Private Searching On Streaming Data

Rafail Ostrovsky William E. Skeith IIF
November 2, 2006

Abstract

In this paper, we consider the problem of private searching on streaming data, where we
can efficiently implement searching for documents that satisfy a secret criteria (such as pres-
ence or absence of a hidden combination of hidden keywords) under various cryptographic
assumptions. Our results can be viewed in a variety of ways: as a generalization of the notion
of Private Information Retrieval (to more general queries and to a streaming environment);
as positive results on privacy-preserving datamining; and as a delegation of hidden program
computation to other machines.

KEYWORDS Code Obfuscation, Public Key Program Obfuscation, Program Obfuscation,

Crypto-computing, Software security, Database security, Public-key Encryption with special
properties, Private Information Retrieval, Privacy-Preserving Keyword Search, Secure Algo-
rithms for Streaming Data, Privacy-Preserving Datamining, Secure Delegation of Computa-
tion, Searching with Privacy, Mobile code.

*Abridged version appeared at CRYPTO 2005. Patent pending.

TDepartment of Computer Science and Department of Mathematics, University of California, Los Angeles, 90095.
E-mail: rafail@cs.ucla.edu. Supported in part by Intel equipment grant, NSF Cybertrust grant No. 0430254, OKAWA
research award, B. John Garrick Foundation and Xerox Innovation group Award.

iDepartment of Mathematics, University of California, Los Angeles, 90095. E-mail: wskeith@math.ucla.edu.
Supported in part by NSF Cybertrust grant No. 0430254 and NSF VIGRE grant DMS-0502315.

1

1 Introduction

1.1 Data Filtering for the Intelligence Community

As our motivating example, we examine one the tasks of the intelligence community, which is to
collect “potentially useful” information from huge streaming sources of data. The data sources
are vast, and it is often impractical to keep all the data. Thus, streaming data is typically sieved
from multiple data streams in an on-line fashion, one document/message/packet at a time. Most
of the data is immediately dismissed and dropped to the ground, while only a small fraction of
“potentially useful” data is retained. These streaming data sources, just to give a few examples,
include things like packet traffic on network routers, on-line news feeds (such as Reuters.com),
internet chat-rooms, or potentially terrorist-related blogs or web-cites. Again, most of the data is
completely innocent and is immediately dismissed except for a small subset of the data that raises
red flags which is collected for later analysis in a secure environment.

In almost all cases, what'’s “potentially useful” and raises a “red flag” is classified, and satisfies
a secret criteria (i.e., a boolean decision whether to keep this document or throw it away). The
classified “sieving” algorithm is typically written by intelligence community analysts. Keeping this
sieving algorithm classified is clearly essential, since otherwise adversaries could easily prevent
their messages from being collected by simply avoiding the criteria that is used to collect such
documents in the first place. In order to keep the selection criteria classified, one possible solution
(and in fact the one that is used in practice) is to col@ktstreaming data “on the inside”, in a
secure environment, and then filter the information according to classified rules, throwing away
most of it and keeping only a small fraction of data-items that fit the secret criteria. Often, the
criteria is simply a set of keywords that raise a red flag. While this method for collecting data
certainly keeps the sieving information private, it requitemsferring all streaming data to a
classified environment, adding considerable cost in terms of communication and the risk of a delay
or even loss of data, if the transfer to the classified environment is interrupted. Furthermore,
it requires considerable cost eforageto hold this (un-sieved) data in case the transfer to the
classified setting is delayed.

Clearly, a far more preferable solution, is to sieve all these data-streams at their sources (on the
same computers or routers where the stream is generated or arrives in the first place). The issue,
of course, is how can this be accomplished while keeping the sieving criteria classified, even if
the computer where the sieving program executes falls into enemy’s hands? Perhaps somewhat
surprisingly, we show how to do just that while keeping the sieving criteria provably hidden from
the adversary, even if the adversary is allowed to experiment with the sieving executable code
and/or tries to reverse-engineer it. Put differently, we construct a “compiler” (i.e. of how to
compile sieving rules) so that it is provably impossible to reverse-engineer the classified rules
from the executable complied sieving code. In the following section, we state our results in more
general terms that we believe are of independent interest.

1.2 Public-Key Program Obfuscation

Very informally, given a prograny from a classC of programs, and a security parametera
public-key program obfuscat@ompilesf into (F, Dec), whereF' on any input computes an en-
cryption of whatf would compute on the same input. The decryption algorithen decrypts the

output of . That is, for any input:, Dec(F(z)) = f(x), but given code fof it is impossible to
distinguish for any polynomial time adversary whiglirom the clas€ was used to produceg .

We stress that in our definition, the program encoding lehgthmust polynomially depend only

on|f| andk, and the output length of'(x)| must polynomially depend only aif (z)| andk. It is

easy to see that Single-Database Private Information Retrieval (including keyword search) can be
viewed as a special case of public-key program obfuscation.

1.3 Obfuscating Searching on Streaming Data

We consider how to public-key program obfuscate keyword search algorithms on streaming data,
where the size of the query (i.e. complied executable) mustdependenof the size of stream

(i.e., database), and that can be executed in an on-line environment, one document at a time. Our
results also can be viewed as improvement and a speedup of the best previous results of single-
round PIR with keyword search of Freedman, Ishai, Pinkas and Reingold [16]. In addition to the
introduction of the streaming model, this paper also improves the previous work on keyword PIR
by allowing for the simultaneous return of multiple documents that match a set of keywords, and
also the ability to more efficiently perform different types of queries beyond just searching for a
single keyword. For example, we show how to search for the disjunction of a set of keywords and
several other functions.

1.4 Our Results

We consider a dictionary of finite size (e.g., an English diction@nthat serves as the universe

for our keywords. Additionally, we can also have keywords that must be absent from the doc-
ument in order to match it. We describe the various properties of such filtering software below.
A filtering programF' stores up to some maximum numberof matching documents in an en-
crypted bufferB. We provide several methods for constructing such softwatkat saves up to

m matching documents with overwhelming probability and saves non-matching documents with
negligible probability (in most cases, this probability will be identically 0), all withbur its en-

crypted bufferB revealing any information about the query ti#aperforms. The requirement that
non-matching documents are not saved (or at worst with negligible probability) is motivated by the
streaming model: in general the number of non-matching documents will be vast in comparison to
those that do match, and hence, to use only small storage, we must guarantee that non-matching
documents from the stream do not collect in our buffer. Among our results, we show how to ex-
ecute queries that search for documents that match keywords in a disjunctive manner, i.e., queries
that search for documents containing one or more keywords from a keyword set. Based on the Pail-
lier cryptosystem, [26], we provide a construction where the filtering softWamens inO(7 - £3)

time to process a document, wheres a security parameter, ahd the length of a document, and

stores results in a buffer bounded &}m - [- k?). We stress again thdt processes documents

one at a time in an online, streaming environment. The siz€ of this case will beO(k - | D)
where| D] is the size of the dictionary in words. Note that in the above construction, the program
size is proportional to the dictionary size. We can in fact improve this as well: we have constructed
a reduced program size model that depends orbtieding Assumptiorf9]. The running time

of the filtering software in this implementation is linear in the document size a@d#$) in the
security parametet. The program size for this model is only(polylog(|D|)). We also have an
abstract construction based on any group homomorphic, semantically secure encryption scheme.
Its performance depends on the performance of the underlying encryption scheme, but will gener-
ally perform similarly to the above constructions. As mentioned above, all of these constructions
have size that is independent of the size of the data stream. Also, using the results of Boneh, Goh,
and Nissim [6], we show how to execute queries that search for an “AND” of two sets of keywords
(i.e., the query searches for documents that contain at least one wordkfrand at least one

word from K, for sets of keywordds, K>), without asymptotically increasing the program size.

We also show several extensions: One has to do with buffer overflow, which we show how
to recognize this with overwhelming probability. We also show that if you relax our definition of
correctnesgi.e. no longer require that the probability of non-matching documents being stored in
the buffer is negligible), then the protocol can handle arbitrary bounded-length keywords that need
not come from a finite dictionary.

To summarize, our contributions can be divided into three major areas: Introduction of the
streaming model; having queries simultaneously return multiple results; and the ability to extend
the semantics of queries beyond just matching a single keyword.

1.5 Comparison with Previous Work

A superficially related topic is that of “searching on encrypted data” (e.g., see [7] and the references
therein). We note that this body of work is in fact not directly relevant, as the data (i.e. input stream)
that is being searched is not encrypted in our setting.

The notion of obfuscation was considered by [3], but we stress that our setting is different, since
our notion of public-key obfuscation allows the output to be encrypted, whereas the definition of
[3] demands the output of the obfuscated code is given in the clear, making the original notion of
obfuscation much more demanding.

Our notion is also superficially related to the notion of “crypto-computing” [27]. However,
in this work we are concerned with programs that contain loops, and where we cannot afford to
expand this program into circuits, as this will blow-up the program size.

Our work is most closely related to the notion of Single-database Private Information Retrieval
(PIR), that was introduced by Kushilevitz and Ostrovsky [20] and has received a lot of subse-
qguent attention in the literature [20, 9, 14, 24, 21, 8, 28, 22, 16]. (In the setting of multiple,
non-communicating databases, the PIR notion was introduced in [11].) In particular, the first PIR
with poly-logarithmic overhead was shown by Cachin, Micali and Stadler [9], and their construc-
tion can be executed in the streaming environment. Thus the results of this paper can be viewed
as a generalization of their work as well. The setting of single-database PIR keyword search was
considered in [20, 10, 19] and more recently by Freedman, Ishai, Pinkas and Reingold [16]. The

3

issue of multiple matches of a single keyword (in a somewhat different setting) was considered by
Kurosawa and Ogata [19].

There are important differences between previous works and our work on single-database PIR
keyword search: in the streaming model, the program size mustependenof the size of the
stream, as the stream is assumed to be an arbitrarily large source of data and we do not need to
know the size of the size of the stream when compiling the obfuscated query. In contrast, in all
previous non-trivial PIR protocols, when creating the query, the user of the PIR protocol must
know the upper bound on the database size while creating the PIR query. Also, as is necessary in
the streaming model, the memory needed for our scheme is bounded by a value proportional to the
size of a document as well as an upper bound on the total number of documents we wish to collect,
but is independent of the size of the stream of documents. Finally, we have also extended the
types of queries that can be performed. In previous work on keyword PIR, a single keyword was
searched for in a database and a single result returned. If one wanted to query an “OR” of several
keywords, this would require creating several PIR queries, and then sending each to the database.
We however show how to intrinsically extend the types of queries that can be performed, without
loss of efficiency or with multiple queries. In particular, all of our systems can efficiently perform
an “OR” on a set of keywords and its negation (i.e. a document matches if certain keyword is absent
from the document). In addition, we show how to privately execute a query that searches for an
“AND” of two sets of keywords, meaning that a document will match if and only if it contains at
least one word from each of the keyword sets without the increase in program (or dictionary) size.

