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ABSTRACT

From the inviscid, unforced, barotropic long-wave equations for a rotating system, it is shown that
resonant interactions between three continental shelf waves can occur. Evolution equations governing
the amplitude and the energy of individual waves in a resonant triad are derived. The nonlinearity in
the governing equations allows energy to be transferred between the waves, but with the total energy
conserved. While the shelf waves typically have periods of several days, the energy transfer has a time
scale of order 12 days. Observational evidence of resonant shelf wave interactions on the Oregon shelf
is found in the spectral analyses of Cutchin and Smith (1973) and Huyer et al. (1975), where their observed
signals agree well with the resonant frequencies deduced from the theory. The good agreement between
theory and observation suggests that nonlinear energy transfer may play a much more significant role in

shelf wave dynamics than was previously realized.

1. Introduction

Low-frequency waves have often been observed
propagating along continental shelves, with their
energies trapped near the coast. Characterized by
sub-inertial frequencies, these continental shelf
waves, in the absence of strong mean flows, propa-
gate their phase with the coast to their right in the
Northern Hemisphere. Mysak (1980) gives a broad
review of the recent theoretical and observational
work in shelf wave dynamics.

Much of the research on the theory of shelf waves
has been done using the long-wave equations in
which the nonlinear terms have been omitted.
However, during the past 15 years or so, many
investigators studying other types of oceanic wave
motion have found that the nonlinear terms in the
governing equations can lead to wave-wave interac-
tions where energy is transferred between different
wave components. Discussions of this wave-wave
interaction mechanism in the ocean are presented
in Hasselmann (1968), Phillips (1977) and LeBlond
and Mysak (1978, Section 38). In general, the energy
exchanges due to the nonlinear terms are of order
€, where € is a (usually small) parameter arising from
nondimensionalizing the governing equations (e.g.,

for shelf waves, € is the Rossby number and is -

typically of order 1072). The nonlinear energy ex-
changes, therefore, are usually small. However,
when certain ‘‘resonance conditions’’ are satisfied
by the waves, the energy exchanges can be much
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more appreciable. The lowest order resonant inter-
action involves three waves (a triad). It is well
known that resonant triad interactions can occur
between Rossby waves, internal waves and edge
waves, but not between surface gravity waves (for
which resonant interactions can occur only at higher
order, i.e., between four or more waves). In this
paper, we find that resonant interactions between
three unforced shelf waves are possible (see also
Mysak, 1980), and that there is observational evi-
dence of such shelf wave interactions in the spec-
tral analyses of Cutchin and Smith (1973) and Huyer
et al. (1975).

One of the resonance conditions is that the angular
frequencies w,, w, and w; of the three shelf waves
satisfy

(1.1

Cutchin and Smith (1973) observed three significant
peaks at around 0.22, 0.40 and 0.65 cpd (cycles per
day) in various cross spectra computed from Oregon
coast data (Fig. 1). The resonance condition (1.1) is
fairly well satisfied by these three observed fre-
quencies. Buchwald and Adams (1968) noted that for
shelf wave dispersion curves which have zero slope
(i.e., zero group velocity) at certain frequencies,
the wave energy cannot propagate away at these
frequencies, and therefore, peaks in the frequency
spectrum might be expected there. Cutchin and
Smith (1973) attempted to apply the Buchwald and
Adams explanation to their observed peaks, but
concluded:

W, + w; = w;.

The restriction of shelf wave phenomena to only
certain frequency bands remains as one of the most
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F1G. 1. (a) The experimental setup off Oregon in Cutchin and
Smith (1973). The site of the current meter mooring is indicated
by the square, and that of the tide gages, by the triangles. The
bathymetric profile along the line extending offshore from
Depoe Bay is shown as the dashed curve in Fig. 2. (b) Phase
and squared coherency between v from the current meter
mooring and Newport adjusted sea level for the period from
S June to 11 September 1968. Phase is positive for v leading
sea- level and is shown only if coherency is significant. Band-
- width and 95% confidence interval are as shown. (c) Phase and
squared coherency between Newport and Astoria adjusted sea
level for the period from 5 June to 11 September 1968, (with
Newport leading Astoria). (Redrawn from Cutchin and Smith,
1973.)

3

interesting and puzzling observations made during this
experiment. The autospectra of sea levels, currents
and atmospheric pressure are relatively smooth yet the
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coherence spectra all exhibit strong peaks. The ob-
served phase differences between sea level variations
along the coast do not support a simple explanation
based on the resonance mechanism suggested by Buch-
wald and Adams (1968).

As will be discussed fully in Section 7 of this
paper, we believe our resonant theory satisfactorily
explains the observations of Cutchin and Smith
(1973). The dominant peak at 0.22 cpd, presumably
generated by some large-scale atmospheric system
with this frequency, had to transfer some of its
energy to the two “‘preferred’’ frequencies at around
0.40 and 0.65 cpd due to the nonlinear terms in
the governing equations. At other frequencies, the
resonance conditions were not satisfied and the
transfer of energy from the main peak to these
frequencies was small. The nonlinear energy trans-
fer eventually produced a distinctively triple-peaked
spectrum, as was observed.

