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Abstract. Verifiable secret sharing schemes proposed so far can only
allow participants to verify whether their shares are correct or not. In
this paper, we propose a new protocol which can allow participants not
only to verify the correctness of their shares but also to revise the faulty
shares. It is achieved in a cooperative way by participants, but without
any assistance from the dealer. This protocol, to the best of our knowl-
edge, is the first one providing such kind of ability. Correcting shares
by participants instead of the dealer is important in many situations. In
addition, this protocol is also useful for adding new participants without
the dealer’s assistance.

1 Introduction

Informally, a (k, n)-threshold scheme is a way of distributing partial information
called shares to n participants in order to allow any k of them to make an action
(e.g., to find a secret value K or to open a vault in a bank), but also to ensure
that the action cannot be made by any subset of fewer than k participants.

Threshold schemes based on finite geometries and polynomial interpolations
were introduced independently by Blakley [3] and Shamir [14] in 1979. Since
then, many constructions have been given for such cryptographic schemes |9,
10,13,16,17]. In the Shamir (k,n)-threshold scheme, a secret K € GF(p), p a
prime greater than n, is distributed by a special participant called dealer (D as
an abbreviation) to a set P of participants in the following way.

(1) D chooses n distinct non-zero elements of GF(p), denoted z;, 1 <1 < n. For
1 <1 <n, D sends the value x; to P, € P through a public channel.

(2) D secretly chooses, independently at random, k& — 1 elements of GF(p),
Aly... yAk—1- .

(3) For 1 <1 <n, D computes y; = f(z;), where f(z) = K + 3 ;<1027 €
GF(p)[x] and sends the share y; to P, € P through a private secure channel.



At a later time, a subset of participants B C P will pool their shares in an
attempt to compute the secret K. If |B| > k, then they should be able to
compute the value of K; if |B| < k, then they should not be able to obtain any
information about K.

In many applications, it may be possible that the dealer D does not trust
the participants completely, and the participants do not trust D either. For this
reason, verifiable secret sharing (VSS) schemes were proposed. A VSS scheme
enables each participant to verify whether the share he received from D is con-
sistent with other shares or not, and/or to check whether each pooled share is
indeed correct or not. Chor et al. [5] first introduced the notion of a VSS scheme.
Since then, VSS schemes have been studied by numerous authors (e.g., [2,5,7,
8,10]).

On the other hand, VSS schemes proposed so far do not provide the ability
for participants to revise their shares if some of these shares have been verified to
be incorrect. What they can do after finding faulty shares is to make complains
to the dealer and ask him to re-distribute new shares for them, then to verify the
new shares again by the VSS scheme they used previously. We notice that in the
following situations, most of the current VSS schemes may become ineffectual.

1. In the case if, for security purpose, D is not permitted to preserve any
information about the shares and the secret after distributing the shares.

2. In the case if the dealer D, after sending shares to participants, becomes
inactive.

Also, in the real world, participants may not do the verification right after
receiving their shares from D. They may do that at any time before the secret-
recovery phase. Therefore, when using a common VSS scheme, it is necessary
that D preserves all the information concerning the shares and the secret before
all the participants do the verification. If D loses such information before the
verification phase, the faulty shares will not be able to be corrected successfully.
On the other hand, if D pays scant attention to security management, an ad-
versary may steal information about the secret or the shares of the scheme by
attacking the dealer’s storage where all of the secret information are stored on.
Therefore, the adversary can avoid the difficulty of attacking the VSS scheme
directly but get the secret information of the scheme. From these viewpoints, it
is undesirable that D preserves any secret information about the scheme for a
long period of time. Case 2 is also possible if an adversary disturbs the commu-
nications between D and the participants after the initial phase.

In this paper, we propose a new protocol for share-verification and share-
correction which can overcome the drawbacks described above. Our newly pro-
posed protocol allows participants not only to verify their shares but also to
revise the faulty shares without the dealer’s assistance. Though this goal is
achieved in a cooperative way by participants, this protocol is, to the best of our
knowledge, the first VSS protocol providing such kind of ability. We emphasize
that error-correcting codes such as Reed-Solomon codes [12] can correct errors
only during the phase of pooling shares together which would then reveal the
secret.