1.6 Potential Applications

As mentioned above, there are many applications of this work for the purposes of intelligence
gathering. One could monitor a vast number of internet transactions using this technology. For
example, chat rooms, message boards, instant messaging, and online news feeds. It could also be
run on search engine hosts to track the IP addresses of computers that search for certain suspicious
phrases or words. Also, using an index of names or a phone book as a source for keywords, this
work could enable a private search for locating an individual using an alias, without revealing
one’s knowledge of that alias. There are also several extensions of our techniques that we discuss
in Section 8 that may also have practical significance. Another possible application outside of
intelligence gathering, is to help facilitate a company or organization to perform an audit of its
own branches without massive data transfers or commandeering actual hardware or machines.

1.7 Subsequent Work

Our definition of Public Key Program Obfuscation motivated further interest on public key ob-
fuscation, for example see the work of Adida and Wiadkstron “obfuscated mixing” [1]. There

have also been several follow-up works concerning practical considerations for private searching
on streaming data, for example the work of Danezis and Diaz [13] and Bethencourt, Song and Wa-
ters [4, 5]. These works primarily concern the issue of reducing the buffer size of our construction
by a logarithmic factor. However, this comes at the cost of making the running time for buffer
decryption linear in the stream size. For further discussion see section 9.

4

1.8 Overview and Intuition of the Solution

Informally, our idea is to create a device that conditionally and obliviously creates encryptions (in
some homomorphic encryption scheme) of documents based on the matching of keyword criteria,
and then writes these encryptions to random locations in a buffer, using homomorphic properties
of the encryption scheme. By “conditionally”, what is meant is that if a document matches the
guery, the device will produce an encryption of the document itself. Otherwise, an encryption of
the identity element will be produced. The key idea is that the encryption of the identity element
that the software computes if the document does not match the secret criteria will be indistinguish-
able from the encryption of the matching document. This way, both matching and non-matching
documents appear to be treated precisely the same way. The machine or anyone else who views the
execution is totally unaware if the search condition is satisfied, as it is executed as a straight-line
code (i.e., any branches that the program executes are independent of the search criteria), so that
the conditions are never known unless the underlying encryption scheme is broken. Several prob-
abilistic methods are then applied to ensure a strong sense of correctness. We demand that none of
the documents that match the criteria are lost, and that no documents that do not satisfy the criteria
are collected.

2 Definitions and Preliminaries

2.1 Basic Definitions

For a sefl” we denote the power set bfby P(V).

Definition 2.1 Recall that a functiory : N — R is said to benegligibleif for any ¢ € N there
existsN. € Z such thath > N, = g(n) < .

— nec

Definition 2.2 Let C be a class of programs, and l¢t € C. We define gublic key program
obfuscator in the weak sengebe an algorithm

Compile(f,r,1%) — {F(-,-), Decrypt(-)}

wherer is randomnessk is a security parameter, anél’ and Decrypt are algorithms with the
following properties:

e (Correctness)’ is a probabilistic function such that

Vi, Pry w | Decrypt(F(z, R')) = f(a:)] > 1 neg(k)

e (Compiled Program Conciseness) There exists a constamth that

[F(,)l

2 ey

e (Output Conciseness) There exists a constautch that For allz, R

|F(z, R)|

¢ (Privacy) Consider the following game between an adversaayd a challenger”:

1. Oninput of a security parametér A outputs two functiong,, f> € C.

2. C chooses & € {0, 1} at random and computeSompile(f,,r, k) = {F, Decrypt}
and sendd’ back toA.

3. A outputs a guesk.

We say that the adversary winsbif = b, and we define the adversary’s advantage to be
Adv,(k) = |Pr(b = t') — 1|. Finally we say that the system is secure if fordle PPT,
Adv 4 (k) is a negligible function irk.

We also define a stronger notion of this functionality, in which the decryption algorithm does
not give any information aboytbeyond what can be learned from the output of the function alone.

Definition 2.3 Let C be a class of programs, and l¢t € C. We define gublic key program
obfuscator in the strong sensebe a triple of algorithmgKey-Gen, Compile, Decrypt) defined
as follows:

1. Key-Gen(k): Takes a security parametdr and outputs a public key and a secret key

ApubliC7 Aprivate .

2. Compile(f,r, Apupiic, Aprivate): Takes a prograny € C, randomness and the public and
private keys, and outputs a prograf(-,-) that is subject to the same Correctness and
conciseness properties as in Definition 2.2.

3. Decrypt(F(x), Aprivate): Takes output of' and the private key and recovef$z), just as
in the correctness of Definition 2.2.

Privacy is also defined as in Definition 2.2, however in the first step the adversaggeives
as an additional input4,,;,;; and we also require thaDecrypt reveals no information abouf

beyond what could be computed frgffi): Formally, for all adversariesA € PPT and for all

history functionsh there exists a simulating prograld € PPT that on inputf(x) andh(x) is

computationally indistinguishable from on input(Decrypt, F(z), h(z)).

In what follows, we give instantiations of these general definitions for several classes of search

programsC. We consider a universe of word® = {0,1}*, and a dictionaryD C W with
|D| = a < oo. We think of a document as an ordered, finite sequence of wortl$, inowever,

it will often be convenient to look at the set of distinct words in a document, and also to look at

some representation of a document as a single strig@,in}*. So, the terndocumenwill often
have several meanings, depending on the context/ i said to be alocumentgenerally this
will mean M is an ordered sequence Wi, but at times, (e.g., wheh/ appears in set theoretic

6

formulas)documenwill mean (finite) element ofP (W) (or possiblyP(D)), and at other times
still, (say when one is talking of bit-wise encrypting a document) we’'ll viehas M € {0, 1}*.
We define aset of keyword#o be any subse’ C D. Finally, we define atreamof documentsS
simply to be any sequence of documents.

We will consider only a few types of queries in this work, however would like to state our
definitions in generality. We think of query type O as a class of logical expressions/inyv,
and—. For example,Q could be the class of expressions using only the operatioGiven a
guery type, one can plug in the number of variables, call for an expression, and possibly
other parameters as well, to select a specific boolean expregsiony variables from the class

Q. Then, given this logical expression, one can inputC D where X' = {k;}¢, and create

a function, call itQx : P(D) — {0,1} that takes documents, and returns 1 if and only if a
document matches the criteri@x (M) is computed simply by evaluating on inputs of the form

(k; € M). We will call Qx aquery over keywords.

We note again that our work does not show how to privately execute arbitrary queries, de-
spite the generality of these definitions. In fact, extending the query semantics is an interesting
open problem.

Definition 2.4 For a query@ g on a set of keyword&’, and for a documend/, we say that\/
matchesjueryQ if and only ifQx (M) = 1.

Definition 2.5 For a fixed query typ®, a private filter generatotonsists of the following proba-
bilistic polynomial time algorithms:

1. Key-Gen(k): Takes a security parametérand generates public key,,.;;., and a private
keyAprivate .

2. Filter-Gen(D, Qr, Apubiic, Aprivate, m, y): Takes a dictionaryD, a queryQx € Q for the
set of keyword#(, along with the private key and generates a search progkami’ searches
any document streaifi (processing one document at a time and updafif)gollects up to
m documents that mata i in B, outputting an encrypted buffés that contains the query
results, wheré B| = O(~) throughout the execution.

3. Filter-Decrypt(B, A,.iatc): Decrypts an encrypted buffé, produced by as above, using
the private key and produces outpiit, a collection of the matching documents frém

Definition 2.6 (Correctness of a Private Filter Generator)
Let F' = Filter-Gen(D, Qk, Apuiic; Aprivate; M, 7y), WhereD is a dictionary,Qx is a query for
keywordsK', m,y € Z* and (Apupiic, Aprivate) = Key-Gen(k). We say that a private filter gener-
ator is correctif the following holds:

Let F' run on any document streafy and setB = F'(S).
Let B* = Filter-Decrypt(B, A, ivate)- Then,

o If {M eS| Qk(M)=1} <mthen

Pr[B* ={M eS| Qx(M) = 1}} > 1 —neg(y)

o If {M € S| Qx(M) = 1}| > mthen
Pr[(B* C{M eS| Qu(M)=1))V (B = Lﬂ >1— neg(y)

where L is a special symbol denoting buffer overflow, and the probabilities are taken over
all coin-tosses of, Filter-Gen and ofKey-Gen.

Definition 2.7 (Privacy) Fix a dictionaryD. Consider the following game between an adversary
A, and a challenget”. The game consists of the following steps:

1. C first runsKey-Gen(k) to obtain A, ,uic, Aprivate, and then sendd,,,;i;. to A.

2. A chooses two queries for two sets of keywo@s,, Q1 x,, With Ky, K1 C D and sends
them toC.

3. C chooses arandom bite {0, 1} and executekilter-Gen(D, Qy, , Apustic; Aprivate; M,)
to createF, the filtering program for the querg, , , and then sends;, back toA.

4. A(F,) can experiment with the code &f in an arbitrary non-black-box way, and finally
outputst’ € {0, 1}.

The adversary wins the gamebif= b’ and loses otherwise. We define the adversdis

advantage in this game to be
1
Adv,(k) = |Prb=1V") — 3
We say that a private filter generator s#mantically securd for any adversaryA € PPT we
have thatAdv, (k) is a negligible function, where the probability is taken over coin-tosses of the

challenger and the adversary.

2.2 Combinatorial Lemmas

We require in our definitions that matching documents are saved with overwhelming probability
in the bufferB (in terms of the size oB), while non-matching documents are not saved at all (at
worst, with negligible probability). We accomplish this by the following method: If the document

is of interest to us, we throw it at randoptimes into the buffer. What we are able to guarantee is
that if only one document lands in a certain location, and no other document lands in this location,
we will be able to recover it. If there is a collision of one or more documents, we assume that
all documents at this location are lost (and furthermore, we guarantee that we will detect such
collisions with overwhelming probability). To amplify the probability that matching documents
survive, we throw each times, and we make the total buffer size proportional4e:, wherem

is the upper bound on the number of documents we wish to save. Thus, we need to analyze the
following combinatorial game, where each document corresponds to a ball of different color.