Huyer et al. (1975) found spectral signals on the
Oregon shelf which also agree with the resonance
frequencies deduced from our theory. These obser-
vations are remarkable in that except for the case of
surface gravity waves (e.g., see Hasselmann et al.,
1973), the direct observation of nonlinear interac-
tions in the ocean is relatively rare. Most observa-
tions of geofluid-dynamical wave-wave interactions
have been made only in the laboratory. '

This paper complements a number of earlier
studies dealing with nonlinear effects in shelf waves.
Smith (1972) and Grimshaw (1977a) have studied the
modification of an individual shelf wave mode by the
nonlinear terms. Grimshaw (1977b) examined side-
band instability for shelf waves, while Barton (1977)
looked at the generation of shelf waves by the wind
via resonant interactions.

The plan for this paper is as follows: After present-
ing the nonlinear governing equations in Section 2,
we develop the theory of resonant triad interac-
tions for shelf waves in Section 3; in particular,
we derive the equations governing the amplitudes
of the individual waves in a resonant triad. Energy
transfer and energy conservation are examined in
Section 4, while an elementary analysis of the
equations governing the wave amplitudes is given in
Section 5. The theory is then specialized in Sec-
tion 6 to the familiar exponential shelf profile
(first introduced in Buchwald and Adams (1968)].
Our theory is finally applied in Section 7 to inter-

pret the Oregon shelf observations. In Section 8
the problems and limitations of our theory are dis-
cussed and in Section 9 a summary and conclusion
are given. '

2. Governing equations

The nonlinear barotropic long-wave equations for
a rotating system are
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U, + uuy + vuy, — fo

1 1
= —=gNy — —Paxz + — 715 2.1
P ph
v, + uvy + vv, + fu
1 1
= -gNy — —Pay +T — 72, (2.2)
ph
(hu)z + (hv)y = —m — (qu)z — (MV)y, (2.3)

where ¢t is the time, x the offshore coordinate and
y the alongshore coordinate; (u,v) are the horizon-
tal velocity components in the (x,y) direction, 7
the sea surface displacement from equilibrium, p,
the atmospheric pressure at the sea surface, (7,,72)
the surface wind-stress components (modeled as a
body force) and 4 the depth of the ocean; f and g
are the Coriolis parameter and the gravitational
constant, respectively. We shall assume that the
density p and f are constants, and that the ocean
depth £ is a function of x only.

Next, we nondimensionalize the variables {x,y,4,
t,u,v,m,m,7,} With-respect to the scales {L,L,H,,
S4LV, V. m0,70,70}. Assuming that the terms fv and
gn.in Eq. (2.1) are of comparable magnitudes, we let

Mo =fVLIg. (2.4)

In addition, we introduce two nondimensional
parameters

€ = VILf, u®= L% *gH,, 2.5)

where € is the Rossby number and u? the divergence
parameter.

Expressing the vorticity equation [i.e., 8,(2.1)
— 0,2.2)] and Eq. (2.3) in nondimensional form
yields

(uy — vp)e + €l(uuy + vuy), — (uvy + vvy),]
- (v, +uz)=F, (2.6)
(hu)y + (hv)y = —p¥{m + el(qu). + (o)1}, 2.7)
where F, the wind-stress forcing term, is given by
To 1 L hJ.‘
= —| = - + —= , (2.8
P [ Iy = ) + 72} @.8)

with L, an appropriate length scale for the wind
stress.

We choose L to be the width of the continental
shelf/slope region (L = 100 km) and H, the shelf
depth scale (H, = 200 m). For shelf waves, V can be
taken to be 107! m s™!, and at midlatitudes f is
typically 10~* rad s~!. With these choices, our non-
dimensional parameters have the following values:
€ = 0.01 and u? = 0.05. Taking the wind-stress scale
7o to be 107 N m~2, we have 7,/(pH,fV) = 0.05.
Adams and Buchwald (1969) and Gill and Schumann
(1974) have studied the generation of shelf waves by
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the wind stress. Here, however, we shall neglect
the forcing term F and examine only the unforced
nonlinear equations.

Furthermore, we make the nondivergence ap-
proximation by neglecting the terms on the right
side of Eq. (2.7). This allows us to introduce
a transport streamfunction y such that

hu = ¢, ho = —y,. 2.9

Substituting (2.9) into the unforced version of (2.6),
and writing h, as k', we obtain

e
hWsat + buue) + B (y — o) = E[[Z - 3(7) ]wrwy
3h'

h'
+ T l!/lellu - 7 ‘I/.t'l’.ty - ‘llz‘.z:.r‘py + '-ﬁ’.r'l‘.r.ry

h’
+ 25ty — Yoy + u:xu:m] . @.10)

Looking for waves trapped near the coast, we
impose the boundary conditions ¢ — 0 as x — o,
and hu = 0 at x = 0. From Eq. (2.9), the second
boundary condition becomes 5, = 0 atx = 0.

