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Abstract. Sfinks is an LFSR-based stream cipher submitted to ECRYPT call for stream
ciphers by Braeken, Lano, Preneel et al. The designers of Sfinks do not to include any
protection against algebraic attacks. They rely on the so called “Algebraic Immunity”,
that relates to the complexity of a simple algebraic attack, and ignores other algebraic
attacks. As a result, Sfinks is insecure.
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1 Introduction

Sfinks is a new stream cipher that has been submitted in April 2005 to ECRYPT call
for stream cipher proposals, by Braeken, Lano, Mentens, Preneel and Varbauwhede [6].
It is a hardware-oriented stream cipher with associated authentication method (Profile
2A in ECRYPT project).
Sfinks is a very simple and elegant stream cipher, built following a very classical formula:
a single maximum-period LFSR filtered by a Boolean function. Several large families of
ciphers of this type (and even much more complex ones) have been in the recent years,
quite badly broken by algebraic attacks, see for exemple [12, 13, 1, 14, 15, 2, 18]. Neverthe-
less the specialists of these ciphers counter-attacked by defining and applying the concept
of Algebraic Immunity [7] to claim that some designs are “secure”. Unfortunately, as we
will see later, the notion of Algebraic Immunity protects against only one simple alge-
braic attack and ignores other algebraic attacks. More realistic (but also more complex
to apply) security criteria for stream ciphers have been proposed in [13, 16].
We note that it is possible to design stream ciphers that would be in some sense “pro-
tected” against algebraic attacks (and also in a similar way against other known attacks,
such as correlation and fast correlation attacks). It is even a common practice to add
to the stream cipher some components that would make all these attacks less efficient
(cf. [26, 13]), or even clearly impractical (e.g. [8]) to apply. This can be done, for exam-
ple, with irregular clocking and/or a final compression component that would combine
several consecutive outputs of the Boolean function in a complex way. The drawback of
this is (possibly) some loss in speed and an important loss in hardware footprint (for
example, irregular clocking would require a large buffer). It would make the design less
elegant, and also much more vulnerable to timing and side-channel attacks.
Finally, the designers of Sfinks choose to stick to this simple and elegant design that
is easy to study (and for which we would like to thank the authors as it helps the
cryptanalysts too !). We have a simple filtered LFSR on which most of the known attacks
can be applied directly and the only thing that prevents these attacks so far, is the
parameters of Sfinks [6] were chosen so that the attack complexity is close to 280, without
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even any margin for (frequent) algorithmic improvements. Consequently, it is possible
to say that Sfinks has been designed with no “protection” whatsoever against known
attacks.

2 Short Description of Sfinks

A regularly clocked 256-bit binary LFSR provides, at each clock, 17 out of 256 its state
bits, that are supplied to a Boolean function. The keystream is composed of successive
output bits of this Boolean function.
The LFSR used in Sfinks is described by the following recursion formula:

st+256 = st+212 ⊕ st+194 ⊕ st+192 ⊕ st+187 ⊕ st+163 ⊕ st+151 ⊕ st+125 ⊕
st+115 ⊕ st+107 ⊕ st+85 ⊕ st+66 ⊕ st+64 ⊕ st+52 ⊕ st+48 ⊕ st+14 ⊕ st

The Boolean Function Used in Sfinks

We call f(x16
t , . . . x0

t ) the output filtering function of Sfinks [6]. The 17 variables used are
selected as follows among the state bits of the LFSR:(

x16
t , . . . , x0

t

)
def
= (st+255, st+244, st+227, st+193, st+161, st+134, st+105, st+98, st+74,

st+58, st+44, st+21, st+19, st+9, st+6, st+1, st) .

We define as P the corresponding projection mapping GF (2256) → GF (217). P is a
multivariate linear transformation.
The function f is a highly non-linear Boolean function of degree 15, with 17 variables.
It is defined as follows:

zt = f(x̄t) = f(x16
t , . . . , x0

t ) = (INV (x16
t , . . . , x1

t )&1)⊕ x0
t .

with INV being the inverse in GF (216) defined as follows. Let GF (216) be defined as
GF (2)[Z]/Z16 + Z5 + Z3 + Z2 + 1. We define INV as inverse in GF (216) complemented
by 0 7→ 0 as in Rijndael, implemented as a table operating on 16-bit words, in such a way
that the least significative bit of the input is x1

t , and it corresponds to the coefficient of
Z1 in polynomial arithmetic modulo Z16 +Z5 +Z3 +Z2 +1. At the output, f is defined
by the least significative bit of the output word of INV (which again corresponds to Z1).

