

Speeding Up the Web Using the Web++ Framework

Bing Swen (Sun Bin)
Dept. of Computer Science Technology, Peking University, Beijing 100971, CHINA

bswen@cs.pku.edu.cn

Abstract: A new mechanism of resource transmission, Web++, is proposed to further improve
Web performance. It includes three components: a URL scheme sttp for identifying resources;
the Structured Hypertext Transfer Protocol (STTP), defining a message set for the control of
resource transmission; and the Structured Hypertext Markup Language (STML), for
describing the structural information of Web pages. Experimental implementation and tests
show that STTP can be significantly faster than HTTP. In a wide range of typical transactions
where the linked objects of Web pages are infrequently modified, the improvement of
transmission time is around 70% to 400%, with the same magnitude of packet savings. Web++
is designed to be fully compatible with the Web, so that STTP servers/clients and HTTP
servers/clients can coexist and communicate with each other transparently.

Introduction

 The Hypertext Transfer Protocol (HTTP) is the core protocol used to access resources on the
World-Wide Web (WWW). While sufficiently simple for implementation, use and rapid popularization, it is
well known that HTTP/0.x and HTTP/1.0 [27] interact with TCP/IP in a low-efficiency manner, due to the
initial protocol design of connection establishment per URL when retrieving resources. Retrieval of a complete
Web page requires separate requests for formatted text and each linked objects, thus making network traffic
bursty. In the past years much work has been done to address this issue [11-13, 16-19, 24, 28, 29], eventually
leading to the new HTTP version [10]. HTTP/1.1 [22] significantly improves the efficiency of TCP use by
introducing the mechanisms of persistent connection, request pipelining and fine control of caching.
 Though other minor improvements and tune-ups are still possible to experiment and test [6, 8, 13, 17,
32, 33], it seems that there is little room left to further greatly improve Web performance under the existing
HTTP infrastructure. On the other hand, the structural characteristics of “hypertexted Web pages” still provide a
great potential for performance improvement. A Web page is composed of multiple files, and they can be
efficiently retrieved within a single transaction when sufficient information is available for the client to construct
appropriate requests. The key point is to design a simple yet sophisticated mechanism to describe the detailed
meta-information of each object in a compact form. Based on these considerations, this paper presents a novel
mechanism to improve the Web and at the same time retain the simplicity and full compatibility. We call it the
Web++, with emphasis on its compatibility with the existing Web.

Previous Work

 We are not aware of any other work that uses a special transfer encoding together with a transfer
control mechanism to speed up HTTP transactions, though the performance problem of HTTP has been widely
studied in the last decade, and several methods have been proposed to improve Web latency.
 To improve Web services on existing networks without any hardware update is to improve the transfer
protocols used by the Web. The lower-level TCP is a firm foundation of today’s Internet, so the source of
possible improvement is HTTP . The major aspects are: (1) connection reuse, to avoid or alleviate TCP
slow-start, which is represented by the work on Persistent HTTP (P/HTTP) [12, 16, 19]; (2) pipelining of
client’s requests, to reduce multiple request processing time [18]; (3) caching of server’s responses, which is the
topic of much previous work [6, 8, 17, 18, 31-33]. Most of the suggested improvement methods of significance
have been integrated into HTTP/1.1 [10, 22].

