presented by Wills et al [36], where 2 passes of request and response
are used to retrieve a Web page and its contents separately. Since a bundle is a simple form of resource aggregation,
it dose not provide a mechanism for the description of the detailed meta-information of the embedded objects. The
major insufficiency of bundles and the similar proposals is in the difficulty to handle various partial modifications
of related objects. It would be exceedingly difficult to design a uniform and consistent scheme of aggregate
resource updating without the help of a structural information description. Bundle reconstruction, delta generation
and updating would also bring significant load and contribute to user perceived latency, for these have to be done at
retrieval time. In this regard, delta encoding of individual object would be preferable when only a few objects are
constantly modified, as opposed to the intended use of bundles.

5 Experimental Implementation and Tests

To validate the effect of our mechanism, we made an experimental implementation (Apache HTTPd [1] based)
to compare the elapsed time in transmission of an identical set of Web pages using HTTP/1.1 and STTP/STML.
The test set consists of 20 different HTML files, containing 2, 4, 6, …, 40 linked images respectively. The files also
include a paragraph of the same text, amounting to 1876 characters. The images are saved using different file names
from the same JPEG file, which has 2471 bytes. The page with 40 images is also used to test the caching based
retrieval with 0, 2, 4, …, 40 images locally cached.

The network environments tested include two typical connection conditions: a fast intranet and a slow dialup
line. The intranet is a 100Mbps Ethernet LAN, with RTT < 1ms and MSS = 1460. The dialup line is a 48Kpbs PPP

 6

modem line using a major public commercial dialup service, with RTT ≈ 220ms and MSS = 1460. On the
intranet, there is one router hop between the server and the client, while on the modem line there are 8. In order to
make up for network fluctuations, the tests were made after midnight at several weekends and most runs were
repeated more than 10 times.

The performance tests of elapsed time and packet number and the results are listed in appendix A. The results
show that STTP outperformed HTTP under all circumstances tested. For the first time retrieval, the improvement is
around 70% on the LAN and 25% on modem line. For 50% update retrieval, the improvement are 170% and 60%
respectively. STTP is superior to HTTP for revalidate tests, even though HTTP/1.1 has been dramatically improved
over HTTP/1.0 at this aspect by exploiting request pipelining [18]. The later has a more significant impact since
most resources on Web servers remain to be stable [2, 5], and even on some highly dynamic web sites files tend to
change little when they are modified, and the variation ratio is often extremely small [20]. For update retrieval of
average pages with less than a quarter of related objects that are frequently modified, a 4 or 5 times improvement is
commonly expectable. The savings in terms of number of packets are of the same magnitude.

STTP also shows the desired scalability, that is, the faster the connection, the better it performed. Connection
conditions are constantly improved, from which STTP will benefit more than HTTP.

6 Summary and Future Work

In this paper we describe the Web++ framework, which is intended to be a simple mechanism to further
improve Web performance. STTP and STML are designed to be a flexible transmission control mechanism for the
access of hypermedia resources, and at the same time sufficiently simple and efficient, which helps implementation
and the compatibility with existing technologies. Adding STML handling to an HTTP server is usually a simple
task (though adding it to HTTP browsers is somewhat more complicated).

Tests on a simple and primitive STTP server show that the STTP/STML mechanism can significantly improve
Web performance without any hardware upgrades. Web++ retains full compatibility with the Web, and thus all
existing Web resources are accessible by Web++ clients and servers, so are Web++ resources by present Web
clients and servers. This ensures that existing systems still have their (equal) opportunities to access the same
amount of resources as the new ones, and provides a graduate transition approach (most likely starting from the
server ends).

The major shortcoming is that STML encoding, decoding and cache synchronization bring additional load for
both the server and client. As discussed in the above sections, using a few specific caching methods, a significant
part of the load can be optimized away. The cost is low on both the server and the client sides comparing to the
improvement. And such load tends to be a smaller and smaller part as computer hardware technology is rapidly
progressing, which is much faster than the improvement of the limits of communication connections. The Web++
framework provides a load balance between the communication hosts and connections.