Next, we assume  can be expanded as

"l - w(O) + El’l(l) + €2lll(2) + o (211)

where the s are independent of €. We also
assume = Y(x,y,t,Y,T) where Y and T are the
“‘slow’’ variables defined by

Y=¢, T=et. (2.12)
Thus, in Eq. (2.10),
i a 9 9 i} 0
— > —+e— and ——> —+e€—.
ay dy oY ot ot aT

Substituting (2.11) into (2.10), we obtain the O(1)
and O(e) equations:

O(): AlYS2: + Y] + R’ WY — Y1 =0, (2.13)

with boundary conditions y©® — 0 as x — »,
=0atx = 0; and

O ALk + Wil] + WL = el
= RO + Yl + 205 + HTE — ]
h" h' 2 h'
w5 3(5) Jwowr + 3 - wuy

’
- UG — B + LU,

h!
P2 WY — WS + IS, (214

’

with boundary conditions ¥ — 0 as x — o, and
U + P =0atx = 0.
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For a shelf wave traveling parallel to a coast, we
let ¢© have the form

Y@ = A(Y,T)$(x)ei*¥=9 + c.c., (2.15)

where c.c. denotes the complex conjugate of the
preceding term. Substituting Eq. (2.15) into Eq.
(2.13), and letting ¢ = w/k, we obtain the followmg
differential equation for ¢:
1/h'
o~ Lt -o

’ —k2

| — —— ! +

%) =
Osx<°°, (2.16)

which, for a given value of k, turns out to be of the
Sturm-Liouville form

(0] + q(x)d M(X)¢> =0 (2.17)

as given in Boyce and DiPrima (1969, p. 493). Hence,
the O(1) equation reduces to a Sturm-Liouville
problem with ¢! as the eigenvalue and with bound-
ary conditions ¢ — Qasx — «,and ¢ = Oatx = 0.
Eq. (2.16) with an exponential shelf profile has been
solved by Buchwald and Adams (1968) for the eigen-
values 1/c'® and eigenfunctions ¢™ corresponding
to different shelf wave modes (n = 1,2, .. .). By
varying k, the dispersion curves w™(k) = kc™ for
the different modes were also obtained.

3. Theory of resonant interactions between shelf
waves

In this section, we will show that the presence of
the nonlinear terms in Eq. (2.14) [i.e., the O(e)

RIS + Wi + R/ — i

3

h
X (ikmAlAm exp{l[(kl + km)y —(wl + wm)t]}

In order to match the frequencies and wave-
numbers on the right side of Eq. (3.4), ¢V must
‘also be of the form

PP = 3 ALY, T)¢P(x)

% explitkey — waf)] + c.C., (3.5)

where the set of values for (k,,w,) is given by

{tkwa)} = {(kpw)]j = 1,2, 3}

U{(k, ) = (kmooa)|l = 1,2,3,m = 1,2,3}. (3.6)
Furthermore, we establish the following convention
for indexing: for a = 1, 2, 3, (ka,wo) = (kj,0;).

We now examine the situationfora =j = 1, 2, 3.
Substituting Eq. (3.5) into the left side of (3.4), we
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equation] allows resonant interactions to occur
between three shelf waves. We start with three
distinct shelf waves of frequencies w; and wave-
numbers k;(j = 1, 2, 3), i.e.,

Yo = Z Ay (Y, T)s(x)

3.1

Each of the ¢;’s satisfies an equation corresponding
to (2.16):

1.\ —k? 1(h'
- - — j' + j_——— j=0,
(7)ol

X expli(k;y — w;t)] + c.c.

0<x <, (3.2)

where c; = w,/k; is the phase speed of the jth wave.
The boundary conditions are :

$;=0 at x=0, ¢—0 as x—>x (3.3)

We note that the three waves described in Egs.
(3.1)-(3.3) do not necessarily correspond to three
distinct shelf wave modes. Hence the superscript
n pertaining to the mode number has been dropped.
As will be seen below (Section 7), two of the three
waves in a resonant triad for the Oregon shelf are
first-mode shelf waves at two different wave-
numbers (k, and k3).

Substituting (3.1) into (2.14), and utilizing (3.2),
we obtain

h' 3 3 h' -
-3 [—C—qb] = (b + 2hkson)dsA ] explithy — )] + 3 3 [~27k,2¢1¢m

I=1m

LA %
+ [ - 3(h) +k12 "km ]d)ld)m + 3— (;bm — Z.(i)l’(b;n + ¢l’¢,7’n — !/r¢m}

kn)y — (@ —wy)t]}) + cc. (3.4)

find that for each j, ¢{¥ must satisfy an inhomogene-
ous equation

1 ! —k2 1/h'
- e & a2 _) W= f
( 4 ) =L Cj(h -5
0=sx <o, 3.7

where f; denotes the forcing at frequency w; and
wavenumber k; from the right side of (3.4). [In con-
trast, we recall that ¢, satisfies the corresponding
homogeneous equation (3.2) which, together with
boundary conditions (3.3), constitute a standard
Sturm-Liouville problem.] In nonresonant cases
only the linear terms on the right side of (3.4) can
contribute to f;’s (j = 1, 2, 3):
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hl
[_.__ oAy + (B + 2hkjwj)¢jAjY]
C; : . (38)
[leh2A§l)]

However, if any of the following resonance con-
ditions are satisfied, viz.,

*(wy, k) = (ws,ke) * (w3,k3) = (0,0), (3.9

some of the nonlinear terms on the right side of
(3.4) are also of frequencies w; and wavenumbers
ki(j = 1,2, 3), and hence can contribute to the
forcing terms f;’s. With no loss of generality, we
write the resonance conditions as

w1+w2+G)3=0, k1+k2+k3=0,

fi=

(3.10)

where {w;} and {k;} can have either positive or
negative values.