 Web++ aims at new mechanisms to further reduce message transfer time and provide more efficient
caching support using transfer models of encoded Web pages. There are several previous works that are close to
this aim.
 The “collection resource” of WebDAV [25] uses a multipart/related MIME entity to represent a
WebDAV resource as a single document, based on an XML syntax for describing resources. Though it is useful,
a collection is not a compact and efficient description of Web pages. For example, there are no provisions for
efficiently locating and updating objects in a collection (at file-offset level). Collection is not intended to be an
ideal format of transfer encoding to enhance the performance of the Web.
 The most relevant work related to STML is MHTML by Palme and Hopmann [21]. It defines the use of
a MIME multipart/related structure to aggregate a text/html root resource and the subsidiary resources it
references, and specifies a MIME content-header to reference each resource within the composite e-mail
message. Though claimed to be able to be employed by other transfer protocols (e.g., HTTP or FTP) to retrieve
a complete Web page in a single transfer, MHTML has several obviously insufficiencies to be seriously
considered for that purpose. First, it does not provide sufficient and/or efficient meta-information to completely
describe the document elements of a Web page, such as the information of number, size, offset, time of creation
and modification, entity tag (ETag), etc of each subsidiary resource (or linked object called by this paper). And
thus second, it does not provide support for caching the aggregated resources that have been retrieved, which is
essential for the scalability of the Web. Finally, as a media encoding specification, it dose not necessarily
provide any transfer control methods for the access of MHTML files.
 Franks [35] proposed a primitive MGET method using multiple If-Modified-Since header for the
various objects requested. Before sending an MGET request the client must first get the base HTML file using a
normal GET request. Padmanabhan and Mogul [19] proposed GETALL and GETLIST methods to make
pipeline requests along with a simple scheme of Web page preprocessing. Both MGET and GETALL/LIST
have fundamental inefficiencies as in the case of MHTML: no sufficient meta-information is provided for each
linked object; the component extraction is primitive at best; and so that no effective support for object caching,
partial revalidate and update, content encoding, etc.
 The most recent relevant work to the idea of "batch-fetching" a web page and all of its related objects is
the proposal to use bundles to transfer Web pages, presented by Wills et al [36], where 2 passes of request and
response are used to retrieve a Web page and its contents separately. Since a bundle is a simple form of resource
aggregation, it dose not provide a mechanism for the description of the detailed meta-information of the
embedded objects. The major insufficiency of bundles and the similar proposals is in the difficulty to handle
various partial modifications of related objects. It would be exceedingly difficult to design a uniform and
consistent scheme of aggregate resource updating without the help of a structural information description.
Bundle reconstruction, delta generation and updating would also bring significant load and contribute to user
perceived latency, for these have to be done at retrieval time. In this regard, delta encoding of individual object
would be preferable when only a few objects are constantly modified, as opposed to the intended use of bundles.

Web++ Overview
 The framework of Web++ includes three components:
 - A new URL scheme sttp for identifying resources on the Web++. An STTP URL has the general
format sttp: // host : port / path ? parameters. The default port of STTP service is 90. An example is sttp: //
wpp.org /index.stml.
 - The Structured Hypertext Transfer Protocol (STTP), defining a message set of requests and responses
for the transmission control of resources on the Web++.
 - The Structured Hypertext Markup Language (STML), for describing the structural information of
Web pages, including information of the root page file, number and types of the linked objects, entity attributes
of each object, file offsets and sizes of partial update, etc. With the meta-information description in STML,
STTP can transfer resources in an efficient way.
 The basic idea behind the Web++ is very simple. Namely, before sending a page file to the client, the
server first processes the page into a more compact format (structured hypertext) with sufficient
meta-information of each element related to the page, so that the client can handle them directly, without any
repeated network transmission. We will refer to this process as STML compilation (or encoding) in this paper.
On the other hand, the client also presents sufficient meta-information about its desired objects to the server for
the optimization of the compilation. Such processing of Web page allows the server and client to have a good

knowledge of the contents that are transmitted. This helps make a more efficient use of TCP connection, and
introduce new possible functionality to the Web as well.

 Major STTP transactions are performed within two messages, that is, one submission and one reply.
The typical 2-message process of a client to retrieve a Web page (sttp://host/xdoc) is as the following.
 First, the client checks the local cache to see if the Web page has been visited, and if not, it tries to get
the page together with all the related objects by sending a single (possible selective) S-GET request, expecting a
single response from the server with the message body being a full STML document generated for the page;
 If the page is already cached, then the client generates a partial STML document (head-part) listing the
meta-information of all the interesting objects related to the page (including the page itself) obtained since the
last visit, and send an S-COMPARE request, expecting a single response with an STML document containing all
the necessary information of update for modified objects.
 In each case, there are only two messages needed to transmit: one request (S-GET or S-COMPARE)
and one response, which makes the most efficient page retrieval model. For a typical Web page with 10 linked
objects (such as images, scripts, applets, style sheets, etc.), there are at least 11 requests and 11 responses
(totally 22 messages) needed to transmit between an HTTP client and server (together with mutual
acknowledgement for each packet). Though the request pipelining method usually helps reduce the latency, this
model is far from optimization in terms of number of messages and usage of bandwidth. With STML and STTP,
the number of messages is kept to the minimum: there are only one request and one response for the
transmission of the 11 objects (the Web page file and all the linked objects), eliminating the other “stupid” 10
requests and responses. Thus STTP reduces the network traffic by greatly reducing the number of client requests
and keeping most of the packets in full size.