3 Algebraic Attacks on Sfinks

Algebraic attacks on stream ciphers are based on the following observation. Let L :
GF (2n) →: GF (2n) be a multivariate linear transformation that corresponds to clocking
the LFSR. For each i, Li is a known multivariate linear transformation. At any moment
t in the cipher history, all bits of the internal state are known linear combinations of
the bits of the initial state s0, . . . , sn (for Sfinks n = 256).
Let zt, t = 0, 1, 2, . . . be the keystream generated by Sfinks and let f be its output Boolean
function. We recall that f ◦ P is the version of f defined from GF (2n) → GF (2) and
takes all n bits as inputs, 17 of which are used and the other are ignored. Then we can
write the problem of key recovery in Sfinks as follows.
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z0 = f( P (s0, . . . , sn−1) )
z1 = f( P (L (s0, . . . , sn−1)) )

...
zt = f( P

(
Lt (s0, . . . , sn−1)

)
)

...

(#)

Algebraic attacks on stream cipher work by solving, (by more or less sophisticated meth-
ods) the above system equations (or a part of it). They use extensively the fact that the
degree of these and other derived algebraic equations is preserved by the linear operation
P ◦ Lt, at any moment t.
In this paper we use the terminology of [13] to classify algebraic attacks on stream
ciphers as S1, S2, S3, S4, S5 and S6. In addition we will give a complete description of
all proposed attacks on Sfinks.

3.1 First Basic Algebraic Attacks on Sfinks (S1 and S2)

The simplest attack scenario we can think of is known as direct linearization attack or
S1, see [12, 13, 3]. It works as follows: the equations are of degree 15, and if we dispose of
about T =

( n
15

)
+

( n
14

)
+ . . . +

(n
0

)
≈ 279.2 keystream bits, than we can rewrite the system

(#) as a system of T linear equations with T variables - all monomials are treated as
new variables. The system is the solved with the complexity of Tω, with ω being the
exponent of the Gaussian reduction. In theory it is at most ω ≤ 2.376, see [9]. However
the (neglected) constant factor in this algorithm is expected to be very big. Thus, in
this paper we will systematically estimate the complexity of solving linear systems as
about T log27 operations, which is believed to be achievable in practice with the Strassen’s
algorithm [29].
With S1 attack we get a very large complexity: T log27 ≈ 2222.
Probabilistic Variant. In scenario S2, introduced in [12], the Boolean function is ap-
proximated by a function of a lower degree to get a lower attack complexity. We do not
develop tools to find good low-degree approximations of f . Nevertheless we believe that
it is very unlikely that f used in Sfinks has very good approximations that would lead
to efficient algebraic attacks. The approximation to be interesting must hold with prob-
ability very close to 1, and in [12] such approximations existed because there were very
few monomials of high degree. In Sfinks, f has many monomials of very high degree.

3.2 The S3 Algebraic Attack on Sfinks

In the scenario S3 introduced by Courtois and Meier in [13] and also studied by Carlet
et al in [7], the degree of the equations (#) is substantially reduced.
This is possible due to the existence of a low-degree algebraic relation that relates input
and output bits of f . For example, we assume that there exists an equation of the type:

zXd + Xd.

This notation is very compact and convenient and is taken from [10]. It means that there
is (at least one) equation of type

z · g(x16, . . . , x0) + h(x16, . . . , x0) = 0 with z = f(x16
t , . . . , x0

t ).
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with g and h being some multivariate polynomials of degree up to d. The equation has
to be true with probability 1, i.e. for every choice of (x16, . . . , x0). In [7] it is shown1 that
equations of such type exist if and only if either f or f + 1 have an annihilator of degree
≤ d, i.e. ∃g′ of degree ≤ d s.t. fg′ = 0 or (f + 1)g′ = 0.
Given the existence of one equation of type zXd + Xd for f (or of an annihilator of
degree d), the cipher can be broken with complexity of

(n
d

)ω as follows. Each equation of
the system (#) as follows:

zt = f( P
(
Lt (s0, . . . , sn−1)

)
)

is multiplied by the polynomial g( P
(
Lt (s0, . . . , sn−1)

)
and since fg = h it gives an

equation of degree d:

zt = h( P
(
Lt (s0, . . . , sn−1)

)
)

Then the system is solved by linearization exactly as described in Section 3.1.
For Sfinks, as we will se later (and as already remarked by the designers of Sfinks [6]) we
can have d = 6 and the complexity of the attack is about 2108. The keystream required
in this attack is T/4 ≈ 236.5 bits, as 4 linearly independent equations of type zX6 + X6

do exist.
Theory vs. practice. It should be noted that in this attack some equations might
become linearly dependent, however unlike in [11], this is not a problem at all in algebraic
attacks on stream ciphers. This is because the attack method allows to produce as many
new equations as may be necessary. In practice, it has been tested for LILI [26] by the
authors of [13] in the extended version of this paper. The simulations show clearly that,
the number of equations that are not linearly independent in this attack (that could be
tolerated with little impact on the complexity) turns out to be really negligible. (See
also [2].) Thus the complexity evaluations on algebraic attacks on stream ciphers are
expected to be very tight and even rather conservative. It is in fact likely that applying
the F5/2 Gröbner bases algorithm [17] to a subset of the resulting equations of degree
d, combined with fast linear algebra, should allow to solve the systems with even lower
complexity and/or with even less known keystream.