The Fredholm alternate theorem from Sturm-
Liouville theory (see, e.g., Boyce and DiPrima,

o0 1 h’ h" hl
Kym = J dx ﬁkmdij[ ‘27k12¢1¢m + [-}T - 3(7

0

With repeated integration by parts and the help of
the boundary conditions (3.3), K, can be re-ex-
pressed in another form

-] 1 h'
Kon = J dx —km[—s L B bibm + 26Dl
0 h2. h

hl
+ ¢;'¢ll¢m -2 Tklzd)jd’ld)m

+ (ke - km2)¢,~¢;¢m] . (.19)

Without loss of generality, we can normalize {¢;}
so that

J ’%cbfdx =1. (3.15)
0

Eq. (3.12) then gives us the amplitude equation for
the jth wave:

0 0
—A; + —A; = —iK;AFAE, 3.16
T M Cy, oy Al ( )
where
K; =cKum + Kjm) (3.17)

and c, is the group velocity of the jth wave (see
Appendix for justification), with

ng = Cj(l + 2’YjCjkj2), (3.18)
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1969, p. 506) states that the inhomogeneous problem
has a solution ¢§ only if the forcing termf; is orthog-
onal to the homogeneous solution ¢;. That is,

rfjd),-dx = 0. (3.11)

0

When the resonance conditions (3.10) are satisfied,
the Fredholm condition (3.11) yields

© bt )
A L w ¢i*dx
© pr 3
+ Ajy |:Cj J — (b,-zdx + 2Cj2kj2 J
0 h2 0

1 2
¢ x]

= —ici(Kym + K;m)AFAS, (3.12)

where (j,/,m) are any of the cyclic permutations
of (1,2,3), and the terms on the right-hand side of
(3.12) arise from the nonlinear terms in (3.4), with

)2 kR - km2]¢;¢m

h' h'
b = o $ih + Gidh — B ,,.} . G.13)

v, EJ ;l_¢,24x, (3.19)

0

The amplitude equation (3.16) shows that, at reso-
nance, the nonlinear terms provide a coupling mech-
anism between the amplitudes of the three waves.
If the resonance conditions are not satisfied, the
nonlinear terms do not contribute to the forcing
terms f; (fj = 1, 2, 3), and the Fredholm condition
(3.11) simply yields
-—a—AJ' + Cg,—a—Aj = 0,

oT 7 ay
where each wave amplitude (at lowest order) is in-
dependent of the others, and propagate along at its
own group velocity. Thus, the nonlinear terms, de-
spite their presence only in the O(e) equation, can
nevertheless directly affect the O(1) amplitude equa-
tions when the resonance conditions are fulfilled.
How energy is exchanged between the three waves

in a resonant interaction is our next topic.

(3.20)

4. Conservation and transfer of energy

In this section, we will show that the total energy
of the triad is conserved even though energy is
transferred between the waves.

The nondivergence or ‘‘rigid-lid’’ approximation
employed in Section 2 allows us to consider only
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the kinetic energies of the waves, as their poten-
tial energies are very small by comparison. To
lowest order, the non-dimensionalized kinetic en-
ergy per unit volume is given by

KE/volume = Y(u? + v?), 4.1

where the density p = 1, and we have neglected the
small contribution from the vertical velocity com-
ponent. Next, we integrate Eq. (4.1) with the vertical
coordinate z running from —# to 0, the alongshore
coordinate y from 0 to 1, and the offshore coor-
dinate x from 0 to ®. Assuming « and v to be depth
independent, and invoking Eqgs. (2.9), the resulting
kinetic energy per unit length alongshore can be
expressed (to lowest order) as follows:

KE/length

l 0
= —j dx

2 Jo
We first consider the case of a single wave, where
Y@ is given by Eq. (2.15) and then substituted into
Eq. (4.2). During the integration of y from 0 to 1,

A = A(Y,T) is essentially constant. With A written
as |A|e®, we finally obtain

1 1
[ v o lwer + won. @2

0

KE/length = |A|2[iU dx lw]
k1Jo h
1

X [ky — ot + 0 + Y5 sin2(ky — ot + 6)]

y=0

+ k“ dxl¢2][ky ~ ot + 0
o  h
1

— Yo sin2(ky — wt + 6)]

} . 4.3)
=0

Since we are interested in the variation of energy
with respect to the slow time 7, the ‘‘sine’’ terms
representing ‘‘high’’ frequency oscillations can be
either averaged out to zero, or simply ignored for
our purposes. Thus, we have on the average

KE/length = |A|? J dx hl (@2 + k2¢®). (4.4)
0

Integrating the first term by parts, then invoking
(2.16) and the normalization condition (3.15), we
finally obtain '

KE/length = — 1 |a]2, 4.5
c

where we remind the reader that the phase speed
c is always negative for shelf waves. -

For the triad case, we substitute Eq. (3.1) into
(4.2), and perform a similar calculation. With the
oscillatory terms ignored, we obtain for a triad
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3
KE/length = ¥ — 1 |42,

j=1 J

4.6)

which is simply the sum of the kinetic energies of
the individual waves.