 STTP servers and clients try to exchange sufficient information about a Web page and each object
related to it. In order to record the structural information of Web pages, we need to introduce a very simple
markup language called STML (the Structured Hypertext Markup Language). (For a summary of STML syntax
see [37].) Roughly speaking, an STML document is a "hypertext of hypertexts", that is, a set of hypertexts that
related to the same root hypertext. (The set may or may not be "closed" with respect to the closure of links.)
Thus STTP may also be called the protocol for the transmission of a set of hypertexts. A complete STML
document is actually a preprocessed HTML or XML document. Here is an example,

[stml]
[head]
[root Name= "/index.html" Content-Type="text/html" Content-Encoding= "czip" ETag=
"0-54e-383712c4" Offset-Size= "2371/55720" Linked-Object="-text/html, +*/*"]
[object Name= "/../img/logo.jpg" Content-Type= "image/jpeg" Content-Encoding= "czip"
ETag= "0-b7f-39e37ad2" Offset-Size= "62083/27960" /]
[/root]
[/head]
[body]
[object Name= "/index.html"]
 ...compressed content...
[/object]
…
[object Name= "/logo.bmp"]
 ...compressed content...
[/object]
[/body]
[/html]

 STTP uses the same message format as that of HTTP (the generic message format of [34]). The client
uses request messages to retrieve resources, and the server answers the requests using response messages.
 For the access of resources described in STML, STTP Currently introduces three requests: “STML
GET”, “STML COMPAE” and “STML POST”, corresponding to three new methods for STML document

retrieval, namely S-GET, S-COMPARE and S-POST. The method S-GET is used to retrieve an STML
description of a resource, usually for the first time retrieval. The following is a "selective" S-GET:

S-GET /xpage STTP/1.0
Host: w++.w++.org.cn
Linked-Object: head-only, -image/*, +image/gif, -audio/*

 S-COMPARE is used to realize the most efficient cache-based Web page revisiting model. It constructs
a partial STML document for update comparison of all objects related to the revisiting page. For example, when
user specify an URL sttp://wpp.org/index.html that has been visited, the client issues the following message:

S-COMPARE /index.html STTP/1.0
Host: wpp.org
Linked-Object: -text/html -text/xml +image/* local-only
ETag: 0-85f-724334c4 // ETag of the original STML document

[head]
[root Name= "/index.html" Content-Type="text/html" Offset-Size="502/27371" ETag=
"0-54e-383712c4" Linked-Object="-text/html, +*/*"]
[object Name="/logo.jpg" Content-Type="image/*" Offset-Size="27960/66808" ETag=
"0-23f-626854c4" /]
[object Name= "/menu.js" Content-Type="text/*" Offset-Size="94920/8033"
ETag="0-31d-652413c4" /]
[/root]
[/head]

 The S-POST method is used when the client needs to send some data to the server for processing,
similarly to HTTP POST method. STTP supports a caching based post method so that the client may get rid of
extra interactions, keeping the total messages to the minimum (that is, two messages). This is achieved using the
S-POST method together with a new header, Followed-By. For example,

S-POST url-1 STTP/1.0
Host: wpp.org.cn
Linked-Object: …
Followed-By: url-2 // next stop after posting

[head] …… [*head-part for url-2*] [/head]

……post-body……

 An STTP client should understand all HTTP responses in addition to the new ones, which begin from
status code 600. STTP status code has the following categories:
 100 ~ 599: HTTP status code
 600 ~ 999: STTP status code
 6xx: successful
 7xx: redirection
 8xx: client error
 9xx: server error
For example, 600 – STML transfer OK; 704 – STML not modified (ETag’s the same); 71x – STML partial
update, where 710 – only root page modified; 711 – only linked object(s) modified; 712 – linked objects added;
713 – linked objects removed.
 STTP is fully compatible with HTTP/1.x. For example, using the following URLs,

sttp://wpp.org.cn /
http://wpp.org.cn:90/

the client should present exactly the same content to the user, though different transfer methods are used.