Color-survival game: Let m,v € Z*, and suppose we have different colors, call them
{color;},, and~ balls of each color. We throw them balls uniformly at random int@~ym

bins, call ther‘n{binj}iff. We say that a ball “survives” ibin;, if no other ball (of any color)
lands inbin;. We say thatolor; “survives” if at least one ball of colafolor; survives. We say that

the gamesucceedd all m colors survive, otherwise we say thatatls.
Lemma 2.8 The probability that theolor-survival game failgs negligible in~.

Proof: We need to compute the probability that at least one ofitheolors does not survive,

i.e., ally balls of one or more colors are destroyed, and show that this probability is negligiple in

To begin, let us compute the probability that a single ball survives this process. Since the location
of each ball is chosen uniformly at random, clearly these choices are independent of one another.
Hence,

2ym — 1\7m-1
Pr(survival) = (L>
2vym
Also recall that
) Tz — 1\z 1
lzmx_)oo< > = -
e
and hence 5 . .)
. ym — 1\vm—
o221 L
m., 2ym Je

Furthermore, as increases, this function decreases to its limit, so we always have the probability
of survival of a single ball i:z‘;;reaterthan%E for anyy > 0.

Now, what is the probability of at least one out of ttvecolors having all of itsy balls destroyed
by the process? First we compute the probability for just a single colof Egt._, be the events
that thej-th ball of a certain color does not survive. Then the probability thay &&lls of this
color do not survive is

N
Pr(jﬂl E;) = PUE)PUES|Ey) -+« PUE, By 1By s By) < (%)7

We know the final inequality to be true since each of the probabilities in the right hand product

are bounded above bg/as the probability of losing a particular ball was smaller thar \/Lé) ~

.39 < 1/2, regardless the choice of > 0, and given that collisions have already occurred only

further reduces the probability that a ball will be lost. Now, by the union bound we have that the

probability of losing all balls of at least one color is less than or equal to the sum of the probabilities

of losing each color separately. So, we have

m

. m
Pr(at least one color does not survive Z Pr(color; does not survive< >

=1

which is clearly negligible iny, which is what we wanted to shovl

Another issue is how to distinguish valid documents in the buffer from collisions of two or
more matching documents in the buffer. (In general it is unlikely that the sum of two messages
in some language will look like another message in the same language, but we need to guarantee
this fact.) This can also be accomplished by means of a simple probabilistic construction. We will
append to each documehbits, partitioned intd:/3 triples of bits, and then randomly set exactly
one bit in each triple to 1, leaving the other two bits 0. When reading the buffer results, we will
consider a document to be good if exactly one bit in each ok fldriples of appended bitsis a 1.

If a buffer collision occurs between two matching documents, the buffer at this location will store
the sum of the messages, and the sum of 2 or more df-thiestrings.* We need to analyze the
probability that the sum of any number> 1 of suchk-bit stringsstill has exactly one bit in each

of thek /3 triples set to 1, and show that this probability is negligiblé itwe will assume that the
strings add together bitwise, modulo 2 as this is the hardest éadé first prove the following
lemma.

Lemma 2.9 Let{e;}?_, be the three unit vectors i3, i.e., (¢;); = d;;. Letn be an odd integer,
n > 1. Forv € Z3, denote byl (v) the number ofi-element sequencgs; }'_, in thee;’s, such
that) ", v; = v. Then,
3" -3

4

T.((1,1,1)) =

Proof: We proceed by induction on. Forn = 3, the statement is easy to verify. Clearly
there ares such sequences, as they are obviously in one to one correspondence with the set of all
permutations of 3 items, and of courisg| = 6. Finally note thatt = (3* — 3)/4.

Now assume that for some odd integethe statement is true. Note that the only possible sums
for such sequences afg, 0,0), (0, 1,0), (0,0, 1), (1,1, 1) since the total number of bits equal to 1
in the sum must be odd sineeis odd. Note also that by symmetiit, 0,0), (0,1,0) and(0,0, 1)
must all have the same number of sequences that sum to these values (since permuting coordinates
induces a permutation of the set of all sequences)7’'391,0,0)) = 7,,((0,1,0)) = 7,,((0,0, 1)).
Call this numberR. Since the total number of sequences of lengtis 3", and since they are
partitioned by their sums, we have that

3" —To((1,1,1)) 3" +1

R = 5 1 =T,((1,1,1))+1

Now, we analyze the sums of the sequences of lengthl from this data. For each sequence
of lengthn that summed td1, 0,0), (0,1,0) or (0,0, 1), there is exactly one sequence of length
n + 1 that sums td0,0,0). Hence,T,,.1((0,0,0)) = 3R. Then by symmetry again, we have

1if a document does not match, it will be encrypted as the 0 message, as will its appended strinigspto
nothing will ever be marked as a collision with a non-matching document.

2In the general group homomorphic encryption setting, one will use a fixed non-identity element in place of 1 and
the identity in place of zero, performing the same process. If the order of the non-identity element is 2, then this is the
exact same experiment, and as the order increases, the strings add together more and more like a bitwise OR in which
case this problem is trivial.

10

that7,,,1((0,1,1)) = 7,,+1((1,0,1)) = T,,41((1,1,0)) = 3R — 1. Again, we have the sequences
partitioned by their sums, so using the same methods, we can coffipuiél, 1,1)). For each
sequence of length+ 1 that sums tq0, 1, 1), (1,0, 1) or (1,1, 0) there is exactly one sequence of
lengthn 4 2 that sums td1, 1, 1). Hence

3" +1 32 3
Tn+z((1,1,1)):3(3R—1):9<) >_3: :
This completes the proofill

Lemma 2.10 Let H be a collection ofk-bit strings, partitioned intak/3 triples of bits, chosen
uniformly at random subject to the constraint that each triple contains exactly one bit that is set to
1. Then, iffH| > 1, the probability that the sum of all strings i also satisfies the property that
each triple has exactly one bit set to 1 is negligible:in

Proof: Letn = |H|. Forn odd, this is an immediate corollary to Lemma 2.9. And of course if
n is even, the probability is uniformly O since each triple would have an even number of bits set to
1 in this case.l

2.3 Organization of the Rest of this Paper

In what follows, we will give several constructions of private filter generators, beginning with our
most efficient construction using a variant of the Paillier Cryptosystem [26],[12]. We also show

a construction with reduced program size using the Cachin-Micali-Stadler PIR protocol [9], then
we give a construction based on any group homomorphic semantically secure encryption scheme,
and finally a construction based on the work of Boneh, Goh, and Nissim [6] that extends the query
semantics to include a single “AND” operation without increasing the program size.

3 Palillier-Based Construction

Definition 3.1 Let (G,), (G2, x) be groups. Lef be the probabilistic encryption algorithm and
D be the decryption algorithm of an encryption scheme with plaintextsetnd ciphertext set
G5. The encryption scheme is said togr@up homomorphid the encryption mag : G; — G,
has the following property:

Va,be Gy, D(E(a-b)) =D(E(a) *x E(D))

Note that since encryption is in general probabilistic, we have to phrase the homomorphic property
usingD, instead of simply saying thdt is a homomorphism. Equivalently, & is ontoGs, one

could say that the map is a homomorphism of groups (in the usual sense), with each coset of
ker(D) corresponding to the set of all possible encryptions of an elemef#it.oAlso, as standard
notation when working with homomorphic encryption as just defined, we wilidise id, to be

the identity elements af7;, G5, respectively.

11

3.1 Summary

We believe this construction to be our most practical and efficient solution. The running time is rea-
sonable, and the program size is proportional to the size of the dictionary. In addition, the encrypted
buffer can remain very small, due to the excellent plaintext-ciphertext ratio of the &drdgrik
extension to the Paillier system. This system can be used to perform queries consisting of any
finite number of “OR” operations.

3.2 Brief Basics of the Paillier Cryptosystem

Recall that the plaintext and ciphertext in the Paillier cryptosystem are represented as elements of
Z, andZ’, respectively, where = pq is an RSA number such that< ¢ and with the additional

minor assumption that { ¢ — 1. Recall also the extensions of Paillier by Daéngj and Jurik in

which the plaintext and ciphertext are represented as elemefits @hdZ’ .., respectively for

anys > 0. We will be using this extension in our work. Finally, recall that these cryptosystems
are homomorphic, so in this case multiplying ciphertexts gives an encryption of the sum of the
plaintexts?

3.3 Private Filter Generator Construction

We now formally present thkey-Gen, Filter-Gen, andBuffer-Decrypt algorithms. The clasg

of queries that can be executed is the class of all boolean expressions using @&yyoubling

the program size, it is easy to handle @nof both presence and absence of keywords. For
simplicity of exposition, we describe how to detect collisions separately from the main algorithm.

Key-Gen(k)

Execute the key generation algorithm for the Paillier cryptosystem to find an appropriate RSA
number,n and its factorizatiom = pq. We will make one additional assumption an= pq. we
require that D| < min{p, q}. (We need to guarantee that any numkefD| is a unit modn®.)

Saven asA,,ui., and save the factorization &s, ;e

Filter-Gen(D, Qk, Apubtic; Aprivate, M, Y)

This algorithm outputs a search prograhfor the quernyQx € Q. S0,Qx (M) =\ e (w € M).

We will use the Damgrd-Jurik extension [12] to construgtas follows. Choose an integer> 0

based upon the size of documents that you wish to store so that each document can be represented
as a group element ii,,. ThenF contains the following data:

e A buffer B consisting of2ym blocks with each the size of two elementsZf,., (so, we
view each block of3 as an ordered paiw,,v;) € Z'.., x Z*..,). Furthermore, we will
initialize every position td1, 1), two copies of the identity element.

3For completeness, an exposition of the Paillier cryptosystem is provided in the appendix.

12

e An arrayf) = {c@}ﬂ where each@- € Z... such that@- is an encryption ofl. € Z,s
if d; € K and is an encryption of 0 otherwise. (Note: We of course use re-randomized
encryptions of these values for each entry in the array.)