Our protocol has the following features.

e The dealer D can destroy all of the information about the secret and the
shares of the scheme after distributing the shares to the participants.

e Our protocol is an auxiliary for the Shamir threshold scheme. That is, if D
is reliable, participants can just use the “original” Shamir threshold scheme
and can avoid the use of the bothersome and/or resources-consuming VSS
scheme. At any time when they feel doubtful about the sincerity of D, they
can apply the proposed method to verify and revise their shares.

e Only k + 2(t + ¢) < n of the n participants are needed to take part in the
protocol whereas all the shares can be verified and revised (without revealing
any information about the secret and shares of participants, of course.) Those
participants not taking part in the protocol can verify and revise (if neces-
sary) their shares according to the public and secret information obtained
from other participants. Here k is the threshold value, ¢ is the maximum
number of faulty shares participants get from the dealer D and c is the
maximum number of cheaters (dishonest participants).

e No secure channel between participants is required.

e One restriction of our protocol is that it can only be applied in the Shamir
(k,n)-threshold scheme with n > k+ 2(t + ¢), where t + ¢ < min{k, | 25%]}.

On the other hand, this protocol can also be utilized for other purposes. We
show in Section 4 that this protocol is also useful for adding new participants
without the dealer’s assistance in a threshold scheme with cheaters.

The rest of this paper is organized as follows. In Section 2, we give some pre-
liminaries which will be used in our protocol. Section 3 is the illustration of our
protocol. Section 4 explains the application of our protocol to participant enroll-
ment without any assistance of the dealer in a threshold scheme with cheaters.
Finally, Section 5 makes the conclusion of this paper.

2 Preliminaries

2.1 Homomorphism Property

In [1], Benaloh introduced a homomorphism property in secret sharing, which
implies that the compositions of shares of several schemes are shares of the
composition of these schemes.

Definition 1. A function F' is said to have (@, ®)-homomorphism property (or
(®, ®)-homomorphic) if

F(z1,22,. .. ,2n) ® F(y1,92,. - ,Yn)
- F(xl R Y1, T2 Q Y2, .. 7xn®yn)
This property implies that the reconstruction from the combined shares results

in a combined secret of several secret sharing schemes. It is easy to see that the
Shamir threshold scheme is (+, +)-homomorphic.



2.2 TMO Algorithm [17]

In [13], Rees et al. considered the problem of determining consistent sets of
shares in a (k,n)-threshold scheme with cheaters (i.e., dishonest participants).
Their underlying idea is to find a suitable set system (5,7 ), where S is the set
of all n shares and 7 is a collection of k-subsets of S, so that for any t’-subset
Sy of shares (and thus the subset of all fake shares, if we assume that at most
t" of the n shares are fake), there is at least one T € 7 such that T does not
contain any share in this ¢’-subset S;. Then the k-subset T' € T containing no
fake shares can be used to derive the secret correctly. One drawback of Rees
et al. ’s algorithms is that they sacrifice the property of threshold. That is, no
honest participant can be absent if they decide to reconstruct the secret while in
a (k,n)-threshold scheme, only k of the n participants are needed to pool their
shares. This drawback is improved by Tso, Miao and Okamoto in [17]. In both
[13] and [17], they applied a combinatorial structure called covering to their
schemes which provides an upper bound on the number of iterations required in
their algorithms.

Definition 2. [17] Let v,k and ¢’ be positive integers such that v > k > t/. A
(v, k,t')-covering is a pair (V, B), where V is a v-set of elements, called points,
and B is a collection of k-subsets of V, called blocks, such that every ¢'-subset of
points occurs in at least one block of B. The covering number C(v,k,t') is the
minimum number of blocks in any (v, k,t’)-covering. A (v, k,t’)-covering (V, B)
is optimal if |B| = C(v, k,1).

Suppose that the Shamir (k,n)-threshold scheme is implemented in GF(p).
Let

S ={(wiy): 1<i<n}C(GF()\{0}) x GF(p)

be the set of n shares, and assume that at most ¢’ of the n shares are fake. That
is, there exists a polynomial Py(z) € GF(p)[x] of degree at most k — 1 such
that y; = Po(z;) for at least n — ¢’ of the n shares. The secret, which can be
reconstructed from any k genuine shares, is the value Py(0). In addition, define

— M :a (k+2t')-subset of {1,2,...,n}.