Experimental Implementation and Tests
 To validate the effect of our mechanism, we made an experimental implementation (Apache HTTPd [1]
based) to compare the elapsed time in transmission of an identical set of Web pages using HTTP/1.1 and
STTP/STML. The test set consists of 20 different HTML files, containing 2, 4, 6, …, 40 linked images
respectively. The files also include a paragraph of the same text, amounting to 1876 characters. The images are
saved using different file names from the same JPEG file, which has 2471 bytes. The page with 40 images is
also used to test the caching based retrieval with 0, 2, 4, …, 40 images locally cached.
 The network environments tested include two typical connection conditions: a fast intranet and a slow
dialup line. The intranet is a 100Mbps Ethernet LAN, with RTT < 1ms and MSS = 1460. The dialup line is a
48Kpbs PPP modem line using a major public commercial dialup service, with RTT ≈ 220ms and MSS =
1460. On the intranet, there is one router hop between the server and the client, while on the modem line there
are 8. In order to make up for network fluctuations, the tests were made after midnight at several weekends and
most runs were repeated more than 10 times.
 The performance tests of elapsed time and packet number and the results are listed in the appendix
below. The results show that STTP outperformed HTTP under all circumstances tested. For the first time
retrieval, the improvement is around 70% on the LAN and 25% on modem line. For 50% update retrieval, the
improvement are 170% and 60% respectively. STTP is superior to HTTP for revalidate tests, even though
HTTP/1.1 has been dramatically improved over HTTP/1.0 at this aspect by exploiting request pipelining [18].
The later has a more significant impact since most resources on Web servers remain to be stable [2, 5], and even
on some highly dynamic web sites files tend to change little when they are modified, and the variation ratio is
often extremely small [20]. For update retrieval of average pages with less than a quarter of related objects that
are frequently modified, a 4 or 5 times improvement is commonly expectable. The savings in terms of number of
packets are of the same magnitude.
 STTP also shows the desired scalability, that is, the faster the connection, the better it performed.
Connection conditions are constantly improved, from which STTP will benefit more than HTTP.

Summary and Future Work
 In this paper we describe the Web++ framework, which is intended to be a simple mechanism to further
improve Web performance. STTP and STML are designed to be a flexible transmission control mechanism for
the access of hypermedia resources, and at the same time sufficiently simple and efficient, which helps
implementation and the compatibility with existing technologies. Adding STML handling to an HTTP server is
usually a simple task (though adding it to HTTP browsers is somewhat more complicated).
 The major shortcoming is that STML encoding, decoding and cache synchronization bring additional
load for both the server and client. As discussed in the above sections, using a few specific caching methods, a
significant part of the load can be optimized away. The cost is low on both the server and the client sides
comparing to the improvement. And such load tends to be a smaller and smaller part as computer hardware
technology is rapidly progressing, which is much faster than the improvement of the limits of communication
connections. The Web++ framework provides a load balance between the communication hosts and
connections.
 The work planned in the near future includes the improvement of our STTP design and implementation,
and larger scale and extensive experiments and tests on both research network environments and a few possible
commercial sites. Work worth doing also includes the development of draft specifications of HTTP and STML.

References

1. Apache, The Group, URL http://www.apache.org/.
2. Arlitt, Martin F. and Carey L. Williamson. Web Server Workload Characterization: The Search for Invariants

(Extended Version). DISCUS Working Paper 96-3, Dept. of Computer Science, University of Saskatchewan, March,
1996. ftp://ftp.cs.usask.ca/pub/discus/paper.96-3.ps.Z.