F’ then proceeds with the following steps upon receiving an input docufdendm the stream:

1. Construct a temporary collectiod = {c@- e€D|d; e M}.

2. Compute

i

d;eM

3. Computev and multiply (v, v*) into v random locations in the buffeB, just as in our
combinatorial game from section 2.2.

Note that the private key actually is not needed. The public key alone will suffice for the
creation ofF'.

Buffer-Decrypt(B, A, ivate)

First, this algorithm simply decrypt® one block at a time using the decryption algorithm for
the Paillier system. Each decrypted block will contain the 0 message((i,8)) or a non-zero
message(w;, wy) € Z,s X Z,s. Blocks with the 0 message are discarded (collisions can easily
be detected and discarded using Lemma 2.10, and Lemma 3.2). A non-zero message

will be of the form(c, cM”) if no collisions have occurred at this location, wherie the number

of distinct keywords fromK that appear inV/’. So to recover)’, simply computew,/w; and

add this to the array3*. (We know that any non-zera; will be a unit as we required that
|D| < min{p, q}.) Finally, outputB*.

In general, the filter generation and buffer decryption algorithms will make use of Lemma 2.10,
having the filtering software append a validation string to each message and having the buffer
decryption algorithm save documents to the outptitonly when the validation string is valid.

In any of our constructions, this can be accomplished by addiaegtra blocks the size of the
security parameter to an entry in the buffer to represent the bits of the validation string, however
this will be undesirable in many settings where the plaintext group is large (e.g., our Paillier-based
construction) as this would cause a significant increase in the size of the buffer. But of course, there
will generally be efficient solutions in these cases, as shown below for the Paillier-based system.

Lemma 3.2 With O(k) additional bits added to each block &f, we can detect all collisions of
matching documents with probability 1 — neg(k).

Proof: Sincelog(|D|) will be much smaller than the security paramétewe can encode the
bits from Lemma 2.10 usin@ (k) bits via the following method. Let = log(|D|), which is
certainly an upper bound for the number of bite:odnd will be considerably smaller thanLetr
=k/t. Let(v,v™) be as described in the filter generation algorithm, sodhsan encryption of,
the number of keywords presentiih. Pick a subset’ C {0, 1,2, ..., — 1} of sizer/3, uniformly

13

at random in the format of Lemma 2.10 (so that exactly one of every three consecutive numbers is
selected, i.e. among glle {0, 1, ..., — 1} having the same quotient when divided by 3, only one
suchy will be in T'). Then compute

T = 22“ andh = v”

JET

Now, ~ will encrypt a value that has exactty’3 of ther, ¢-bit blocks containing non-zero bits as

in Lemma 2.10. So, the filtering software would now wiitev?, h) to the buffer instead of just
(v,vM). The decryption of: can now be used as in Lemma 2.10 to distinguish collisions from
valid documents, with only one more ciphertext per blotklso, if one wishes to increase this
security parameter beyondk /¢, then of course additional ciphertexts can be added to each block
of the buffer, using them in the same manniik.

3.4 Correctness

We need to show that if the number of matching documents is lessithtren
PriB*={M eS| Qx(M)=1}| >1—neg(v)

and otherwise, we have th&t" is a subset of the matching documents (or contains the overflow
symbol, 1). Provided that the buffer decryption algorithm can distinguish collisions in the buffer
from valid documents (see above remark) this equates to showing that non-matching documents are
saved with negligible probability i3 and that matching documents are saved with overwhelming
probability in B. These two facts are easy to show.

1. Are non-matching documents stored with negligible probability? Yes. In fact, they are
stored with probability O since clearly a non-matching documémever affects the buffer:
if M does not match, themfrom step 2 will be an encryption of 0, as will bé?. So, the
private filter will multiply a encryptions of O into the buffer at various locations which by the
homomorphic property of our encryption scheme has the effect of adding 0O to the plaintext
corresponding to whatever encrypted value waBinSo clearly, non-matching documents
are saved with probability (l

2. Are all matching documents saved with overwhelming probability’? dloes match, i.e., it
containsc > 0 keywords fromK’, thenv computed in step 2 will be an encryption©f- 0.
So, v will be an encryption of:A/. This encryption is then multiplied into the buffer just
as in the color-survival game from 2.2, which we have proved saves all documents with
overwhelming probability iny. But we have written an encryption efi/ and not ofM in
general. However, this will not be a problemas: min{p, ¢} sincec < |K| < |D|, and
hencec € Z}.. So, theBuffer-Decrypt algorithm will be able to successfully divide lay
and recover the messagé. B

4This does not follow the form of Lemma 2.10 exactly, as exclusive OR is not the operation that is performed on
the plaintext upon multiplying ciphertexts. However, having them added as they are here obviously further decreases
the probability that a collision will look valid.

14

3.5 Buffer Overflow Detection

For this construction, it is quite simple to create an overflow flag for the encrypted buffer. For a
documentV/, define
Vv = H dz

dieM

just as above. Note thaj, encrypts the number of distinct keywords present/inThen the value

V:HUM

MeS

will of course be an encryption of an upper bound on the number of matching documents that have
been written to the buffer, where hefeis the document stream. This encrypted value can be
stored and maintained as a prefix of the buffer. If a reasonable estimate for the average number of
keywords per matching document is available, then of course a more accurate detection value can
be obtained. Note that although one may be tempted to use this value interactively to determine
when to retrieve the buffer contents, this is potentially dangerous as this interaction between the
parties could be abused to gain information about the keywords.

3.6 Efficiency in Time and Space

We compute now the efficiency of the software in relation to the security parametes size of
the dictionaryD, the number of documents to be savegdand the size of a document.

1. Time Efficiency. For the software to process a given document it performs a number of
multiplications proportional to the size of a document, followed by a single modular ex-
ponentiation, and then followed B additional multiplications. Modular exponentiation
takesO(k?) time which is clearly the dominating term since the multiplications take at worst
guadratic time ink (using long multiplication) for a fixed document size. So we conclude
that our private filter takes tim@ (k) for fixed document size. If you instead fix the security
parameter and analyze the filter based on document|8iZethe running time will again be
cubic as the modular exponentiation takes cubic time in the number of bits of a document.
However, the running time could of course be changed to linear in the document length if
you process documents in blocks, instead of as a whole. (l.e., compytexamining the
entire document, just as before, and then write the document to the buffer in smaller blocks.)
So, the running time would be quadratic Antimes linear in document length. Note: for
k = 1024, modular exponentiation on a somewhat modern computer (2 GHz Pentium pro-
cessor) can be accomplished in less than 0.03 seconds, so it seems that such a protocol could
be practically implemented.

2. Space Efficiency The largest part of the program is the arrﬁy If you process docu-
ments in blocks, this array will take approximateély | D| bits. However, if documents are
processed as a whole, then the array will takg)/| - |D|). The rest of the program size
remains constant in terms of the variables we’re studying, so these estimates hold for the
size of the entire program. The size of the buffBf;y) was set to belym times the size

15

of a ciphertext value. However, since the ciphertext-plaintext size ratio approaches 1 as the
message size increases (they differ by a constant number of bits) in thehthgik sys-

tem, this solution seems near optimal in terms of buffer size. A loose upper bound on the
probabilities of losing a document is given by the proof of Lemma 2.8. The estimate it gives
is that the probability of losing a single document is less than the total number of documents
to be saved divided by”. Just using the basic Paillier scheme (ciphertext size to plaintext
size ratio= 2), and dividing a message into message chunks, a buffer of approximately 50
times that of theplaintext sizeof the documents you expect to store (i-e5 13) produces
probabilities of success around .99 for= 100, (again,m is the number of documents to

be stored).

Theorem 3.3 Assuming that the Paillier (and Daragd-Jurik) cryptosystems are semantically se-
cure, then the private filter generator from the preceding construction is semantically secure ac-
cording to Definition 2.7.

Proof: Denote by€ the encryption algorithm of the Paillier/Dardugl-Jurik cryptosystem. Sup-
pose that there exists an adversdryhat can gain a non-negligible advantage our semantic
security game from Definition 2.7. Thefi could be used to gain an advantage in breaking the
semantic security of the Paillier encryption scheme as follows: Initiate the semantic security game
for the Palillier encryption scheme with some challengerC' will send us an integer for the
Paillier challenge. For messages, mi, we choosen, = 0 € Z,s and choosen; = 1 € Z,s.
After sendingm,, m; back toC, we will receivee, = £(my,), an encryption of one of these two
values. Next we initiate the private filter generator semantic security gamedwithwill give us
two queries)q, Q1 in Q for some sets of keywordk), K, respectively. We use the public key
n to compute an encryption of, call it e, = £(0). Now we pick a random big, and construct
filtering software forQ), as follows: we proceed as described above, constructing the ﬁrbyy
using re-randomized encryptior(0) of 0 for all words inD \ K, and for the elements df,,

we use€(0)e,, which are randomized encryptions @f,. Now we give this program back td,
andA returns a guesg. With probability 1/2,e; is an encryption of 0, and hence the program that
we gaveA does not search for anything at all, and in this event cleddyguess is independent of
q, and hence the probability that = ¢ is 1/2. However, with probability 1/2, = £(1), hence
the program we've semt is filtering software that searches fQ,, constructed exactly as in the
Filter-Gen algorithm, and hence in this case with probabilif\2 + ¢, A will guessq correctly, as
our behavior here was indistinguishable from an actual challenger. We determine oubt’qagess
follows: if A guesseg’ = ¢ correctly, then we will set’ = 1, and otherwise we will séf = 0.
Putting it all together, we can now compute the probability that our guess is correct:

SRR OR ORI

and hence we have obtained a non-negligible advantage in the semantic security game for the
Paillier system, a contradiction to our assumption. Therefore, our system is secure according to
Definition 2.7. B

16

4 Reducing Program Size Below Dictionary Size

In our other constructions, the program size is proportional to the size of the dictionary. By relax-
ing our definition slightly, we are able to provide a new construction using Cachin-Micali-Stadler

PIR [9] which reduces the program size. Security of this system depends on the security of [9]
which uses th@-Hiding Assumptiori

The basic idea is to have a standard dictionaryagreed upon ahead of time by all users,
and then to replace the arrdV in the filtering software with PIR queries that execute on a
database consisting of the characteristic functioMoivith respect taD to determine if keywords

are present or not. The return of the queries is then used to modify the buffer. This will reduce
the size of the distributed filtering software. However, as mentioned above, we will need to relax
our definition slightly and publish an upper boutidfor | K|, the number of keywords used in a
search.