= Sm o {(zi,yi): i e MPCS.

— T :acollection of k-subsets of M such that its complement {M\T : T € T}
is the collection of blocks of a (k+2t', 2t', t')-covering with minimum number
of blocks.

— Pr : the unique polynomial of degree at most k — 1 reconstructed by the
subset T € 7.

Moreover, define Cr = {i: Pr(z;) =y;,1 <i<n}and NCr = {i: Pr(x;) #
¥i, 1 <i <n}. Then, Tso, Miao and Okamoto’s algorithm [17] (TMO algorithm
as an abbreviation) can be outlined as follows. In this algorithm, we denote
MN\T = {ry,... i, } for each T € T, where the subscripts are ordered
randomly.



TMO Algorithm [17]
Input M, 7T, S, k, t'.
For each T' € T, perform the following steps:

compute Pr

CINCr|=0

|Cr| =k

. for j =1 to 2t do

ify,, = PT(xn.j), then |Cr| + +

else INCr| + +

if |Cr| > k+ ¢/, then Py = Pr and QUIT
else if INCr| > t' +1 then BREAK

0 NS U W

The TMO algorithm allows any k + 2¢' of the n participants to achieve the
end of determining a consistent set of shares in a threshold scheme with at most
t' cheaters.

2.3 Publicly Verifiable Secret Sharing Scheme

A publicly verifiable secret sharing (PVSS) scheme is a special type of VSS
scheme in which the validity of the shares distributed by the dealer D can be
verified by any entity instead of the shareholders only. Here we first review a
basic type of VSS scheme in which the security is based on the intractability of
the discrete logarithm problem, then we describe the Stadler PVSS scheme [15]
based on this basic VSS scheme. We will adopt the Stadler scheme later as a
sub-protocol in our scheme.

Basic Type of VSS Scheme
Let

— p be a large prime so that ¢ = (p — 1)/2 is also a prime.
— g be a generator of GF(p) \ {0} so that computing discrete logarithms to
the base ¢ is difficult.

To share a secret K € GF(p) in a (k,n)-VSS scheme, the initial setting is
the same as that of the Shamir threshold scheme. z; € GF(p) \ {0} is a publicly
known element assigned to participant P;,1 < i < n. f(z) = K+Zl<j<k_1ajxj €
GF(p)[z] is the polynomial D secretly chosen and y; = f(z;) (mod p) is the se-
cret share of P; obtained from D through a private secure channel. Beside these,
D publishes the values A = g% and F; = g%, j = 1,... ,k — 1. Any group of
at least k participants can compute the secret K € GF(p) using the Lagrange
interpolation formula. In addition, any participant P; can verify his/her share

y; by computing Y; = A - Hf;ll ng and checking whether Y; = g¥:.



Stadler PVSS Scheme [15]

Prover Verifier
repeat [ times:

w €r GF(q)
tn, = h* (mod p)
ty =g thyty —
cer{0,1}
—c
r=w-—c-a (mod q)
r —

To make this scheme publicly verifiable, the private secure channels between
D and participants are replaced by public key encryption schemes. In the Stadler
PVSS scheme, the encryption scheme is identical to the ElGamal public key
crypyosystem [6]. First, let h € GF(p) \ {0} of order ¢ be a public information
selected by D, then each participant P; randomly chooses a secret key s; €
GF(q) and publishes his/her public key z; = h® (mod p). To distribute the
share y; € GF(p) \ {0} to P; secretly, D encrypts y; with P;’s public key z;. D
also randomly chooses « € GF(q) \ {0} and then calculates the pair (M;, M)
where M; = h® (mod p), and My = y; ‘28 (mod p). If y; = 0 (mod p) for some
i, then D should choose another z; € GF(p) \ {0} for P; or choose another
polynomial so that y; # 0 (mod p) for all i. The ciphertext (M7, Ms) can only
be decrypted by P; since y; = M7*/M> (mod p).