3.3 Fast Algebraic Attacks on Sfinks
Let D =

(n
d

)
+

( n
d−1

)
+ . . . + 1. Fast algebraic attacks on stream ciphers [14] are based

on equations of type zXe + Xd with e < d. They instantiate the scenario S5 according
to the terminology of [13]. The principle is as follows: we combine some D consecutive
equations from (#) for some D consecutive positions t in such a way that the parts of
degree d are eliminated. The equation obtained will be of degree “only” e and will be as
follows:

t+D∑
i=t

αt+i · zi · g( P
(
Li (s0, . . . , sn−1)

)
) (∗)

1 In fact this equivalent formulation of algebraic attacks were already introduced one year earlier in
the appendix of the extended version of the original paper [13], under a different name of scenarios
S30 and S31. There are many other equivalent formulations of the S3 attack, for example instead of
annihilators we can talk about absorbing elements: g is the annihilator for f if and only if it is an
absorbing element for f + 1. We can also speak (as we do a lot in this paper) about algebraic I/O
relations, see [11, 10, 16], that generalise the notion of Affine Multiples, known since 1992 [5, 27].



Cryptanalysis of Sfinks 5

for some linear combination (α0, . . . , αD−1) ∈ GF (2)D. The same equation applies to
each window of D consecutive steps and we will write (and use) it E times, for E
overlapping intervals, with E =

(n
e

)
+

( n
e−1

)
+ . . . + 1. This is because we need to get the

final system of degree e that is solvable by linearization (with complexity Eω).
How to Compute α. The equation above (∗) will be true for a proper choice of α,
that by definition is such that all the monomials of degree d are eliminated, which can
be written as:

∀t 0 =
t+D∑
i=t

αt+i · h( P
(
Li (s0, . . . , sn−1)

)
) (∗∗)

In other words, α is a linear combination of D consecutive bits, such that if in our cipher
the output Boolean function were h, for any consecutive D steps applying α to bits
output by the cipher would give always the sum equal to 0, (i.e. with h instead of f
we would have

∑
αt+izt+i = 0). Following this observation, in [14] Courtois proposed

to use the Berlekamp-Massey algorithm to find this α. This idea has been validated by
Armknecht in [2] but later it turned out that there is a much simpler, faster, and more
powerful method. Hawkes and Rose, inspired by the invited talk by Massey at FSE 2003
and by an old paper by Key [19], have shown in [18] that it is possible to compute in
time of D log2 D one single linear combination α that is “universal” for degree up to d,
in the sense that it eliminates any Boolean function of degree ≤ d (and in particular for
our function h), see [18]. This is the method we will adopt.
Substitution Step. In [14] it was claimed that the substitution step in the fast algebraic
attacks should take about E ·D steps. In [18] Hawkes and Rose explain that the simple
substitution takes in fact DE2 operations, and propose an improved FFT-based method
that manages (after all) to do it in about 2ED log D operations.

3.4 Summary - Complexity of Fast Algebraic Attacks
Following the work of Courtois, Hawkes and Rose [14, 18], and for any given (e, d), e < d
such that there is an equation of type zXe + Xd for f , we need to perform the following
steps in order to perform an algebraic attack on any filter generator such as Sfinks:

0. Relation Search Step. Computing the equation[s] of type zXe+Xd for f . Since we
have already handled this step (in few days on a PC) for all interesting cases, we will
neglect the complexity of it in this paper (it is at most

(17
d

)ω
and can be improved).

1. Pre-computation Step. Given the characteristic polynomial of the LFSR, compute
the (“universal”) α for the degree d. This step requires according to [18] D log2 D
operations.

2. Substitution Step. Write the equations (∗) for E consecutive values of t, for exam-
ple t = 1, . . . , E. This step requires according to [18] about 2ED log D operations.

3. Solving Step. Solve these equations by linearization. It requires Eω operations.

Keystream complexity. The keystream required in the whole attack is D+E−1 which
is in general very close to D as if e < d we have E << D. We note that in general the
dimension of the space of I/O relations of type zXe+Xd for f is A > 0, but unlike in [13]
it seems that when A > 1 it does not help to improve the attack. In S3 attack scenario
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[13] if the dimension of the space of I/O relations of type zXe + Xe for f is A > 0,
then the keystream required in attack will be E/A. Here, the keystream complexity is
dominated by D and there is little we can do to improve it. In fact, it can degrade the
attack complexity, if we wanted to use several equations out of A, we need to repeat the
substitution step A times, which in our best attack on Sfinks is the dominating step (in
different cases and for other cryptosystems another step may be dominating, see Table
1 and [18]). Therefore for all our attacks we will use only one out of these A equations.