4.1 Private Filter Generation

We now formally present thEey-Gen, Filter-Gen, andBuffer-Decrypt algorithms of our con-
struction. The clas® of queries that can be executed by this protocol is again just the set of
boolean expressions in only the operatoover presence or absence of keywords, as discussed
above. Also, an important note: for this construction, it is necessary to know the set of key-
words being used during key generation, and hence what we achieve here is only weak public key
program obfuscation, as in Definition 2.2. For consistency of notation, we still present this as 3
algorithms, even though the key generation could be combined with the filter generation algorithm.
For brevity, we omit the handling of collision detection, which is handled using Lemma 2.10.

Key-Gen(k, K, D)

The CMS algorithms are run to generate PIR quefigs}; for the keywordsk’, and the resulting
factorizations of the corresponding composite numiets} are saved as the ke, ivqz., While
Apupiic 1s setto{m; }.

FiIter-Gen(D, QK; Apublz’c; Apm’vate; m, 7)

This algorithm constructs and outputs a private filiefor the query) k., using the PIR querieg
that were generated in tiey-Gen(k, K, D) algorithm. It operates as follows.

F’ contains the following data:

e The array of CMS PIR querieqg; g.f:l from the first algorithm, which are designed to
retrieve a bit from a database having size equal to the number of words in the agreed upon
dictionary,D. Only | K | of these queries will be meaningful. For eacke K, there will be a
meaningful query that retrieves the bit at index correspondingdandex in the dictionary.

Let {pﬂ}yzll be the primes generated by the informationgjn and letm; be composite
number part of;. The leftoverU — | K| queries are set to retrieve random bits.

Sltis an interesting open question how to reduce the program size under other cryptographic assumptions.

17

e Anarray of buffers{ B;}_,, each indexed by blocks the size of element&pf, with every
position initialized to the identity element.

The program then proceeds with the following steps upon receiving an input doctment

1. Construct the complement of the characteristic vector for the wordd oélative to the
dictionaryD. l.e., create an array of bif8 = {d,} of size|D|, such that; = 0 < d; € M.
We'll use this array as our database for the PIR protocols.

Next, for eachj € {1,2,...,U}, do the following steps:
2. Execute query; on D and store the result iry.
3. Bitwise encryptV/, usingr; to encrypt a 1 and using the identityZSIn]_ to encrypta 0.

4. Take thejth encryption from step 3 and position-wise multiply it into a random location in
buffer B; ~-times, as described in our color-survival game from section 2.

Buffer-Decrypt(B, A, ivate)

Simply decrypts each buffe8; one block at a time by interpreting each group element wijtth
roots as a 0 and other elements as 1's, whespresents the index of the bit that is searched for
by queryg;. All valid non-zero decryptions are stored in the outpuit

4.2 Correctness of Private Filter

Since CMS PIR is not deterministic, it is possible that our queries will have the wrong answer
at times. However, this probability is negligible in the security parameter. Again, as we've seen
before, provided that the decryption algorithm can distinguish valid documents from collisions in
buffer, correctness equates to storing non-matching documemiswith negligible probability

and matching documents with overwhelming probability. These facts are easy to verify:

1. Are non-matching documents stored with negligible probability? Yes. With overwhelming
probability, a non-matching document will not affect any of the meaningful buffers. If
M does not match, then the filtering software will (with very high probability) compute
subgroup elements for all of the importants. So, the encryption using these¢s will
actually be an encryption of the 0 message, and by our above remarks, will have no effect on
the buffer.

2. Are matching documents saved with overwhelming probability?/ I[Hoes match, i.e., it
contains a keyword frond(, then with very high probability, we will have at least one
that is not in the specified subgroup, and hence, the message will be properly encrypted
and stored in the buffer. And since we used the method from our combinatorial game in
section 2.2 to fill each buffer with documents, with overwhelming probability all matching
documents will be saved.

18

4.3 Efficiency of Filtering Software in Time and Space

We compute now the efficiency of the software in relation to the security parametes size of
the dictionaryD, the upper bound on the keywords and the number of documents to be saved
n.

1. Time Efficiency. For the software to process a given document it needs td/r@MS
PIR queries. To answer each query requires a number of modular exponentiations equal to
the size of the dictionary, and each modular exponentiation takes aljgéit time. This
procedure is at worst linear in the number of words of a document (to construct the database
for the PIR queries) so, we conclude that the running time is inddg#).

2. Space Efficiency The only variable-sized part of the program now is the PIR queries. Each
CMS PIR query consists of only polylogarithmic bits in terms of the dictionary s$i2e,
So, in general this could be an advantage.

Theorem 4.1 Assuming that thé@-Assumption holds, the Private Filter Generator from the pre-
ceding construction is semantically secure according to Definition 2.2.

Proof: If an adversary can distinguish any two keyword sets, then the adversary can also distin-
guish between two fixed keywords, by a standard hybrid argument. This is precisely what it means
to violate the privacy definition of [9], which is proven under theAssumption. B

5 Eliminating the Probability of Error with Perfect Hash Func-
tions

In this section, we present ways to reduce the probability of collisions in the buffer by using
perfect hash functions. Recall the definition of perfect hash function. Forasefl,...,m}, if

a functionh : {1,....m} — {1,...,n} is such that|s (the restriction of: to S) is injective, then

h is called aperfect hash functiofor S. We will be concerned with families of such functions.
We say thatH is an(m,n, k)-family of perfect hash functioriV.S C {1,...,m} with |S| = £,

Jh € H such that: is perfect forS.

We will apply these families in a very straightforward way. Namely, we definéo be the
number of documents in the stream anith be the number of documents we expect to save. Then,
since there exist polynomial siZe:, n, k)-families of perfect hash functiond, then our system
could consist of H| buffers, each of size documents, and our protocol would just write each
(potential) encryption of a document to each of the buffers once, using the corresponding hash
function fromH to determine the index in the buffer. Then, no matter which of thedocuments
were of interest, at least one of the functionsdnwould be injective on that set of indexes, and
hence at least one of our buffers would be free of collisions.

19

We note that the current proven upper bounds on the sizes of such families do not neces-
sarily improve our results; the purpose of this section is theoretical, the point being that we can
eliminatethe probability of losing a matching document in a non-trivial way.

In the work of Mehlhorn [23], the following upper bound for the size of perfect hash function
families is proved, wheré/ is an(m, n, k)-family as defined above:

log ()
Al < hog(nk) ~log(n — k!(g))w

This result could be used in practice, but would generally not be as space efficient as our other
models. However, if the lower bounds proved in [15] were achieved, then we could make such
a system practical. For example, if one wanted to save 25 documents from a stream of tens of
thousands of documents (say60000), then 7 buffers the size of 250 documents each could be
used to save 25 documents without any collisions in at least one of the buffers.

6 Construction Based On Any Homomorphic Encryption

We provide here an abstract construction based upon an arbitrary homomorphic, semantically se-
cure public key encryption scheme. The class of queg@lethat are considered here is again,

all boolean expressions in only the operationover presence or absence of keywords, as dis-
cussed above. This construction is similar to the Paillier-based construction, except that since we
encrypt bitwise, we incur an extra multiplicative factor of the security paranieterthe buffer

size. However, both the proof and the construction are somewhat simpler and can be based on any
homomorphic encryption.

6.1 Preliminaries

Throughout this section, [ePKE = {KG,E, D} be a public key encryption scheme. Here,
G, E,D are key generation, encryption, and decryption algorithms, respectively.

Semantically Secure Encryption
For an encryption scheme, we define semantic security in terms of the following game between an
adversary4 and a challenget’, consisting of the following steps:

1. C runs the key generation algorithki (%), and sends all public parameters4o
2. A chooses two messages of equal length, M; and sends them t0.

3. C chooses a random hite {0, 1}, computes: = £(M,), an encryption of\/,, and sends
this ciphertext to A.

4. Aoutputs a guess € {0, 1}.

20

We say that4 wins the game ity = b and loses otherwise. We define the adversélsy

advantage in this game to be

Adv (k) = [Pr(b =) — %\

The encryption scheme is said to emantically securéd for any adversaryd € PPT we have
that Adv, (k) is a negligible function.

6.2 Construction of Abstract Private Filter Generator

Let PKE = {KG,E, D} be a group homomorphic, semantically secure, public key encryption
scheme, satisfying Definition 3.1. We describe Key-Gen, Filter-Gen, andBuffer-Decrypt
algorithms. We will write the group operations Gf andGs multiplicatively. (As usual(,, G

come from a distribution of groups in some class depending on the security parameter, but to avoid
confusion and unnecessary notation, we will always refer to them simply;, a5, where it is
understood that they are actually sampled from some distribution baseyl on

Key-Gen(k)
ExecuteXG (k) and save the private key a,....., and save the public parametersKE as
Apublic-

Filter-Gen(D, QK; Apublica Aprivate7 m, r}/)
This algorithm constructs and outputs a filtering progiaror () i, constructed as follows.
F contains the following data:

e A buffer B(v) of size2ym, indexed by blocks the size of an element&ftimes the docu-
ment size, with every position initialized td, .

e Fix an elemeny € G, with g # idg,. The program contains an array = {c/l;}ﬂ where
eacth- € (G5 such thatZ— is settof(g) € G, if d; € K and it is set ta€ (idg,) otherwise.
(Note: we are of course re-applyidgo compute each encryption, and not re-using the same
encryption with the same randomness over and over.)

F then proceeds with the following steps upon receiving an input docufdent
1. Construct a temporary collectiod = {c@ eD | d; € M}.

2. Choose a random subset™ M of size[|]\//.7|/2} and compute
v=TIs

3. Bitwise encryptM using encryptions ofdg, for 0’s and using to encrypt 1's to create a
vector of G5 elements.

4. Choose a random location i, take the encryption of step 3, and position-wise multiply
these two vectors storing the result backdrat the same location.

21

5. Repeat steps 2{4;)~ times, where in generat,will be a constant approximately the size
of G.

Buffer-Decrypt(B, A, ivate)

DecryptsB one block at a time using the decryption algoritito decrypt the elements ©fs,
and then interpreting non-identity elementsgfas 1's andd;, as 0, storing the non-zero, valid
messages in the outpBt'.