To verify the shares, the prover (i.e., the dealer D) proves to the verifier (i.e.,
any entity instead of the shareholders only) that the discrete logarithm of M to
the base h is equal to the double discrete logarithm of YiM"’ to the bases g and
2;. Tt is based on the fact that if (M, My) is equal to (h®,y; *2%) (mod p) for
some a € GF(q) \ {0}, then

MQ_ iM_ Z?
YT =gttt =gt

Consequently, the probability for the prover to deceive a verifier successfully
when repeating the proof-verification protocol [ times is 1/2!. This verification
can also be done non-interactively. The interested readers are referred to [15] for
more details.



3 Proposed Method

This section describes our share-verification protocol which is a combination of
the above mentioned methods. The feature of our protocol is that it provides
the ability for participants to revise faulty shares in a cooperative way without
the dealer’s assistant. One restriction of our protocol is that the number of
participants n must be greater than or equal to k + 2(¢ 4 ¢), where k is the
threshold value, t is the maximum number of faulty shares and ¢ is the maximum
number of cheaters (dishonest participants). The parameters p, ¢, g are the same
as those in Section 2.3. In the initial phase, the dealer D shares a secret K €
GF(p) to n participants according to the Shamir (k,n)-threshold scheme. The
polynomial D secretly chosen is f(z) € GF(p)[x], and the share for participant
P, is (x4, y;), where z; is the public information for participant P; and y; = f(x;)
for 1 <4 < n. After this initial phase, D destroys all the secret information about
the scheme for security purpose.

If no participant doubts the sincerity of the dealer D, then the procedure
for verification is not needed. In this case, the secret sharing scheme is just that
of the “original” Shamir threshold scheme, which is believed to be much more
efficient than any kind of VSS schemes. Since the dealer D has destroyed all the
secret information about the scheme, no “current” VSS protocol is usable if any
participant feels doubtful about the correctness of his/her share later. In this
situation, with the cooperation of at least k + 2(t 4+ ¢) — 1 of the other n — 1
participants, our protocol can be applied and the verification of their shares can
be executed.

W.lo.g., we assume Q = {P1, P, -+, Piyo@te)} be the (k+2(t + c))-subset
of the n participants which will take part in the share-verification protocol.
According to Definition 2.2 and the TMO algorithm, the value of ¢ + ¢ should
be less than or equal to k and |25£], that is, t + ¢ < min{k, | 25%|}. We also
assume that there is a public information! h € GF(p) \ {0} of order ¢ and a
bulletin board available for all the participants. Before the verification phase,
each participant P;, 1 < ¢ < n, randomly chooses a secret key s; € GF(q) and
publishes his/her public key z; = h® (mod p) so that other participants can send
encrypted message to him/her using the ElGamal public key cryptosystem.

Share-Correctable Protocol

1. Each participant P; € @ in turn plays the role of the dealer of the Stadler
PVSS scheme [15]. That is, P; secretly selects a polynomial g;(z) = a; o +
a1 T+ -+ a; 121 € GF(p)[z] of degree k — 1 and sends the related
share d;; = g;(x;) (mod p) to participant P; for 1 < j < n using P;’s public
key. Here x; for P; is the same as that the original dealer D chose for P;. The
public information A;(= g%°), F; (= ¢g%!),1 <1<k — 1, is also published
by P;. At the end of this stage, each participant P;, 1 < j < n, has shares
di; from P;, 1 <i < k+2(t+c), and the original share y; = f(x;) from the

! This information can be pre-selected by D or by the cooperation of participants
before the share-verification phase.



dealer D. We will call the shares d;, for all ¢ and j the auxiliary shares for
the convenience of notation.

2. Each participant P; € @ verifies the auxiliary shares according to the Stadler
PVSS scheme. Participants distributing incorrect auxiliary shares to other
participants intentionally will be disclosed in this stage. Also, any cooper-
ation between cheaters (dishonest participants) is invalid because all the
auxiliary shares are publicly verifiable. Note that not all the dishonest par-
ticipants may cheat in this stage.

3. Participants in () make complains on a bulletin board against the dishonest
participants who distributed incorrect shares. They also abandon the aux-
iliary shares obtained from those dishonest participants. Other participants
not in () can also know which auxiliary shares should be abandoned from
the complains on the bulletin board. (Of course, participants not in @ can
also do the verification of the auxiliary shares if they would like.)