3. Braden, R., "Extending TCP for Transactions -- Concepts," RFC-1379, USC/ISI, November 1992.
4. Braden, R., "T/TCP -- TCP Extensions for Transactions: Functional Specification," RFC-1644, USC/ISI, July 1994.
5. Braun, H., and K. Claffy, "Web Traffic Characterization: An Assessment of the Impact of Caching Documents from

NCSA's Web Server," Proc. 2nd Int. WWW Conference, Chicago, Oct. 1994. URL
http://www.ncsa.uiuc.edu/SDG/IT94/ Proceedings/ DDay/claffy/main.html.

6. Cohen, E., B. Krishnamurthy and J. Rexford, “Improving End-to-End Performance of the Web Using Server Volumes
and Proxy Filters”, Proceedings of ACM SIGCOMM ’98.

7. Connolly, Dan, WWW and OOP, http://www.w3.org/pub/WWW/OOP/Activity.html.
8. Fan, L., P. Cao and J. Almeida, “Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol”, Proceedings

of ACM SIGCOMM ’98
9. Frystyk, H., M. Spreitzer, B. Janssen, and J. Gettys, “HTTP-NG Overview” (draft-frystyk-httpng-overview-00.txt),

Nov. 1998. Internet Draft, IETF.
10. Gettys, Jim, “Hypertext Transport Protocol HTTP/1.1”, W3C, Oct. 1996. URL

http://www.w3.org/Protocols/HTTP/Performance/.
11. Habib, Md. A., M. Abrams, “Analysis of Sources of Latency in Downloading Web Pages”, Proceedings of WebNet

2000. URL http://vtopus.cs.vt.edu/~nrg.
12. Heidemann, J., "Performance Interactions Between P-HTTP and TCP Implementation," ACM Computer

Communication Review, 27 2, 65-73, April 1997. URL http://www.isi.edu/lsam/publications/phttp_tcp_interactions/.
13. Heidemann, J., K. Obraczka, J. Touch, “Modeling the Performance of HTTP Over Several Transport Protocols”, June

1997. IEEE/ACM Transactions on Networking 1997. URL http://www.isi.edu/~johnh/PAPERS/Heidemann96a.html
14. Ingham, David, Mark Little, Steve Caughey, Santosh Shnvastava, “W3Objects: Bringing Object-Oriented Technology

to the Web”, The World Wide Web Journal, Issue 1, Dec 95, O'Reilly,
http://www.w3.org/pub/WWW/Journal/1/ingham.141/paper/141.html

15. Larner, Dan, “Migrating the Web toward Distributed Objects”, 1996, Xerox PARC. URL
ftp://ftp.parc.xerox.com/pub/ilu/misc/webilu.html.

16. Mogul, J. "The Case for Persistent-Connection HTTP", Western Research Laboratory Research Report 95/4, Digital
Equipment Corporation, May 1995. Also in Proceedings of ACM SIGCOMM '95. URL
http://www.research.digital.com/wrl/publications/abstracts/95.4.html

17. Mogul, Jeffery, Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, "Potential benefits of delta-encoding and
data compression for HTTP," Proceedings of ACM SIGCOMM '97, Cannes France, September 1997.

18. Nielsen, H.F., Gettys, J., Baird-Smith, A., Prud’hommeaux, E., Lie, H., and C. Lilley. “Network Performance Effects
of HTTP/1.1, CSS1, and PNG,” Proceedings of ACM SIGCOMM '97, Cannes France, September 1997.

19. Padmanabhan, Venkata N., and Jeffrey C. Mogul. “Improving HTTP Latency”, Computer Networks and ISDN
Systems, v. 28, pp. 25-35, Dec. 1995. Slightly revised version of paper in Proc. 2nd International WWW Conference
'94: Mosaic and the Web, Oct. 1994, which is available at
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html.

20. Padmanabhan, Venkata N., and Lili Qiu, “The Content and Access Dynamics of a Busy Web Site: Findings and
Implications”, Proceedings of ACM SIGCOMM 2000.

21. Palme, J., and A. Hopmann, “MIME E-mail Encapsulation of Aggregate Documents, such as HTML (MHTML),”
RFC 2557, March 1999.