6.3 Correctness of Abstract Filtering Software

Again, provided that the decryption algorithm can distinguish valid documents from collisions in
buffer, correctness equates to storing non-matching documemiswith negligible probability
and matching documents with overwhelming probability, which can be seen as follows:

1. Are non-matching documents stored with negligible probability? Yes. In fact, they are stored
with probability O since clearly if a documeit does not match, then all of the values in
M will be encryptions ofids, and hence so will the value So, the buffer contents will be
unaffected by the program executing on input

2. Are all matching documents saved with overwhelming probability? First of all, observe that
if M contains at least one keyword, step 2 will comput be an encryption of a non-
identity element ofG; with probability at leastl /2, regardless of what?; is (as long as
|G1] > 1). So, by only repeating steps 2-4 a small number of times, the probability that
a matching document will be written at least once becomes exponentially close to 1. We
will choose the number of times to repeat steps 2-4 so that the expected number of non-
identity v’s that we will compute will be equal tg. Then, we will essentially be following
the method in our “color-survival” game from section 2.2 for placing our documents in the
buffer, and hence all documents will be saved with overwhelming probability in

Theorem 6.1 Assuming that the underlying encryption scheme is semantically secure, the Private
Filter Generator from the preceding construction is semantically secure according to Definition
2.7.

Proof: Suppose that there exists an adversarmphat can gain a non-negligible advantage
our private data collection semantic security game. Theould be used to gain an advantage in
breaking the semantic securityBfCE as follows: We initiate the semantic security gameRace
with some challengef’, and for the plaintext messages, m; in this game, we choose, = idg,
and choosen; to beg € G, whereg # idg,. After sendingm,, m; to our opponent in the
semantic security game, we will receiwvg = £(m;), an encryption of one of these two values.
Next we initiate the private data collection semantic security game Avithhere we play the role
of the challenger.A will give us two sets of keyword#(,, K; € D. We assume that we have
access t& since the system was assumed to be public key, so we can computef (idg,).
Now we pick a random bit;, and construct filtering software fdk, as follows: we proceed

®In most cases, just having an encryptionaf, , without access t& will suffice.

22

as described above, constructing the arfapy using re-randomized encryptiofigid,) of the
identity’ for all words inD \ K, and for the elements df,, we use€(e;q)e;, Which will be a
randomized encryption af,, by our assumption that the system was homomorphow we give

this program back tal, and A returns a guesg. With probability 1/2, the program that we gave

A does not search for anything at all, and in this event, cleddyguess is independent gf and
hence the probability that = ¢ is 1/2. However, with 1/2 probability, the program we've sdnt
searches fo¥, (and is in fact indistinguishable from programs that are actually created with the
Filter-Gen algorithm), and hence in this case with probabilif\2z + ¢, A will guessq correctly.

We determine our guegsas follows: if A guesseg’ = ¢ correctly, then we will set’ = 1, and
otherwise we will set’ = 0. Putting it all together, we can now compute the probability that our

guess is correct:
1/1y 1/1 1 e
= 0) b) L
()=5(5)t2lgte) =513

and hence we have obtained a non-negligible advantage in the semantic security gR/E far
contradiction to our assumption. Therefore, our system is secure according to Definitidll 2.7.

7 Construction For a Single AND

7.1 Handling Several AND Operations by Increasing Program Size

We note that there are several simple (and unsatisfactory) modifications that can be made to our
basic system to compute an AND. For example a query consisting of at m@stiB operations

can be performed simply by changing the dictionaryo a dictionaryD’ containing all| D|¢ c-

tuples of words inD, which of course comes at a polynomial blow2wgd program size® So,

only constant, or logarithmic size keyword sets can be used in order to keep the program size
polynomial.

7.2 Brief Basics of the Boneh, Goh, Nissim Cryptosystem

In [6], the authors make use of groups that support a bilinear map. In what follovis, @&t be
two cyclic groups of orden = ¢;q-, a large composite number, and lebe a generator of.
Amape : G x G — G; is called a bilinear map if for al.,v € G anda,b € Z, we have that

"Usinge?, for randomr would generally suffice

8Again, one could generally get away with usitfge, if the group has simple enough (e.g., cyclic) structure. We
just need to ensure that the distribution of encryptions we produce here is truly indistinguishable from the distributions
created thd=ilter-Gen algorithm. This is the main reason why we required the underlying system to be public key- it
in general will not be necessary, but at this level of abstraction, how else can one come up with uniform encryptions?

9Asymptotically, if we trea{ D| as a constant, the above observation allows a logarithmic number of AND opera-
tions with polynomial blow-up of program size. It is an interesting open problem to handle more than a logarithmic
number of AND operations, keeping the program size polynomial.

100ne suggestion that we received for an implementation of “AND” is to keep track of several buffers, one for each
keyword or set of keywords, and then look for documents that appear in each buffer after the buffers are retrieved,
however this will put many non-matching documents in the buffers, and hence is inappropriate for the streaming model.
Furthermore, it really just amounts to searching for an OR and doing local processing to filter out the difference.

23

e(u®, v%) = e(u,v)®. Also, we require thate(g, g)) = G, for any choice of a generatgre G.
This bilinear map will serve as our multiplication operator for encrypted values, and hence only
one such multiplication is possible.

The security of the system is based on a subgroup indistinguishability assumption, related to
the difficulty of computing discrete logs in the grou@gsG,. More formally, it is as follows.

Let G(k) be an algorithm that returngy, ¢-, G, G4, e) as described above, whekeis the
number of bits of the primeg, ¢.. Then the subgroup decision problem is simply to distinguish the
distribution (n, G, Gy, e, x) from the distribution(n, G, G4, e, %), wherex is uniformly random
in G, and the other variables come from a distribution determined.b@learly this is a stronger
assumption than the hardness of factoring, and it is also a stronger assumption than the hardness of
discrete logs?! For an algorithmA € PPT, the hardness assumption is formalized by first defining
the advantage of the adversary to be:

Adv,(k) = ‘Pr[A(n,G,Gl,e,a:) = 1} — Pr[A(n,G,Gl, e, x?) = 1”

where the probabilities are taken over sample§ @) to generate thén, G, G4, e) and overz
which was uniformly random ifiz. One then says th& satisfies the subgroup decision problem
if Adv 4 (k) is negligible ink.

7.3 Executing AND Without Increasing Program Size

Using the results of Boneh, Goh, and Nissim [6], we can extend the types of queries that can be
privately executed to include queries involving a single AND of an OR of two sets of keywords
without increasing the program size. This construction is very similar to the abstract construction,
and hence several details that would be redundant will be omitted from this section. The authors
of [6] build an additively homomorphic public key cryptosystem that is semantically secure under
this subgroup decision problem. The plaintext set of the systéiy) j&nd the ciphertext set can be
eitherG or G, (which are both isomorphic t8,,). However, the decryption algorithm requires one
to compute discrete logs. Since there are no known algorithms for efficiently computing discrete
logs in general, this system can only be used to encrypt small mes$€ddsiag the bilinear map
e, this system has the following homomorphic property. Eet Z,,[X1, ..., X,| be a multivariate
polynomialof total degree 2and let{c;}! , be encryptions ofz;}! ,, z; € Z,,. Then, one can
compute an encryptioa of the evaluatior¥'(zy, ..., z,) of F' on thex; with only the public key.
This is done simply by using the bilinear mapn place of any multiplications irF’, and then
multiplying ciphertexts in the place of additions occurringHn l.e., if £ is the encryption map
and if

F=) ;XX

1<i<j<u

10ne could just pick a generatgrof G, compute the log of the last parametergr 292) with respect to the base
g, and then compute the gcd withto distinguish.

12Small message size is clearly a fundamental limitation of the construction since efficiently computing arbitrary
discrete logs would violate the security of the system.

24

then from{¢, = £(x;)}}-,, = € Z,, we can compute
E(F(xy,...,xy)) = H e(ci, i)
1<i<j<u

where all multiplications (and exponentiations) are in the gi@ypOnce again, since decryption

is feasible only when the plaintext values are small, one must restrict the message space to be a
small subset oZ,,. (In our application, we will always have € {0,1}.) Using this cryptosystem

in our abstract construction, we can easily extend the types of queries that can be performed.

7.4 Construction of Private Filter Generator

More precisely, we can now perform queries of the following form, wherés a document and
K, Ky C D are sets of keywords:

(MNK, #2)N(MnN K, # 2)
We describe th&ey-Gen, Filter-Gen, andBuffer-Decrypt algorithms below.
Key-Gen(k)
Execute the key generation algorithm of the BGN system to produygcg. = (n, G, Gy, e, g, h)

whereg is a generatom = ¢1¢», andh is a random element of ordey. The private keyA,, i ate
is the factorization of.. We make the additional assumption that < gs.

Filter'Gen(Da QKl,K27 Apublic; Apm’vatea m, ’7)

This algorithm constructs and outputs a private filterfor the queryQy, x,, constructed as
follows, where this query searches for all docume¥tsuch tha{ M N K, # @)\ (M N K,y # 2).
F contains the following data:

e A buffer B(v) of size2ym, indexed by blocks the size of an element&ftimes the docu-
ment size, with every position initialized to the identity elemenGef

e Two arraysﬁl = {@}Lﬂ where eac@ € G, such tha@ is an encryption ofl € Z, if
d; € K; and an encryption of O otherwise.

F then proceeds with the following steps upon receiving an input docufdent
1. Construct temporary collectiond; = {c@ €D, |die M}

2. Forl =1, 2, compute
w=T[@
dieM,
and
v =e(v,v9) € Gy

3. Bitwise encryptM using encryptions of in G; for 0’s and using to encrypt 1's to create
a vector ofG, elements.

25

4. Choosey random locations irB, take the encryption of step 3, and position-wise multiply
these two vectors storing the result backdrat the same location.

Buffer-Decrypt(B, A, ivate)

DecryptsB one block at a time using the decryption algorithm from the BGN system, interpreting
non-identity elements d£,, as 1's and) as 0, storing the non-zero, valid messages in the output
B*.13

7.5 Correctness of Filtering Software

As usual, we show the following two facts, which equate to correctness:

1. Are non-matching documents stored with negligible probability? Yes. In fact, they are stored
with probability O since clearly if a documenf does not match, then it either did not match
K, or it did not matchk,. Hence, all of the values iM\l or]\/4\2 will be encryptions of)
and hence so will the value. So, the buffer contents will be unaffected by the program
executing on inpuf//.