(Since there are at most ¢ cheaters, each honest participant abandons at most
¢ auxiliary shares from other participants. In other words, each participant
retains at least k + 2t + ¢(> k) auxiliary shares. All of these auxiliary shares
will be used in the next steps. W.l.o.g., we may assume that each honest
participant P; retains exactly k + 2t + ¢ auxiliary shares d;;, for 1 < i <
E+2t+c.)

4. Each P; sums up his/her share y; with his/her remaining auxiliary shares
di;, 1 < i < k + 2t + c. Consequently, each P;, 1 < j < n, has a summed
share u; = y; +di, + -+ + dpi2t4c); (mod p).

5. Participants in @) broadcast their summed shares u;, 1 < j < k4 2(t + ¢),
on the bulletin board (note again that there are at most ¢ participants who
may intentionally broadcast incorrect values at this stage).

6. Any participant P; who wants to verify and revise his/her share y; can apply
the TMO algorithm. First replace ¢’ described in Section 2.2 with ¢ 4 ¢, and
use the k + 2(t + ¢) broadcasted information on the bulletin board (at most
t + ¢ of the information may be incorrect), then he/she will derive a unique
polynomial H(x), where

H(z) = f(z) + g1(z) + - + Grt2ttc(T)

€ GF(p)[x].
7. Participant P; in step 6 verifies if H(z;) = u; (mod p). If not, then revise
his/her share y; to the value of H(z;) —di, —da; — -+ — d(ps214c), (mod p).

In step 5, at most ¢ cheaters may broadcast incorrect values of their summed
shares. On the other hand, there are at most ¢ faulty shares distributed by the
dealer D. Therefore, in order to use the TMO algorithm to construct the unique
polynomial H(z), we need at least k 4+ 2(t + ¢) participants in our protocol.

Security Analysis

No adversary can obtain any secret information from step 1 to step 3, since
he/she suffers from the intractability of the discrete logarithm problem. Also



note that although the polynomial H(z) can be derived by any participant, the
polynomials f(z) and g;(x), 1 < i < k + 2t + ¢, are still kept secret because of
the homomorphism property. A conspiracy of less than k participants still can
not get f(z) from H(zx) or g;(x) from their reconstruction because f(z) is still
masked by at least 2t 4+ ¢ polynomials g,/ (x) constructed by other participants.
Consequently, no secret information about the secret and the shares belonging
to other participants will be leaked out in this protocol.

4 Adding Participants Without the Dealer’s Assistance

In most of the current secret sharing schemes, only dealers have the ability to
enroll new participants in their schemes. Also, in order to achieve this goal of
adding new participants, dealers have to preserve some or all of the secret infor-
mation of their schemes. This results in the same problem as we have claimed at
the beginning of this paper. We claimed in Section 1 that for security purpose, it
is undesirable that the dealer preserves any secret information about the scheme
for a long period of time. On the other hand, the goal of adding new participants
into the scheme may be impossible if the dealer becomes inactive after the initial
phase. These problems can be solved by using our protocol. We explain it in the
following.

Assume the dealer D is honest so no faulty shares have been distributed to
participants 2. Then, with a little modification, the protocol we have described
in Section 3 can also be used as a protocol for adding new participants in the
scheme without the dealer’s assistance. Moreover, according to Definition 2.2
and the TMO algorithm, ¢ cheaters with ¢ < min{k, [25%]|} are tolerant in the
scheme.

Under the agreements of at least k + 2c¢ participants, by the cooperation of
these participants, any group of, say n/, new participants can get their shares
of the scheme in only one run of the protocol where n +n’ < p. Assume N
is the n-set of all participants in the Shamir (k,n)-threshold scheme, N’ is the
n’-set of new participants that want to join in the scheme where N' NN = O.
In the same fashion as that described in Section 3, w.l.o.g., we assume @) =
{P1, P2, , Piyo.} is the subset of N which will cooperate to construct and
distribute new shares to participants in N’. In addition, h € GF(p) \ {0} of
order ¢ is a public known information and there is a bulletin board available
for all participants. With these assumptions, then the modified protocol for new
participants enrollment can be described as follows.

Enrollment Protocol
1. Each participant P; € @ randomly chooses an s; € GF(q) as his/her secret
key and publishes z; = h® (mod p) as his/her public key.