22. R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-Lee. “Hypertext Transfer
Protocol – HTTP/1.1”, RFC 2616. June 1999.

23. Spero, Simon E., "Progress on HTTP-NG," URL
http://www.w3.org/pub/WWW/Protocols/HTTP-NG/htto-ng-status.html

24. Spero, Simon E., “Analysis of HTTP Performance Problems,” July 1994. URL
http://sunsite.unc.edu/mdma-release/http-prob.html, http://elanor.oit.unc.edu/http-prob.html.

25. Stracke, J., “Encoding a DAV resource in MIME” (draft-stracke-webdav-mime-resource-00.txt), Feb. 1999. Internet
Draft, IETF.

26. T. Berners-Lee, L. Masinter and M. McCahill. “Uniform Resource Locators (URL)”, RFC 1738, Dec. 1994.
27. T. Berners-Lee, R. Fielding and H. Frystyk. “Hypertext Transfer Protocol – HTTP/1.0”, RFC 1945, May 1996.
28. Touch, J., J. Heidemann, K. Obraczka, "Analysis of HTTP Performance," USC/Information Sciences Institute, August,

1996. URL http://www.isi.edu/lsam/publications/http-perf/.
29. W3C, “HTTP Performance Overview”, Oct. 1999. URL

http://www.w3.org/Protocols/HTTP/Performance/overview.html.
30. W3C, W3C's work on HTTP Next Generation (HTTP-NG), URL http://www.w3.org/Protocols/HTTP-NG/.
31. Wang, J., “A Survey of Web Caching Schemes for the Internet”, ACM Computer Communication Review, Vol. 29 No.

5, Oct. 1997.
32. Williams, S., M. Abrams, C. Standridge, G. Abdulla, and E. Fox. Removal Policies in Network Caches for

World-Wide Web Documents. In Proc. SIGCOMM ’96, pp. 293-305. Stan-ford, CA, August, 1996.
33. Yu, H., and L. Breslau, “A Scalable Web Cache Consistency Architecture”, Proceedings of ACM SIGCOMM ’99.
34. Crocker, D. H., “Standard for the Format of ARPA Internet Text Messages”, STD 11, RFC 822, August 1982.
35. Franks, John. MGET proposal, October 1994, http://www.ics.uci.edu/pub/ietf/http/hypermail/1994q4/0260.html
36. Craig E. Wills, Mikhail Mikhailov, Hao Shang, “N for the Price of 1: Bundling Web Objects for More Efficient

Content Delivery”. In Proceedings of WWW10 (10th International World Wide Web Conference), May 1-5, 2001,
Hong Kong (http://www10.org).

37. Swen, Bing. Improving Web Performance Using Structural Information of Web Pages, Jan. 2001. URL
http://icl.pku.edu.cn/bswen/web++/w++intro.html.

Appendix STTP and HTTP Performance Comparison Tests

Table 1 and 2 are the results of three different tests, that is, the packet number and elapsed time for
first-time retrieval, 50% update (half of the linked images cached) and reload. Reload or revalidate is revisiting a
Web page where the contents are already available in a local cache. In our cases, revalidate of a cached page
results in no actual resource transfer.

Table 1 Performance Comparison on a 100Mbps LAN
first-time retr. (packets/sec.) 50% update (packets/sec.) reload (packets/sec.) linked

objects HTTP STTP PR AR HTTP STTP PR AR HTTP STTP PR AR
 2
 4
 6
 8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

12
20
28
36
45
53
61
69
77
85
93
101
113
117
125
133
143
151
159
167

0.121
0.162
0.204
0.235
0.471
0.541
0.727
0.846
0.929
1.160
1.337
1.472
1.627
1.753
1.933
2.143
2.243
2.414
2.553
2.639

9
14
21
25
30
35
40
45
51
56
60
65
69
76
80
86
90
94
99

104

0.105
0.124
0.162
0.187
0.215
0.260
0.351
0.441
0.494
0.641
0.726
0.818
0.891
0.974
1.087
1.167
1.307
1.392
1.583
1.667