If we now multiply the amplitude equation (3.16)
by —A;*/c;, we have

1 oA, 1\ 0A,
LY i cg.(— —)A;“ Keac)
C; ’ Cj 8Y
-
= 2 ararar. @7
Cj

Adding (4.7) to its own complex conjugate, we ar-
rive at the energy equation for the jth wave:

0 1 0 1
— (- = 14,2} + ¢, —[ - — |4,|?
OT( cjl JI) ‘o BY( c,-l Jl)

=2 Re{iA,A2A3}<—- ‘F—’) (4.8
Cj
where Re{:--} denotes the real part of the terms
inside the braces. We see that if the nonlinear
coupling term on the right-hand side is not present,
the energy of the jth wave would simply propagate
along at its group velocity c,.
To consider the total energy of the triad, we need
to sum the three separate energy equations, i.e.,

3 /9 0 1
— t oy — || - — |A;|?
Z,(ar ”’ay)( c,-| ’l)
_KJ_

= 2 Re(iA A,A;) % (—) . (4.9

i=1 Cj

The conservation of the total energy is then ex-
pressed by the following theorem.

THEOREM:
3 18 i) 1
—+ ¢y — ——A-2)=0 4.10
jgl (BT % BY)( Cj l J| ( )

ProoF: Eq. (4.10) follows from Eq. (4.9) if

s (_K") =0. @11
=1\ Cj
From Eq. (3.17), this amounts to proving
Sk =Kz + Kizo + Ko
+ Kg3 + K32 + K33y = 0. (4.12)

With repeated integration by parts, and the help of
Egs. (3.3) and (3.10), K, in (3.14) can be re-
expressed as

Kim = Kiin + Kiin

+ Kifn + Kifm,  (4.13)
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where

® 1
Kiln = | dx — (Yknd/ ¢/ dn
0 h?
— Vokndididn), (4.14)
® 1
Ky = [ dx o (Chkndidion) = K, (419
0
% 1
K = | dx 1z (haki it
o h
+ k;k*d; o), (4.16)
® 1
Kify = j dx = (P, bih = kny$idhm). (4.17)
0
We note that
Ky + Kifn = 0, Kifu + K = 0,
K+ Ky =0 (4.18)
and
3
E 3%: = (ky + kg + k3)
=1
*® 1
x J dr - (“hgigig) =0 (419)
0
by the resonance conditions (3.10).
Therefore, Y x can be written as
3
2k = 2 (Kih + Kifn) + ZKﬁ%}n
m=1 m=1
3 3
+ 2 K+ X (K$ + K@)
m=1 =1
3
+ Z (K(ﬁzn jfr)u) =0 (4.20)
j=1

J

and our theorem for the conservation of the total
energy in a resonant triad is proved.

5. Analysis of the amplitude equations

In recent years, the inverse scattering method has
been used to solve coupled partial differential equa-
tions similar in form to our amplitude equations
(3.16). (Sometimes the equations are first converted
to a standard form by scaling the three A;’s so that
the coupling coefficients iK;’s have the values + 1.)
A recent review is given by Kaup ez al. (1979). Here,
we shall not attempt to solve our amplitude equa-
tions in their full glory. Instead, we shall only study
temporal behavior by (eventually) neglecting the
spatial derivative 8/8Y in our equations.

If we write

A;(Y,T) = a)(Y,T) expli6y(Y,D], (5.1
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where a; and 6; are real functions, and substitute
this form into our amplitude equations (3.16), the
real and the imaginary parts of the resulting equa-
tions give

ij an

— + — = —~K,a,a,, siné, 5.2

oT Yy m -2)
86,

06;
aj(-a—zf + ngﬁ) = —K;a;a, cosf, (5.3)

respectively, where 6 = 6, + 6, + ;.
The energy equation (4.8) can also be expressed as

il 5 ) g5
—_— = —a*| + ¢y —{ — —aj
oT Cj ’GY C;

. K;
= 2a,a;a;3 sinf — .
Cj

5.4

Focussing only on the temporal behavior, we set
8/9Y to zero. Eqgs. (5.2) and (5.3) reduce to

daj

— = —Kja,a,, sinf, 5.5
dT i4m ( )
do;

a; -(}?’ = —K,a,a, cosé. (5.6)

There are many special cases one can consider. For
instance, when 6 = 0 or =, the solutions are a;
= constant, and 6; varies linearly with 7. That this
situation corresponds to zero energy exchange can
also be seen from the energy equation (5.4), where
the energy transfer term on the right side vanishes
when @ = 0 or 7.

The case of greatest interest occurs when § = Vanr
or %, For these values of 6, the energy exchange
is maximized, as can be seen from Eq. (5.4). Also,
the phases 6; are constant. For 8 = Y7, Eq. (5.5)
becomes

da; )
_dTJ = ——Kjalam, J = 1, 2, 3.

Since the phase speeds for free shelf waves are al-
ways negative, Eq. (4.11) implies that the three K;
coefficients cannot all have the same sign. Without
loss of generality, we assume K, and K, to have the
same sign, and K; to have the opposite sign.