2 If D may be dishonest, participants can first apply our protocol to revise their faulty
shares.



. Each participant P; € N’ randomly chooses an s’; € GF(q) as his/her secret

key and publishes 2 = R (mod p) as his/her public key. He/She also ran-
domly chooses a random value x; € GF(p) \ {0} and publishes it as his/her
public information of the threshold scheme. Here xg must be different from
other participants’ public information.

. Each participant P; € @ in turn plays the role of the dealer of the Stadler
PVSS scheme. P; secretly selects a polynomial g;(x) = a;0 + ajix + -+ +
a; k121 € GF(p)[z] of degree k — 1 and sends the related share (auxiliary
share) d;; = gi(x;) (mod p) to participants P; € Q and Pj( € N’ using P;
and Pj( ’s public keys. Here z; for P; € @ is the same as that the original
dealer D chose for P;. o, for P/ € N’ is the value P chose and published
in step (2). P; also publishes A;(= ¢g*°), Fi (= ¢g*),1 <1 <k —1. At the
end of this stage, each participant P; € ) and Pj( € N’ has auxiliary shares
d;; from P;, 1 <i < k + 2c¢. In addition P; € @ also has the original share
y; = f(z;) from the dealer D.

. Each participant P; € ) and P]f € N’ verifies the auxiliary shares according
to the Stadler PVSS scheme. Participants distributing incorrect auxiliary
shares to other participants intentionally will be disclosed in this stage. Also,
any cooperation between dishonest participants is invalid because all the
auxiliary shares are publicly verifiable.

. Participants in step (4) make complains on the bulletin board against the
dishonest participants who distributed incorrect shares. They also abandon
the auxiliary shares obtained from those dishonest participants.

(Since there are at most ¢ cheaters, for the convenience of description, we
assume that there remain exactly k + ¢ auxiliary shares d;; for each partici-
pant P; € @ and P]{ € N', where 1 < i < k + c and j is the subscription of
Pj€Qand P{ € N'.)

. Each P; € @ sums up his/her share y; with his/her remaining auxiliary
shares d;;, 1 < i < k + c. Consequently, each P; € @ has a summed share
uj =yj +di; + -+ dgye), (mod p).

. Participants P; € ) broadcast their summed shares u;, 1 < j < k 4 2¢, on
the bulletin board. (Note again that there are at most ¢ participants who
may intentionally broadcast incorrect values at this stage.)

. Each participant Pj{ € N’ applies the TMO algorithm by first replacing
t' described in Section 2.2 with ¢, and then using the k + 2¢ broadcasted
information uj, 1 < j < k + 2¢, on the bulletin board (at most ¢ of the
information may be incorrect). Then he/she can derive a unique polynomial
H(z), where H(z) = f(z) + g1(z) + -+ + grte(x) € GF(p)[z].

. Pj( € N’ derives his/her share y; by computing

y'IL = H(Z’;) - dli/ - in, -t d(k-{—c)i/
(mod p),
where d;, = g;j(z}) are the remaining auxiliary shares after step (5) obtained

from participants P; € Q.
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Consequently, every new participant P/ in N’ obtains a share y; of the scheme
and the (k,n)-threshold scheme has modified into a (k, n+n’)-threshold scheme
successfully.

Security Analysis

The security of this protocol can be analyzed in the same way as that in Section
3. In addition, only a cooperation of at least k + 2¢ (> k) participants can
have the ability of adding new participants to the original scheme. Therefore,
it is impossible for a conspiracy of less than k malicious participants to execute
this protocol and add new participants siding with them for the purpose of
reconstructing the secret of the original (k,n)-threshold scheme.

5 Conclusion

Most verifiable secret sharing schemes proposed so far do not provide the ability
for participants to correct the faults of their shares. Error-correcting codes such
as Reed-Solomon codes can correct errors only during the phase of pooling shares
together which would then reveal the secret. In this paper, we proposed a new
type of share-verification protocol for the Shamir threshold scheme. Our protocol
allows participants not only to verify the correctness of their shares but also to
revise any fault of their shares in a cooperative way without any assistance of the
dealer. We also showed that our protocol can be utilized to add new participants
in a threshold scheme with cheaters without the dealer’s assistance.
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