The work planned in the near future includes the improvement of our STTP design and implementation, and
larger scale and extensive experiments and tests on both research network environments and a few possible
commercial sites. Another important work is the development of a Web++ proxy server, which is planned to
construct from an STTP server using configuration options. Work worth doing also includes the development of
draft specifications of HTTP and STML.

References
[1] Apache, The Group, URL http://www.apache.org/.
[2] Arlitt, Martin F. and Carey L. Williamson. Web Server Workload Characterization: The Search for Invariants (Extended

Version). DISCUS Working Paper 96-3, Dept. of Computer Science, University of Saskatchewan, March, 1996.
ftp://ftp.cs.usask.ca/pub/discus/paper.96-3.ps.Z.

[3] Braden, R., "Extending TCP for Transactions -- Concepts," RFC-1379, USC/ISI, November 1992.
[4] Braden, R., "T/TCP -- TCP Extensions for Transactions: Functional Specification," RFC-1644, USC/ISI, July 1994.
[5] Braun, H., and K. Claffy, "Web Traffic Characterization: An Assessment of the Impact of Caching Documents from

NCSA's Web Server," Proc. 2nd Int. WWW Conference, Chicago, Oct. 1994. URL http://www.ncsa.uiuc.edu/SDG/IT94/
Proceedings/ DDay/claffy/main.html.

[6] Cohen, E., B. Krishnamurthy and J. Rexford, “Improving End-to-End Performance of the Web Using Server Volumes and
Proxy Filters”, Proceedings of ACM SIGCOMM ’98.

[7] Connolly, Dan, WWW and OOP, http://www.w3.org/pub/WWW/OOP/Activity.html.
[8] Fan, L., P. Cao and J. Almeida, “Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol”, Proceedings of

ACM SIGCOMM ’98
[9] Frystyk, H., M. Spreitzer, B. Janssen, and J. Gettys, “HTTP-NG Overview” (draft-frystyk-httpng-overview-00.txt), Nov.

1998. Internet Draft, IETF.

 7

[10] Gettys, Jim, “Hypertext Transport Protocol HTTP/1.1”, W3C, Oct. 1996. URL
http://www.w3.org/Protocols/HTTP/Performance/.

[11] Habib, Md. A., M. Abrams, “Analysis of Sources of Latency in Downloading Web Pages”, Proceedings of WebNet 2000.
URL http://vtopus.cs.vt.edu/~nrg.

[12] Heidemann, J., "Performance Interactions Between P-HTTP and TCP Implementation," ACM Computer Communication
Review, 27 2, 65-73, April 1997. URL http://www.isi.edu/lsam/publications/phttp_tcp_interactions/.

[13] Heidemann, J., K. Obraczka, J. Touch, “Modeling the Performance of HTTP Over Several Transport Protocols”, June 1997.
IEEE/ACM Transactions on Networking 1997. URL http://www.isi.edu/~johnh/PAPERS/Heidemann96a.html

[14] Ingham, David, Mark Little, Steve Caughey, Santosh Shnvastava, “W3Objects: Bringing Object-Oriented Technology to
the Web”, The World Wide Web Journal, Issue 1, Dec 95, O'Reilly,
http://www.w3.org/pub/WWW/Journal/1/ingham.141/paper/141.html

[15] Larner, Dan, “Migrating the Web toward Distributed Objects”, 1996, Xerox PARC. URL
ftp://ftp.parc.xerox.com/pub/ilu/misc/webilu.html.

[16] Mogul, J. "The Case for Persistent-Connection HTTP", Western Research Laboratory Research Report 95/4, Digital
Equipment Corporation, May 1995. Also in Proceedings of ACM SIGCOMM '95. URL
http://www.research.digital.com/wrl/publications/abstracts/95.4.html

[17] Mogul, Jeffery, Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, "Potential benefits of delta-encoding and data
compression for HTTP," Proceedings of ACM SIGCOMM '97, Cannes France, September 1997.