0.33
0.43
0.33
0.44
0.50
0.51
0.53
0.53
0.51
0.52
0.55
0.55
0.64
0.54
0.56
0.55
0.59
0.61
0.61
0.61

0.15
0.31
0.26
0.26
1.19
1.08
1.07
0.92
0.88
0.81
0.84
0.80
0.83
0.80
0.78
0.84
0.72
0.73
0.61
0.58

11
16
23
28
35
41
47
53
59
65
71
77
83
89
95

101
109
115
121
127

0.060
0.087
0.128
0.143
0.196
0.292
0.390
0.535
0.634
0.751
0.863
0.968
1.099
1.207
1.302
1.422
1.556
1.652
1.767
1.873

7
9

12
16
18
21
23
25
28
30
33
36
39
42
43
46
49
51
54
58

0.051
0.070
0.095
0.121
0.146
0.176
0.192
0.208
0.218
0.232
0.245
0.274
0.342
0.389
0.451
0.521
0.550
0.561
0.580
0.661

0.57
0.78
0.92
0.75
0.94
0.95
1.04
1.12
1.11
1.17
1.15
1.14
1.13
1.12
1.21
1.20
1.22
1.25
1.24
1.19

0.18
0.24
0.35
0.18
0.34
0.66
1.03
1.57
1.91
2.24
2.52
2.53
2.21
2.10
1.89
1.73
1.83
1.94
2.05
1.83

8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84

0.040
0.059
0.073
0.089
0.110
0.125
0.133
0.173
0.250
0.305
0.406
0.481
0.561
0.621
0.721
0.761
0.788
0.809
0.831
0.876

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035

1.67
3.00
4.33
5.67
7.00
8.33
9.67
11.00
12.33
13.67
15.00
16.33
17.67
19.00
20.33
21.67
23.00
24.33
25.67
27.00

0.14
0.69
1.09
1.54
2.14
2.57
2.80
3.94
6.14
7.71
10.60
12.74
15.02
16.74
19.60
20.74
21.51
22.11
22.74
24.03

Total 1788 25.492 1149 14.592 0.56 0.75 1366 16.925 640 6.083 1.13 1.78 920 8.212 60 0.700 14.33 10.73

Table 2 Performance Comparison on a 48Kbps Modem Line
first-time retr. (packets/sec.) 50% update (packets/sec.) reload (packets/sec.) linked

objects HTTP STTP PR AR HTTP STTP PR AR HTTP STTP PR AR
 2
 4
 6
 8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

16
26
35
42
50
59
70
76
83
94
102
106
111
122
131
143
152
161
175
183

1.87
2.86
4.28
5.38
6.38
7.36
8.02

10.16
11.42
12.47
13.07
13.73
15.16
16.94
17.72
19.28
19.91
22.16
22.96
23.67

11
17
24
30
36
42
49
59
62
68
74
80
87
93
99

106
112
124
128
131

1.37
2.36
3.24
4.17
4.94
5.83
6.59
8.18
8.67

10.17
10.43
11.32
12.14
12.64
13.70
14.61
15.60
16.48
18.13
19.77

0.45
0.53
0.46
0.40
0.39
0.40
0.43
0.29
0.34
0.38
0.38
0.33
0.28
0.31
0.32
0.35
0.36
0.30
0.37
0.40

0.36
0.21
0.32
0.29
0.29
0.26
0.22
0.24
0.32
0.23
0.25
0.21
0.25
0.34
0.29
0.32
0.28
0.34
0.27
0.20

12
20
26
33
38
46
53
58
63
70
73
80
87
93

101
105
111
119
126
132

1.24
1.96
2.52
3.68
3.95
4.68
5.27
6.53
7.47
8.30
8.84
9.06
10.06
10.36
10.71
11.09
12.91
13.95
15.79
16.48

8
11
14
18
21
24
27
30
34
37
40
44
47
50
53
56
60
63
66
70

0.76
1.43
1.98
2.31
2.69
3.18
3.63
4.12
4.62
5.00
5.44
5.77
6.10
6.26
6.49
7.75
8.24
8.62
9.07
9.39