3.5 Our Results
In order to apply the fast algebraic attacks we need to search for suitable equations by
computer simulations on the Boolean function of Sfinks. Finding such equations allows
to execute the fast algebraic attack and there is very little theory2 that would help to
predict whether they do exist for a particular function. One has to check by running a
series of simulations. Here are our results:

degree e of g
degree d of h = fg

dimension A of these g
out of which we used

complexity of the fast
algebraic attack [14, 18]:

pre-computation step

substitution step

solving step

keystream required

0 1 1 2 2 3 3 3 4 4 4 5 5
15 13 14 7 8 6 7 8 5 6 7 5 6

1 0 ? 0 6 0 32 136 0 4 204 0 4
− − 1 − 1 − 1 1 − 1 1 − 1

− − 287.7 − 259.8 − 254.5 259.8 − 249.0 254.5 − 249.0

− − 289.9 − 269.7 − 271 276 − 271.6 276.9 − 277.3

− − 222.5 − 242.1 − 260.1 260.1 − 276.9 276.9 − 292.8

− − 275.2 − 248.6 − 243.6 248.5 − 238.5 243.6 − 238.5

Table 1. Simulations on the dimension of the space of equations of type zXe + Xd for the Boolean
function of Sfinks, i.e. the number of linearly independent functions g of degree ≤ e such that h = fg is
of degree ≤ d. The resulting complexity of the fast algebraic attack (following [18]) is computed.

The designers of Sfinks do mention fast algebraic attacks but did not analyse them in
due details. Our fastest attack is in the column 6. We need 270 computations and 249

keystream bits. In column 8 we need 271 computations and 243 keystream bits. In both
these cases, the substitution step dominates all the other steps of the attack.
We note that the attack in column 11 should also break Sfinks slightly faster than the
claimed security level of 280. It requires only about 238.5 keystream bits, (about 50 Giga-
bytes), which can be seen as a realistic attack on Sfinks.

2 There is a theory of worse-case attacks that show that some equations always exist for any component
of a given size, see [15], however for a specific fixed Boolean function, better equations frequently do
exist (e.g. for LILI-128, see [13]). This is maybe because as already suggested by the authors of [13]
and [1], one should expect that there are trade-offs between (classical) non-linearity notions, and the
resistance against (more recent) algebraic attacks.
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4 Summary and Conclusion

Sfinks is not equipped with neither a protection against, nor a sufficient security margin
against algebraic attacks on stream ciphers [12–14, 18]. The result is an insecure cipher
that can be broken with complexity of about 271 computations and with 243 keystream
bits. We also present another attack slightly faster than 280 that requires only 50 Giga-
bytes of keystream which is realistic.
Remark. The designers of Sfinks have committed three serious mistakes. First mistake
(very, very common one) was to propose a new stream cipher... The second mistake
(clearly much less common) was to study known attacks on stream ciphers. Unfortunately
here, they made their final mistake: they decided to make it as simple as possible, as
elegant as possible, and as fast as possible, resulting in a cipher that is exactly on the
edge of being broken, with no extra security. In most areas of mathematics and computer
science this would be called neat and elegant. In cryptology it is typically quite foolish
to do so. Such ciphers are systematically being broken, it happens again and again...
In the design of block ciphers, Lars Knudsen (and others) have for a long time promoted
the following: see how many rounds we need to make it secure, then double it (or even
multiply by 4). We believe that stream ciphers should also be designed with such a
comfortable security margin. One should not follow the example of Sfinks.
We note that the designers of Sfinks have a very good excuse for doing all this: it is very
hard to design a fast and secure cipher with a very small hardware footprint.
Warning: It is hard to see if a cipher is already broken, or not, by already known
algebraic attacks. The so called “Algebraic Immunity” of a Boolean function [7] does
not solve the problem and it is unclear if it can give any guaranteed lower-bound on the
complexity of algebraic attacks on stream ciphers (it basically only pertains to the simple
attack scenario S3). Equations that lead to better attacks can be found at any moment:
following [14] it is not possible to explore systematically all the possibilities offered by
the scenario S5 from [13]. The probabilistic versions S4 and S6 proposed in [13] are even
more difficult to explore. Thus, better algebraic attacks on Sfinks may remain uncovered.
The authors will probably try to repair Sfinks... but even for the next version, there will
be no guarantee it is secure.
Open questions: Improve the attack so that it can be handled in practice on a PC.
Only the substitution step needs improvement !
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