2. Are all matching documents saved with overwhelming probability? Clearly, if a document
M satisfie M N K; # @) A (M N K, # @), thenv; andv, will be encryptions of non-zero
elements ofZ,, (as we ensured thaD| < ¢,), and so willv, asZ,, is a domain. Then,
we will be following the method in our “color-survival” game from section 2.2 for placing
our documents in the buffer, and hence all documents will be saved with overwhelming
probability in-.

Theorem 7.1 Assuming that the subgroup decision problem of [6] is hard, then the Private Filter
Generator from the preceding construction is semantically secure according to Definition 2.7.

Proof: Note that if an adversary can distinguish two queries, then the adversary has successfully
distinguished one of the sets of keywords in the first query from the corresponding set in the second
guery. Now, it is a minor reduction to apply the abstract proof of Theorem 6.1, since this system is
essentially the abstract construction built around the BGN cryptosysikm.

8 Extensions

8.1 Detecting Buffer Overflow

We would like to take note of the fact that one can easily detect buffer overflow with overwhelming
probability in the correctness parameterin the work of Kamath, Motwani, Palem and Spirakis
[18], a Chernoff-like bound is shown for the number of empty bins in the occupancy problem
(where a number of balls are thrown uniformly and independentlyririiims). l.e., as increases,

135ee footnote 3.

26

the probability that the number of empty bins after the process is a fixed proportion away from the
mean is negligible im. Hence, one could proceed as follows to detect overflow:

Let m be the maximum number of documents to save. Double the buffer size2fyomto
4vm. Letn = 4ym. Letr be the number of matching documents written to the buffer. Overflow
is defined as the condition> m. Note that we can detect with probability 1 whether or aoy
documents have landed in a specific buffer location just by checking to see if it encrypts the identity
or not. So, we can count the exact number of occupied bins. In the event that < 2m, then
by Lemma 2.8, we will in fact be able to recover at least one copy of dicuments, and hence
be aware of an overflow. In the event that 2m, then we will throw more thaym = n/2 balls
into our bins, and the expected number of occupied bins wilbbdn. Applying the results of
[18], it will be negligibly likely that the number of occupied bins is less than, which is always
true if overflow has not occurred. So, if one modifies the filtering software to return overflow in
the event that

1. more thann valid documents are recovered, or
2. the number of occupied bins is more thafl = ym

then it will correctly detect overflow with overwhelming probability in the correctness param-
eter-.

8.2 Keyword Search for Arbitrary Strings

We would like to point out a few straightforward extensions to this work which, while weakening
our very strong notion of correctness, allows more functionality, which may be useful in practice.
One of the limitations of the strict model we presented is the fact that all keywords used in
a search must come from a finite, public dictionary. In practice, we wish to extend this to be
arbitrary words of finite length. This is easy to do, as long as we relax our definition of correctness
to admit “false positives” into the buffer with small (but non-negligible) probability. In particular,
in addition to the standard dictionary we can create a sufficiently large hash table, with a hash
function that maps arbitrary strings into a smaller finite range, and use the output of the hash as
additional keywords. The problem, of course, is that this ruins the strong notion of correctness that
we have proved in our constructions. The probability of a false positive will then be proportional
to the reciprocal of the size of the table, where as our definitions require this probability to be
negligible. This may however, be useful in various practical applications. In [4, 5], the practicality
and the consequences of this approach are examined in more detail.

8.3 Always Saving(2(m) Documents in the Case of Overflow

We present here an elementary method which extends the buffer by an additional fagtor of
but has the property that even with buffer overflow that’'s exponential in this paramete?/{say
documents are written) the expected value of properly saved documents in the buffer will be at
leastm /2, wherem is the designed buffer capacity. The method is as follows: replace the buffer
B, by an array of identical buffersB; }_,, eachB; having size&ym. We will write to the buffers

27

as follows: for each incoming document, write the documetitmes (as in the original protocol)

to buffer B; with probability%. l.e., write toB, with probability 1, and fori € [1, x| sample from

a uniform distribution on{0, 1}* and write toB; if the result is the) string. Now, as long as the
total number of matching documents is less thamn, then clearly there will be a buffer that has an
expected number of matching documents betwegn andm, and since each buffer is designed
to storem documents with overwhelming probability, we will always have the expected number
of recovered documents to be at least2 in this situation.

9 Open Questions and Further Work

In the follow-up work [4, 5], a different method for recovering documents from the buffer is pre-
sented. By recording extra information about the ordinal numbers of matching documents, and
keeping track of the seed used for the random number generator to create the random locations at
which documents are stored, they establish a system of linear equations that correspond exactly
to the buffer contents. Now retrieving the documents amounts to solving the system of equations.
The advantage of this, compared to our solution, is that buffer collisions are no longer necessarily
lost, but in fact can often be recovered. Consequently, the buffer size does not need to be as large in
order to maintain a high probability of recovering all documents. In fact, the buffer size becomes
optimal. However, there is a drawback to this approach as well. To store the ordinal numbers of the
documents that match, an encrypted Bloom filter is used, which is indeed a convenient device for
storing set membership from a large universe without using much space. But although questions
like “is © € S?” can be answered efficiently using a Bloom filter, it is not easy to deteraiine
elements of the universe that are in the Sawithout checking such statements for all possible
values ofi from the universe. So, the buffer recovery algorithm of [4, 5] now has a running-time
proportional to the size of the data stream which may be undesirable, and does not fit the streaming
model as proposed in this paper, where we insist that the buffer contents must be decrypted at the
cost which is independent of the stream size. Again, such methods may be useful in various practi-
cal situations, and a more detailed analysis of such practical considerations can be found in [4, 5].
We also note that the idea of solving a system of linear equations to recover the buffer contents
was also proposed in the [13], however, no formal arguments were given to support the method.
It is an open question if one can reach buffer size as in [4, 5] without the computational decoding
cost depending on the stream size.

Another limitation of our solution is of course the small variety of query types that can be
performed. Using a multiplicative homomorphic encryption scheme can in a way perform an arbi-
trary AND query, however all such attempts have thus far failed to satisfy the correctness criteria.
Extending the types of queries that can be executed, or proving that doing so is impossible under
some general assumptions would be another interesting problem. In fact, some recent progress
was made towards this end by Ostrovsky and Skeith [25]: they show that the general methods used
here to create protocols for searching on streaming data (which are based essentially upon ma-
nipulating homomorphic encryption) cannot be extended to perform conjunctive queries beyond
what has been accomplished in Sections 3, 7, 6, etc. More specifically, if one builds a protocol
based on an abelian group homomorphic encryption (e.g. Sections 3 and 6) then no conjunctions

28

(of more than one term) can be performed without increasing (super-linearly) the dictionary size.
More generally, [25] shows that if the cryptosystem allows computation of polynomials of total
degree over any ringR, (as seen in Section 7 with= 2, R = Z,) then the best one can hope for

is a conjunction of terms without increasing the dictionary size. So, the constructions we provide
here meet a lower bound. It seems then, that to make progress in significantly extending the query
semantics will likely require fundamentally different approaches to the problem (unless of course,
major developments are made in the design of homomorphic encryption schemes, e.g. a scheme
over a ring or non-abelian group).

Acknowledgements

We thank Martin Strauss for a useful suggestion on saving atteagtcuments in case of buffer
overflow.

29

References

[1] B. Adida and D. Wikstrom Obfuscated Ciphertext Mixing In IACR Eprint archive number
394, 2005.

[2] L. Adleman, R. Rivest, A. Shamir. A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems Communications of the ACM, 21(2):120-126,(February) 1978.

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On
the (im)possibility of software obfuscation. @rypto 2001 pages 1-18, 2001. LNCS 2139.

[4] J. Bethencourt, D. Song, and B. Waters. New techniques for private stream searching. Tech-
nical Report CMU-CS-06-106, Carnegie Mellon University, March 2006.

[5] J. Bethencourt, D. Song, and B. Waters. New Constructions and Practical
Applications for Private Stream Searching (Extended Abstract) Appeared at:
http://www.cs.cmu.edu/ bethenco/searcheff.pdf July 2006.

[6] D. Boneh, E. Goh, K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts. TCC 2005:
325-341

[7] D. Boneh, G. Crescenzo, R. Ostrovsky, G. Persiano. Public Key Encryption with Keyword
Search. EUROCRYPT 2004: 506-522

[8] Y. C. Chang. Single Database Private Information Retrieval with Logarithmic Communica-
tion. ACISP 2004

[9] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In J. Stern, editdgvances in Cryptology - EUROCRYPT
'99, volume 1592 ot.ecture Notes in Computer Scienpages 402—-414. Springer, 1999.

[10] B. Chor, N. Gilboa, M. Naor. Private Information Retrieval by Keywords in Technical Report
TR CS0917, Department of Computer Science, Technion, 1998.

[11] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrievaPran.
of the 36th Annu. IEEE Symp. on Foundations of Computer Sqigacges 41-51, 1995.
Journal versiond. of the ACM 45:965-981, 1998.

[12] 1. Damgard, M. Jurik. A Generalisation, a Simplification and some Applications of Paillier's
Probabilistic Public-Key System. In Public Key Cryptography (PKC 2001)

[13] G. Danezis and C. Diaz Improving the Decoding Efficiency of Private Search In IACR Eprint
archive number 024, 2006.

[14] G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single-database private information retrieval
implies oblivious transfer. IAdvances in Cryptology - EUROCRYPT 202000.

30

[15] M. Fredman, J. Kond@ls. On the Size of Seperarting Systems and Families of Perfect Hash
Functions. SIAM Journal on Algebraic and Discrete Methods. Vol. 5, No. 1, March 1984

[16] M. Freedman, Y. Ishai, B. Pinkas and O. Reingold. Keyword Search and Oblivious Pseudo-
random Functions. To appear in 2nd Theory of Cryptography Conference (TCC '05) Cam-
bridge, MA, Feb 2005.

[17] S. Goldwasser and S. Micali. Probabilistic encryption. In J. Comp. Sys. Sci, 28(1):270-299,
1984.

[18] A. Kamath, R. Motwani, K. Palem, P. Spirakis. Tail Bounds for Occupancy and the Satisfia-
bility Threshold ConjectureRandom Structures and AlgorithmsPages: 59-80, 1995

[19] K. Kurosawa, W. Ogata. Oblivious Keyword Search. Journal of Complexity, Volume 20 ,
Issue 2-3 April/June 2004 Special issue on coding and cryptography Pages: 356-371

[20] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. Froc. of the 38th Annu. IEEE Symp. on
Foundations of Computer Sciengages 364-373, 1997.