[18] Nielsen, H.F., Gettys, J., Baird-Smith, A., Prud’hommeaux, E., Lie, H., and C. Lilley. “Network Performance Effects of
HTTP/1.1, CSS1, and PNG,” Proceedings of ACM SIGCOMM '97, Cannes France, September 1997.

[19] Padmanabhan, Venkata N., and Jeffrey C. Mogul. “Improving HTTP Latency”, Computer Networks and ISDN Systems, v.
28, pp. 25-35, Dec. 1995. Slightly revised version of paper in Proc. 2nd International WWW Conference '94: Mosaic and
the Web, Oct. 1994, which is available at
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html.

[20] Padmanabhan, Venkata N., and Lili Qiu, “The Content and Access Dynamics of a Busy Web Site: Findings and
Implications”, Proceedings of ACM SIGCOMM 2000.

[21] Palme, J., and A. Hopmann, “MIME E-mail Encapsulation of Aggregate Documents, such as HTML (MHTML),” RFC
2557, March 1999.

[22] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-Lee. “Hypertext Transfer Protocol –
HTTP/1.1”, RFC 2616. June 1999.

[23] Spero, Simon E., "Progress on HTTP-NG," URL http://www.w3.org/pub/WWW/Protocols/HTTP-NG/htto-ng-status.html
[24] Spero, Simon E., “Analysis of HTTP Performance Problems,” July 1994. URL

http://sunsite.unc.edu/mdma-release/http-prob.html, http://elanor.oit.unc.edu/http-prob.html.
[25] Stracke, J., “Encoding a DAV resource in MIME” (draft-stracke-webdav-mime-resource-00.txt), Feb. 1999. Internet Draft,

IETF.
[26] T. Berners-Lee, L. Masinter and M. McCahill. “Uniform Resource Locators (URL)”, RFC 1738, Dec. 1994.
[27] T. Berners-Lee, R. Fielding and H. Frystyk. “Hypertext Transfer Protocol – HTTP/1.0”, RFC 1945, May 1996.
[28] Touch, J., J. Heidemann, K. Obraczka, "Analysis of HTTP Performance," USC/Information Sciences Institute, August,

1996. URL http://www.isi.edu/lsam/publications/http-perf/.
[29] W3C, “HTTP Performance Overview”, Oct. 1999. URL http://www.w3.org/Protocols/HTTP/Performance/overview.html.
[30] W3C, W3C's work on HTTP Next Generation (HTTP-NG), URL http://www.w3.org/Protocols/HTTP-NG/.
[31] Wang, J., “A Survey of Web Caching Schemes for the Internet”, ACM Computer Communication Review, Vol. 29 No. 5,

Oct. 1997.
[32] Williams, S., M. Abrams, C. Standridge, G. Abdulla, and E. Fox. Removal Policies in Network Caches for World-Wide

Web Documents. In Proc. SIGCOMM ’96, pp. 293-305. Stanford, CA, August, 1996.
[33] Yu, H., and L. Breslau, “A Scalable Web Cache Consistency Architecture”, Proceedings of ACM SIGCOMM ’99.
[34] Crocker, D. H., “Standard for the Format of ARPA Internet Text Messages”, STD 11, RFC 822, August 1982.
[35] Franks, John. MGET proposal, October 1994, http://www.ics.uci.edu/pub/ietf/http/hypermail/1994q4/0260.html
[36] Craig E. Wills, Mikhail Mikhailov, Hao Shang, “N for the Price of 1: Bundling Web Objects for More Efficient Content

Delivery”. In Proceedings of WWW10 (10th International World Wide Web Conference), May 1-5, 2001, Hong Kong
(http://www10.org).

[37] Swen, Bing. Improving Web Performance Using Structural Information of Web Pages, Tech. Rept., ICL, CS Dept., Peking
University, Jan. 2001. (Available at http://icl.pku.edu.cn/bswen/web++/w++intro.html)

[38] Swen, Bing. Speeding Up the Web Using the Web++ Framework. In Proceedings (CD-ROM) of WebNet 2001
Conference, WebTech Session. Orlando, Florida, October 23-27, 2001.