The solutions of Eqgs. (5.7) are the Jacobi elliptic
functions. Without loss of generality, we can choose
T = 0 to be the instant when a, > 0, a, > 0 and
a; = 0. With this choice, the initial conditions are
a;(0) =a,0 > 0, a,(0) = ay, > 0 and a,(0) = 0, and
the solutions are

(5.7

ay(T) = ay, dn(oT|M), 5.9
ax(T) = az cn(aT|M), (5.9
ay(T) = az(~K3/K:)"? sn(oT|M), (5.10)
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where

o = a,(—K.K3)'"?, M = K,a5%(K;a:?), (5.11)

and dn, cn, sn are the Jacobi elliptic functions in
the notation of Abramowitz and Stegun (1965,
Chap. 16). Usually, the elliptic functions are re-
stricted to 0 < M < 1. For M = 1, the elliptic func-
tions reduce to hyperbolic functions, while for M
> 1, the following transformations can be used::

dn(oT |M) = cn(MY?6T|M™Y), (5.12)
cn(oT |M) = dn(M"2aT|M™), (5.13)
sn(oT|M) = M2 sn(M"2¢T|M™). (5.14)

See Abramowitz and Stegun (1965, Chaps. 16 and
17) for properties of these elliptic functions.
Without loss of generality, we assume 0 < M < 1.

Then the period of energy transfer is given by the -

period T, of the elliptic function dn(o-T|M ). From
Abramowitz and Stegun (1965, Chaps. 16 and 17),

Ty = 2K(M)lo = 2K(M)aid(—K.K3) 1%, (5.15)

where K(M) is a complete elliptic integral of the
first kind. The solutions (5.8)—(5.10) correspond to
the following situation: During the time interval
0 < T < T, the third wave extracts energy from
the first two waves, while during 47T, < T < Ty,
the third wave transfers energy back to the first two
waves until the initial conditions at T = 0 are again
reached at T = T.

AsM — 1, K(M) — «, implying an infinitely long
period for energy transfer. However, except for
values of M very close to unity, K(M) is not a
rapidly varying function. For example, as M in-
> creases from zero to 0.99, K(M) increases mono-
tonically from 1.57 to 3.70. Using this fact and Eq.
(5.15), we shall, in Section 7, obtain a crude estimate
of the time scale of energy transfer for resonant
shelf waves on the Oregon shelf.

6. The theory applied to an exponential shelf

So far, the depth 4 has not been specified explicitly
in our theory. In this section, we will use the Buch-
wald and Adams (1968) exponential shelf profile for
h,ie.,

O0=sx=1

2bx
= [He 6.1)
1 <x <oo,

H29
where b, H, and H, are constant parameters, with
H, = H,e?. With this choice of h, Eq. (3.2) becomes

2bk;
' —2bd] —kip;———¢; =0, O0<x<1
i o j .d’: , b; X (6.2)
! — ki, = 0, 1<x<oo,

The solution of (6.?) is given in Buchwald and
Adams. The resulting dispersion relation for the nth
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offshore mode is given by
o = —=2bk;/[(£P)? + ki + b,
n=12,..., 6.3)

where ¢ is the nth root of the transcendental
equation

tang® = —£PI(b + |k;)),
It is customary to order the £’s as follows: .
' ED < ED < -

™ >0, (6.4)

Under the normalization condition (3.15), ¢; corre-
sponding to the nth mode is given by

N{® sing{x exp[b(x — 1)],
0sx<1

= (6.5)
N§P sing™ exp[— |k,-l(x - DI,
1 <x <o,
where
N = [26Ho/bQ2£® — sin2&™)]™.  (6.6)

For convenience, we now drop the modal super-
script n. .

Substituting Eq. (6.5) into (3.14), and performing
the lengthy but straightforward algebra, one can
show that the coefficients Kj,, for the exponential
shelf are

1 .
Kjym = N;NNn mkm{b(—3b2 — &2 — 287
2

= 3k ~ koI, + E(=b? — &2 + k2 — kDI,
sing; sing; siné,,

k5] + Ta] + ke

X [kH(=2]k;| = [ki]) + Jki|Ckm?® = kDT}, (6.7)

+ 26(—b% — £AI; +

where I,, I, and I; are the following integrals:

1

I, =e® J sing;x singx siné,xe %*dx,  (6.8)
o )
1

I, = e”J sing;x coséx sinéxe %%dx, (6.9)
0
1

I3 = e J cosg;x singx sing,,xe %%dx. (6.10)
0

These integrals can be evaluated analytically,
yielding

I, = Y[(bA, + b,B, — b,C))
- (bA2 + b232 - szg) - (bAa + b3Bg - b3C3)
+ (bA4 + b4B4 - b4C4)], (6.11)
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F1G. 2. The optimal fit to the topography along the line shown in Fig. 1. The dashed
curve is the real topography while the solid curve is the exponential fit.

12 = %[(blAl - bBl + bCl)
- (bzAz - sz + bCz) + (b3A3 - bBS + bC3)
— (biA, — bB, + bC,)], (6.12)
13 = 1Al[“(bl.Al - bBl + bCl)
+ (bzAg - bB2 + ng) + (b3A3 - bB3 + bC3)
~ (b4As — bB, + bCy)], (6.13)
where
bi=&— & —&n =866t fm,] 6.14)
by=¢& + & — €ny, bi=§&+ &+ €ny)
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Fi1G. 3. Dispersion curves (—w versus k) for the exponential
depth profile with & = 1.65. Only the four lowest modes (I, II,
111, IV) are shown.

and

1
[4;,B;,C;] = b [sinb;, cosbh;, €],

+ b

i=1,2,3,4. (6.15)

7. Applications to the Oregon shelf

In this section, our theory is applied to the Oregon
shelf and then compared with the observations in
Cutchin & Smith (1973) and Huyer et al. (1975).
These two papers will henceforth be referred to as
CS and HHSSP, respectively.