[21] E. Kushilevitz and R. Ostrovsky. One-way Trapdoor Permutations are Sufficient for Non-
Trivial Single-Database Computationally-Private Information RetrievalPriyc. of EURO-
CRYPT 00 2000.

[22] H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. IACR ePrint
Cryptology Archive 2004/063

[23] K. Mehlhorn. On the Program Size of Perfect and Universal Hash Functions. In Proc. 23rd
annual IEEE Symposium on Foundations of Computer Science, 1982, pp. 170-175.

[24] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluat®imc. 31st STOpp.
245-254, 1999.

[25] R. Ostrovsky and W. Skeith. Algebraic Lower Bounds for Computing on Encrypted Data.
manuscript 2006.

[26] P. Palillier. Public Key Cryptosystems based on Composite Degree Residue Classes. Advances
in Cryptology - EUROCRYPT '99, LNCS volume 1592, pp. 223-238. Springer Verlag, 1999.

[27] T. Sander, A. Young, M.Yung. Non-Interactive CryptoComputing For NC1 FOCS 1999:
554-567

[28] J.P. Stern. A New and Efficient All or Nothing Disclosure of Secrets Protocol Asiacrypt 1998
Proceedings, Springer Verlag.

31

10 Appendix

10.1 A Brief Review of the Paillier Cryptosystem

For the sake of completeness, we include a simple review of the Paillier Cryptosystem [26].

The Pailler system is based on an intractability assumption called the “Composite Residuosity
Assumption”, which as we will see before is something of a generalization of the hardness of dis-
tinguishing quadratic residues, and also can be reduced to the RSA problem [2]. This assumption
(which we will abbreviate as CRA) is about distinguishing higher order residue classes. The Pail-
lier system and its extensions (see [12]) are additively homomorphic, and have very low ciphertext
to plaintext ratio.

10.1.1 Preliminaries

Letn = pg be an RSA number, with < ¢. We will make the additional minor assumption that
p1q—1,ie, that(n,po(n)) = 1. The plaintext for the Paillier system will be represented as
elements ofZ,, and the ciphertext will be elements4f.. Note the following:

to o Ly X Ly

This can be proved using nothing more than elementary facts from number theory and group theory.
(See Lemma 10.1 below and the corollary.) Given this structu& ofit is not hard to see that
the factor of the direct product that is isomorphicZy) is in fact theuniquesubgroup of order
(p—1)(¢—1). Let H < Z, denote this subgroup of ordgsr — 1)(¢ — 1). Now defineG to be
the quotient,
G=7Z./H
Then by our above remarks, we have the structur€ & be cyclic of orden: G ~ Z,. We are
now ready to state the Composite Residue Class Problem.

10.1.2 The Composite Residuosity Class Problem

Letg € Z}, such that(¢H{) = G and letw be an arbitrary element iZ*,. Then, sinceyd
generates; = Z*,/H, we havew = ¢'h for somei € {0,1,2,..n — 1} andh € H. Giveng and
w, the Composite Residuosity Class Problem is simply tofind

Note that there is also a decisional version of this problem: givein as above, and €
{0,...,n — 1}, determine ifw = ¢"h for someh € H. This decision version of the problem is
clearly equivalent to distinguishingth residues mod? (which is the special case of= 0) since
H is exactly the subgroup oi-th residues. (Proof of this is given below- see Lemma 10.3.)

Note also that these problems have several random self-reducibility properties. Any instance
of the problem can be converted to a uniformly random instance of the problem with respect to
(just by multiplying byg®b™, with a € Z,,b € Z; and subtracting from the answer). Also, the
problem is self-reducible with respect to the generatoin fact, one can show that any instance
with generatow can be transformed into an instance with genergto8o, the choice of has no
effect on the hardness of this problem- if there @ngeasy instances, thel instances are easy.

Now that we have formalized the hardness assumptions, one can build a cryptosystem as follows:

32

10.1.3 The Cryptosystem

As mentioned before, there are several variants and extensions of this cryptosystéek.&L&?)
be the key generation, encryption, and decryption algorithms respectively. They are implemented
as follows:

° /C(S) This algorithm randomly selects arbit RSA numbem = pq, with p < ¢ and the
additional property thap 1 ¢ — 1 (which is satisfied with overwhelming probability when
p, g are randomly chosen). It outpuisas the public parameters, and saves the factorization
as the private key.

. E(m) For a plaintext message < n, chooser € Z! at random and set the ciphertext,

as follows:
c=(1+n)"r"eZ,

Recoveringn from c is precisely an instance of CRCP sinceis a random element in the
subgroupH, and the cosetl + n) H will generate all ofG. (See Lemma 10.5.)
Note 1: Due to the random self-reducibility of CRQP}- n is just as good of a choice gf
as any other. Note 2: although it may seem more natural to chogsg?,, lettingr € Z,
is just as good. (See Lemma 10.4.)

. D(C) Let ciphertextc = (1 + n)™r™ mod n?. To recover the message, first look at this
equation moch rather tham?:

c=(14+n)"r" modn

becomes
c=r"modn

Now this equation is something familiar... findindfrom c is an instance of the RSA problem
(since we are given which is relatively prime tao(n) and an exponentiation efmod n).
And since the factorization = pq is known to us, we can just use RSA decryption as a
subroutine to recover. Now that we have, it is a simple process to obtain.
To begin, compute™ mod n? and dividec by this value:
- (14 n)™ mod n*
Tﬂ
Now use the binomial theorem:

Reducingnod n? gives us

(1+n)" = 21: (m>n = 1+ mn (mod n?)

So finally, we have

10.1.4 A few words about extensions to the system

Recently Mads Jurik and Ivan Dardagl [12] made a very natural extension to the Paillier System
that uses larger groups for its plaintext and ciphertext. This extension works feray . In the
extended system, the plaintext is represented by an elemgpt,iand the ciphertext is an element

of Z.,,. There are two very appealing properties of this system: First, the ratio of plaintext length
to ciphertext length approachésss tends tooco. Second, just as in the original Paillier scheme,

the public and private information can be simplyand its factorization, respectively. You need

not shares ahead of time. In fact, the sender of a message can chotshis/her liking based

on the length of the message to be sent. Then, except with negligable probability, the receiver
can deduce from the length of the ciphertext. So, the public (and private) parameters remain
extremely simple.

10.1.5 Lemmas and Proofs

Lemma 10.1 Letp € Z be a prime. ThelZ,, ~ 7Z, X Z,

Proof: First note that{Z:,| = o(p?) = p(p — 1) wherep is prime andy is the Euler phi-
function. So, by Cauchy’s Theorem, there is an element of gratesideZ,, (in fact,p + 1 is such
an element). So, there is a subgroup of ordér Z... Call this subgroup,. Recall thatZ;, is
cyclic of orderp — 1, and letg be a generator df;. Notice that the order of g inside df, is at
leastp — 1 since equivalence maef implies equivalence mog. (So, the firstpp — 1 powers ofyg
remain distinct mogh?). But this severely limits the possibilities for the ordergoihside of Z,.
The only options that remain afg| = p — 1 or |g| = p(p — 1) sincep is prime. In the first case,
we have found a cyclic subgroyp) of orderp — 1, and sinceyed(p,p — 1) = 1, we have

Hy, N (g) = {1}

and therefore,
Ly =~ Hy X (g) = Zy X L,

which is exactly what we wanted. Or in the second cageis all of Z, hence
Lz == Lyp—1y = Lp X L1 ~= Ly X 7,

which is again, exactly what we wanted to provll.

Corollary 10.2 Letn = pq, wherep, g € Z are primes. Ther.*, ~ Z,, x Z,.

Proof: First note thatZ,: ~ Z,» x Z, and henceZ’, ~ Lys X L. Now applying Lemma
10.1, we have that

n2

>~ (ZLy X L) X (L, X Ly) =~ Ly X Ly,

2 = Ly X Ly X Ly X L,

which completes the proofll

Lemma 10.3 Then-th residues moa? are exactly the subgrouf.

34

Proof: ~ We would like to show that an elemehtof Z*, has ann-th root (i.e., can be written
ash = ¢g" mod n® for someg € Z*,) ifand only if h € H. Define¢ : Z*, — Z}, by x — z™.
Certainly¢ is a homomorphismo(ab) = (ab)” = a"b™ = ¢(a)p(b). Clearly,im(¢) is precisely
the group ofr-th residues, so hopefully we can sheow (o) = H. What isker(¢)? Well, an
elementis in the kernel if and only if it has an order that dividése., elements of orddr, p, ¢, n).
Recall from the corollary thdt”, ~ Z, x Z;. TheZ, component of this product consists of all
of the elements of orders p, ¢, n since we have thdt, p(n)) = 1. So,ker(¢) ~ Z, and hence
lim(¢)| = |H|, which is enough to shown(¢) = H asH is the unique subgroup of this order.
|

Lemma 10.4 If r € Z} is chosen uniformly at random, thef modn? is uniformly random inA.

Proof: Let¢ : Z; — Z;, be then-th power map (composed first with the injection iz, if
you like). Then of coursém(¢) C H, given what we have already proved. Butin faet ¢) = H
as¢ is injective (and therefore surjective 8| = |H|): recall that(n, ¢(n)) = 1, so then-th
power map is 1to 1 of*, and since equivalence med implies equivalence mod it must be that
¢isalso 1to 1. Soindeed,is a bijection ofZ; and H, so uniformly random irZ is uniformly
random inH. B

Lemma 10.5 The cose(l + n)H generates the factor groug = Z>,/H.

Proof: To see this, first look at the order df+ n inside ofZ;,. Using the binomial theorem

just as in our decryption specification, we have that- n)™ = 1 + mn (mod n?). So, clearly

the order ofl + n is n, and hencdl + n) ¢ H. Suppose for some € {2,...,n} that(1 + n)*

lies in H. Now, under any homomorphism, the order of the image of an element must divide the
order of the element itself. Applying this to the homomorphism defined by raising elements to the
k'™ power, we would have that the order @f+ n)* must dividen. But (1 +n)* € H and|H| is
relatively prime ton, so this forces the order ¢f + n)* to be 1, i.e.k = n. Hence(1 + n)H has
ordernin G aswell. So{(1+n)H)=G. R

35