 8

Appendix A STTP and HTTP Performance Comparison Tests

Table 1 and 2 are the results of three different tests, that is, the packet number and elapsed time for first-time
retrieval, 50% update (half of the linked images cached) and reload. Reload or revalidate is revisiting a Web page
where the contents are already available in a local cache. In our cases, revalidate of a cached page results in no
actual resource transfer.

Table 1 Performance Comparison on a 100Mbps LAN
first-time retr. (packets/sec.) 50% update (packets/sec.) reload (packets/sec.) linked

objects HTTP STTP PR AR HTTP STTP PR AR HTTP STTP PR AR
 2
 4
 6
 8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

12
20
28
36
45
53
61
69
77
85
93

101
113
117
125
133
143
151
159
167

0.121
0.162
0.204
0.235
0.471
0.541
0.727
0.846
0.929
1.160
1.337
1.472
1.627
1.753
1.933
2.143
2.243
2.414
2.553
2.639

9
14
21
25
30
35
40
45
51
56
60
65
69
76
80
86
90
94
99

104

0.105
0.124
0.162
0.187
0.215
0.260
0.351
0.441
0.494
0.641
0.726
0.818
0.891
0.974
1.087
1.167
1.307
1.392
1.583
1.667

0.33
0.43
0.33
0.44
0.50
0.51
0.53
0.53
0.51
0.52
0.55
0.55
0.64
0.54
0.56
0.55
0.59
0.61
0.61
0.61

0.15
0.31
0.26
0.26
1.19
1.08
1.07
0.92
0.88
0.81
0.84
0.80
0.83
0.80
0.78
0.84
0.72
0.73
0.61
0.58

11
16
23
28
35
41
47
53
59
65
71
77
83
89
95
101
109
115
121
127

0.060
0.087
0.128
0.143
0.196
0.292
0.390
0.535
0.634
0.751
0.863
0.968
1.099
1.207
1.302
1.422
1.556
1.652
1.767
1.873

7
9

12
16
18
21
23
25
28
30
33
36
39
42
43
46
49
51
54
58

0.051
0.070
0.095
0.121
0.146
0.176
0.192
0.208
0.218
0.232
0.245
0.274
0.342
0.389
0.451
0.521
0.550
0.561
0.580
0.661

0.57
0.78
0.92
0.75
0.94
0.95
1.04
1.12
1.11
1.17
1.15
1.14
1.13
1.12
1.21
1.20
1.22
1.25
1.24
1.19

0.18
0.24
0.35
0.18
0.34
0.66
1.03
1.57
1.91
2.24
2.52
2.53
2.21
2.10
1.89
1.73
1.83
1.94
2.05
1.83

8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84

0.040
0.059
0.073
0.089
0.110
0.125
0.133
0.173
0.250
0.305
0.406
0.481
0.561
0.621
0.721
0.761
0.788
0.809
0.831
0.876

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035

1.67
3.00
4.33
5.67
7.00
8.33
9.67
11.00
12.33
13.67
15.00
16.33
17.67
19.00
20.33
21.67
23.00
24.33
25.67
27.00

0.14
0.69
1.09
1.54
2.14
2.57
2.80
3.94
6.14
7.71

10.60
12.74
15.02
16.74
19.60
20.74
21.51
22.11
22.74
24.03

Total 1788 25.492 1149 14.592 0.56 0.75 1366 16.925 640 6.083 1.13 1.78 920 8.212 60 0.700 14.33 10.73

Table 2 Performance Comparison on a 48Kbps Modem Line
first-time retr. (packets/sec.) 50% update (packets/sec.) reload (packets/sec.) linked

objects HTTP STTP PR AR HTTP STTP PR AR HTTP STTP PR AR
 2
 4
 6
 8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