First, we fit the Buchwald-Adams exponential
shelf profile, i.e., Eq. (6.1), to the real depth
profile given in CS. With the level-off depth in deep
water chosen to be 2.84 km, the optimal fit (Fig. 2)
yields the value 1.65 for the (dimensionless) param-
eter b. The variable x is nondimensionalized with
respect to the shelf/slope width L(L = 112 km from
our fit), and the depth 4, with respect to H,, the
depth scale of the shelf region (H, = 200 m). By
solving Eqgs. (6.3) and (6.4) numerically, we obtain
the different mode dispersion curves for the ex-
ponential profile. In Fig. 3 the curves correspond-
ing to the first four modes are shown. (Note that we
have actually plotted —w versus &, since shelf waves
have negative phase speeds.) Our dispersion curves
for the idealized topography resemble closely the
original curves in CS which have been derived
using real topography.

As mentioned earlier, CS found three peaks at
around 0.22, 0.40 and 0.65 cpd in their spectral
analysis of data collected on the Oregon shelf dur-
ing the summer of 1968 (see Fig. 1). They also con-
cluded from phase information that the dominant
peak at 0.22 cpd is consistent with a first-mode
shelf wave with wavelength A, = 1620 km.
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Fi1G. 4. The resonant triad involving waves of the lowest
possible modes. With (k,, —w,) fixed from the observation of
CS, (k;, —w,) and (k3, —ws) are then uniquely determined by
constructing the parallelogram such that, with two vertices fixed
at (k,, —w,) and (0,0), the remaining two vertices touch the
dispersion curves for modes I and II.

Can our resonant interaction theory explain the
presence of these observed peaks? To facilitate
comparison, we rewrite the resonance conditions as

ky + ky = ks (7.1)

(which can be converted back to the original forms
(3.10) by simply changing the signs of w; and k3).
Egs. (7.1) can also be expressed as a vector relation

(kl’ —wy) + (ky, —wp) = (k3, —ay). (7.2

If we now choose —w, to correspond to the 0.22
cpd frequency, then the dispersion curves in Fig. 3
and the vector relation (7.2) allow us to deduce the
other members of the triad, namely (k,, —w;) and
(k3, —ws3), by a simple geometric construction (Fig.
4). The vector addition in Eq. (7.2) implies that
(ky, —w,), (ks, —®,), (k3, —ws) are the three vertices
of a parallelogram lying in the (k, —w) plane, with
the three vertices touching the dispersion curves,
and the fourth vertex fixed at the origin. Since CS
concluded that the peak at 0.22 cpd is consistent
with a first-mode shelf wave, this essentially fixes
our (k,, —w,). Looking for interactions involving
waves of the lowest possible modes, we find that
(k,, —w,) belong to the second mode while (k3, —wy)
belong to the first mode. With these choices for the
modes, the resulting parallelogram of Fig. 4 is
unique.

The resonant triad obtained from Fig. 4is (k,, —w,)
= (0.382, 0.155), (ky, —wy) = (5.362, 0.281), (ks,
—w3) = (5.745, 0.436), where these pairs are non-
dimensionalized with respect to the scales (L1, f).
The corresponding wavelengths and frequencies for
the triad are (A,,v;) = (1840 km, 0.22 cpd), (A;,vs)

Wy + Wy = W3,
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= (131 km, 0.40 cpd), (As,v3) = (122 km, 0.62 cpd).
Alternatively, we can construct our parallelogram
from the original dispersion curves of CS (derived
using real topography), resulting in the following
values for the triad: (1710 km, 0.22 cpd), (138 km,
0.40 cpd), (127 km, 0.62 cpd). With either con-
struction, we find excellent agreement with the
observed values in CS: A\, = 1620 km, », = 0.22 -
cpd, v, = 0.40 cpd, v; = 0.65 cpd.

There is insufficient information in CS to give a re-
liable estimate for A, and A;. The phases asso-
ciated with the second and third peaks in Fig. 1c
are ~22° and 43°. However, the true phase can be
the observed phase +n 360° (where » is an integer).
With the two stations 180 km apart, taking n = 0
yields A, = 3000 km and A\; = 1500 km. But if n
= +1, then A\, = 170 km and A; = 160 km, which
agree very roughly with the theoretical ,values
(131 km and 122 km).