0.50
0.82
0.86
0.83
0.81
0.92
0.96
0.93
0.85
0.89
0.83
0.82
0.85
0.86
0.91
0.88
0.85
0.89
0.91
0.89

0.63
0.37
0.27
0.59
0.47
0.47
0.45
0.58
0.62
0.66
0.63
0.57
0.65
0.65
0.65
0.43
0.57
0.62
0.74
0.76

8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84

0.55
0.74
0.99
1.21
1.43
1.45
1.87
2.14
2.30
2.53
2.75
2.91
3.18
3.41
3.62
4.06
4.12
4.37
4.47
4.56

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22
0.22

1.67
3.00
4.33
5.67
7.00
8.33
9.67
11.00
12.33
13.67
15.00
16.33
17.67
19.00
20.33
21.67
23.00
24.33
25.67
27.00

1.50
2.36
3.50
4.50
5.50
5.59
7.50
8.73
9.45
10.50
11.50
12.23
13.45
14.50
15.45
17.45
17.73
18.86
19.32
19.73

Total 1937 254.80 1431 200.34 0.35 0.27 1446 164.85 773 102.85 0.87 0.60 920 52.66 60 6.60 14.33 6.98

Note:
packet saving ratio PR = (packet-noHTTP – packet-noSTTP) / packet-noSTTP
acceleration ratio AR = (timeHTTP – timeSTTP) / timeSTTP

 Table 3 and 4 are the comparison of transmission time and packet numbers of a page with 40 linked
objects and different numbers of objects being cached (the page is not cached). Again, STTP needs only one
request for the revalidate of all the cached images and the retrieval of other files. The packets transmitted were
solely used for resources transmission. All response packets (except for the last one) were in the full size.

Table 3 100Mbps LAN
update reload (packets/sec.) cached

objects HTTP STTP PR AR
 0
 2
 4
 6
 8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

167
163
159
155
151
147
143
139
135
131
127
123
119
115
111
107
103
99
95
91
87

2.078
2.043
2.013
1.963
1.913
1.873
1.783
1.722
1.662
1.598
1.528
1.462
1.392
1.342
1.272
1.226
1.167
1.061
1.042
0.982
0.921

112
105
102
96
91
86
82
78
69
65
61
54
49
45
39
33
28
22
18
12
7

1.702
1.508
1.367
1.262
1.251
1.072
1.031
0.992
0.911
0.762
0.711
0.601
0.471
0.436
0.330
0.261
0.231
0.200
0.170
0.150
0.055

0.49
0.55
0.56
0.61
0.64
0.71
0.74
0.78
0.96
1.02
1.08
1.27
1.43
1.56
1.85
2.24
2.68
3.50
4.28
6.58
11.43

0.22
0.35
0.47
0.56
0.53
0.75
0.73
0.74
0.82
1.10
1.10
1.43
1.96
2.08
2.85
3.70
4.05
4.31
5.13
5.55

15.75

Table 4 48Kbps Modem Line

update reload (packets/sec.) cached
objects

HTTP STTP PR AR
 0
 2
 4
 6
 8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

201
198
195
187
181
177
173
166
163
161
155
151
147
142
139
136
131
128
122
110
91

21.70
21.42
21.26
21.20
20.87
20.57
18.43
17.94
17.26
16.17
14.75
13.82
13.32
12.30
12.09
11.65
10.27
9.73
8.77
7.01
4.21

140
133
130
123
114
106
100
94
87
80
74
67
61
54
46
40
34
26
20
13
7

21.04
19.36
19.14
18.07
17.17
16.43
15.19
14.28
12.93
12.02
10.93
9.83
9.04
7.91
7.17
5.66
4.64
3.68
2.61
1.73
0.60

0.44
0.49
0.50
0.52
0.58
0.67
0.73
0.77
0.87
1.01
1.09
1.25
1.41
1.63
2.02
2.40
2.85
3.92
5.10
7.46

12.00

0.03
0.11
0.11
0.17
0.22
0.25
0.21
0.26
0.33
0.35
0.35
0.41
0.47
0.55
0.69
1.06
1.21
1.64
2.36
3.05
6.02