16
26
35
42
50
59
70
76
83
94

102
106
111
122
131
143
152
161
175
183

1.87
2.86
4.28
5.38
6.38
7.36
8.02
10.16
11.42
12.47
13.07
13.73
15.16
16.94
17.72
19.28
19.91
22.16
22.96
23.67

11
17
24
30
36
42
49
59
62
68
74
80
87
93
99

106
112
124
128
131

1.37
2.36
3.24
4.17
4.94
5.83
6.59
8.18
8.67
10.17
10.43
11.32
12.14
12.64
13.70
14.61
15.60
16.48
18.13
19.77

0.45
0.53
0.46
0.40
0.39
0.40
0.43
0.29
0.34
0.38
0.38
0.33
0.28
0.31
0.32
0.35
0.36
0.30
0.37
0.40

0.36
0.21
0.32
0.29
0.29
0.26
0.22
0.24
0.32
0.23
0.25
0.21
0.25
0.34
0.29
0.32
0.28
0.34
0.27
0.20

12
20
26
33
38
46
53
58
63
70
73
80
87
93
101
105
111
119
126
132

1.24
1.96
2.52
3.68
3.95
4.68
5.27
6.53
7.47
8.30
8.84
9.06
10.06
10.36
10.71
11.09
12.91
13.95
15.79
16.48

8
11
14
18
21
24
27
30
34
37
40
44
47
50
53
56
60
63
66
70

0.76
1.43
1.98
2.31
2.69
3.18
3.63
4.12
4.62
5.00
5.44
5.77
6.10
6.26
6.49
7.75
8.24
8.62
9.07
9.39

0.50
0.82
0.86
0.83
0.81
0.92
0.96
0.93
0.85
0.89
0.83
0.82
0.85
0.86
0.91
0.88
0.85
0.89
0.91
0.89

0.63
0.37
0.27
0.59
0.47
0.47
0.45
0.58
0.62
0.66
0.63
0.57
0.65
0.65
0.65
0.43
0.57
0.62
0.74
0.76

8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84

0.55
0.74
0.99
1.21
1.43
1.45
1.87
2.14
2.30
2.53
2.75
2.91
3.18
3.41
3.62
4.06
4.12
4.37
4.47
4.56

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22

1.67
3.00
4.33
5.67
7.00
8.33
9.67
11.00
12.33
13.67
15.00
16.33
17.67
19.00
20.33
21.67
23.00
24.33
25.67
27.00

1.50
2.36
3.50
4.50
5.50
5.59
7.50
8.73
9.45

10.50
11.50
12.23
13.45
14.50
15.45
17.45
17.73
18.86
19.32
19.73

Total 1937 254.80 1431 200.34 0.35 0.27 1446 164.85 773 102.85 0.87 0.60 920 52.66 60 6.60 14.33 6.98
Note:

packet saving ratio PR = (packet-noHTTP – packet-noSTTP) / packet-noSTTP
acceleration ratio AR = (timeHTTP – timeSTTP) / timeSTTP

 9

Table 3 and 4 are the comparison of transmission time and packet numbers of a page with 40 linked objects

and different numbers of objects being cached (the page is not cached). Again, STTP needs only one request for the
revalidate of all the cached images and the retrieval of other files. The packets transmitted were solely used for
resources transmission. All response packets (except for the last one) were in the full size.

Table 3 100Mbps LAN
update reload (packets/sec.) cached

objects HTTP STTP PR AR
 0
 2
 4
 6
 8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

167
163
159
155
151
147
143
139
135
131
127
123
119
115
111
107
103
99
95
91
87

2.078
2.043
2.013
1.963
1.913
1.873
1.783
1.722
1.662
1.598
1.528
1.462
1.392
1.342
1.272
1.226
1.167
1.061
1.042
0.982
0.921

112
105
102
96
91
86
82
78
69
65
61
54
49
45
39
33
28
22
18
12
7

1.702
1.508
1.367
1.262
1.251
1.072
1.031
0.992
0.911
0.762
0.711
0.601
0.471
0.436
0.330
0.261
0.231
0.200
0.170
0.150
0.055

0.49
0.55
0.56
0.61
0.64
0.71
0.74
0.78
0.96
1.02
1.08
1.27
1.43
1.56
1.85
2.24
2.68
3.50
4.28
6.58
11.43

0.22
0.35
0.47
0.56
0.53
0.75
0.73
0.74
0.82
1.10
1.10
1.43
1.96
2.08
2.85
3.70
4.05
4.31
5.13
5.55

15.75

Table 4 48Kbps Modem Line

update reload (packets/sec.) cached
objects

HTTP STTP PR AR
 0
 2
 4
 6
 8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

201
198
195
187
181
177
173
166
163
161
155
151
147
142
139
136
131
128
122
110
91

21.70
21.42
21.26
21.20
20.87
20.57
18.43
17.94
17.26
16.17
14.75
13.82
13.32
12.30
12.09
11.65
10.27
9.73
8.77
7.01
4.21

140
133
130
123
114
106
100
94
87
80
74
67
61
54
46
40
34
26
20
13
7

21.04
19.36
19.14
18.07
17.17
16.43
15.19
14.28
12.93
12.02
10.93
9.83
9.04
7.91
7.17
5.66
4.64
3.68
2.61
1.73
0.60

0.44
0.49
0.50
0.52
0.58
0.67
0.73
0.77
0.87
1.01
1.09
1.25
1.41
1.63
2.02
2.40
2.85
3.92
5.10
7.46
12.00

0.03
0.11
0.11
0.17
0.22
0.25
0.21
0.26
0.33
0.35
0.35
0.41
0.47
0.55
0.69
1.06
1.21
1.64
2.36
3.05
6.02

 10

Appendix B A Brief Summary of STML Syntactical Rules

Syntax notation: X-seq indicates one of more X’s (X X ...), X-list is one or more X’s separated by intervening
commas (X, X, ...), and Xopt an optional X (X or empty). Bold font characters are terminal symbols of the syntax.
Alternatives are listed on separate intended lines. Single line comments are indicated using //.

STML-Document

meta-info-seqopt [stml] doc-part [/stml]

meta-info-seq
 meta-info-seq meta-info
 meta-info-seq

meta-info
 [!stml attribute-field-seq /]
 [!head attribute-field-seq /]
 [!body attribute-field-seq /]

doc-part
 head-part body-partopt
 body-part head-part

head-part

[head] item-spec-seq [/head]

item-spec-seq

item-spec-seq item-spec
item-spec

item-spec

root-spec // at most one
dir-spec

root-spec

[root attribute-field-seq] object-description-seq
 [/root]

dir-spec

[dir attribute-field-seq] object-description-seq
 [/dir]

object-description-seq

object-description-seq object-desc
object-desc

object-desc

object-description
dir-description

object-description

[object attribute-field-seq /]

dir-description

[dir attribute-field-seq /]

attribute-field-seq

attribute-field-seq attribute-field
attribute-field

attribute-field

stml-version
HTTP-header-field
name-attribute
offset-size-attribute
linked-object-type
content-present // partial document support
//...

stml-version
 Version = "STML/ digit-string . digit-string "

name-attribute

Name = " URL "

offset-size-attribute

Offset-Size =" offset-size-pair-list "

offset-size-pair-list

offset-size-pair-list , offset-size-pair
offset-size-pair

offset-size-pair

indicatoropt offset / size

linked-object-type

Linked-Object = " indicator media-type-list "

indicator

+
-

media-type-list

media-type-list , media-type
media-type

media-type

MIME-media-type
STML-part

STML-part

head-only
body-only
head-body
local-only // include only local objects (at the same

// server). STTP default value
remote-inline

content-present

indicator // default value +

body-part

[body] body [/body]

body

object-content-seq

object-content-seq

object-content object-content
object-content

object-content

[object attribute-field-seq]opt content [/object]opt

content

CRLF octet-seq CRLF

STML-comments // may occur at anywhere outside [...]

// pairs and object-content
[* octet-seq *]