CS attempted to explain the presence of the three
peaks by a mechanism proposed in Buchwald and
Adams (1968). For dispersion curves which have
zero slope at certain frequencies, the resulting zero
group velocity impli€s that energy cannot propagate
away, and therefore, according to Buchwald and
Adams (1968), peaks in the spectrum might be
expected at these frequencies. From the original
dispersion curves of CS, we find that the frequencies
of zero group velocity occur at 0.29, 0.40 and 0.71
cpd for modes III, II and I, respectively. The
agreement between these frequencies and the ob-
served frequencies (0.22, 0.40, 0.65 cpd) appears
weaker than that between our resonant triad fre-
quencies (0.22, 0.40, 0.62 cpd) and the observations.
Furthermore, with the .Buchwald-Adams mech-
anism, one has to identify the dominant peak at
0.22 cpd with a third mode wave of wavelength
< 300 km (see Fig. 3). But, CS determined the
wavelength associated with the dominant peak to be
1620 km, which is consistent only with a first mode
wave. Hence, our resonant triad mechanism seems
more capable of explaining the triple-peaked spec-
trum in CS.

Next, we derive the numerical values of the
coupling coefficients K; for the resonant triad
interaction in CS. Returning to Eq. (3.10) as our
resonance conditions, the signs of k3 and w; must be
reversed. Substituting in the triad values 0.382,

TaBLE 1. The coupling coefficients (in nondimensional units)
for the resonant triad interaction on the Oregon shelf re-
ported in CS.

jlm Kiim Kjm K; Kfc;
123 60.6 -39.0 -8.75 21.6
231 1.48 37.7 —2.05 39.2
312 -52.7 4.61 —-60.7

—8.02
1
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5.362, —5.745 for k,, k, and k3, and —0.155, —0.281,
0.436 for w;, w, and w3, Eqs. (6.3), (6.6), (6.7), (6.11)—
(6.15), and (3.17) give the values of the coupling
coefficients, as listed in Table 1.

In Section 5, we found that, with 8/0Y neglected,
and for the case of maximum energy exchange, the
solutions to the amplitude equations were given by

elliptic functions. The period T, of energy transfer .

was given by Eq. (5.15). We expect a,, to be <1.
(This is because the first wave dominates, hence its
velocity should be comparable in magnitude to the
measured velocity scale V, and thus with nondimen-
sionalization, a,, = 1.) As a,,? is significantly less
than a,®, we expect M to be <1 from Eq. (5.11).
The elliptic integral K(M) increases slowly from 1.57
to 3.70 as M increases from 0 to 0.99. Taking a
typical value of 3 for K(M), 1 for a,,, and using
values of K, and K; from Table 1, we have T,
=~ 2.0. Remembering T = €t, where ¢ is the Rossby
number (¢ = 0.01) and ¢ is nondimensionalized with
respect to 1/f (f = 107* s™Y), T, is converted back
to dimensional units on division by ef, yielding
Ty = 2.0 x 10% s or 23 days. Hence, for the triad in
CS, the time scale for energy transfer (~%T,) is
of order 12 days. '

Huyer et al. (1975) (abbreviated HHSSP) com-
puted rotary spectra with data collected from July
to September 1972, on the Oregon and Washington
shelves. Near the shore, a shelf wave should pro-
duce high coherency in the clockwise component of
a rotary spectrum. In Fig. 9 of HHSSP, the clock-
wise portion (or, in the notation of HHSSP, the
negative frequency part) of the coherency squared
spectra between the Depoe Bay sea level and the
60 m current at the mooring NH-10 shows four
distinct signals at 0.15; 0.27, 0.42 and 0.55 cpd. If
one again performs the ‘‘parallelogram’’ construc-
tion on the dispersion curves in CS, one finds that
upon associating the dominant 0.15 cpd peak with a
first-mode shelf wave, the remaining members of the
triad involving the lowest possible modes turn out
to be (Ag,1,) = (103 km, 0.40 cpd), (second mode),
and (A3,v3) = (99 km, 0.55 ¢pd), (first mode). Thus,
it is plausible that of the four clockwise signals
observed (0.15, 0.27, 0.42, 0.55 cpd), the last two
arise from the resonant transfer of energy from the
dominant peak at 0.15 cpd. The cross spectra be-
tween the current at NH-10 and the wind at Newport
(Fig. 9 of HHSSP) shows high correlation at the
0.15 and 0.27 cpd (clockwise) frequencies, suggest-
ing that these signals may be wind generated.

So far, we have only examined resonances in-
volving the lowest possible shelf wave modes.
Resonances involving higher modes should not be
overlooked. In particular, the first three signals in
HHSSP (0.15, 0.27 and 0.42 cpd), which also happen
to satisfy the resonance condition (1.1), may be a
resonant triad involving higher modes.
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8. Discussion

Our theory of resonant triad interactions seems
capable of explaining some of the subinertial spec-
tral peaks observed on the Oregon shelf. Never-
theless, one must remember the many limitations of
our theory: no stratification, no bottom friction or
irregularities, no alongshore variations in the shelf
width and no atmospheric forcing.

While CS reported barotropic motion in their
measurements, HHSSP found significant baroclinic
components in some of their signals, indicating
stratification may be important. Furthermore, the
phase speed of 356 km day™' for the 0.22 cpd
signal in CS is in excellent agreement with the
theoretical phase speed of a lowest mode barotropic
shelf wave (derived from their dispersion curve),
while in contrast, the phase speeds in HHSSP seem
substantially higher than the theoretical phase
speeds for barotropic shelf waves. Stratification is
known to modify the dispersion curves resulting
in higher phase speeds (see Mysak, 1980, Section 3).

Bottom friction and irregularities in bottom topog-
raphy (see Allen, 1980, Section 4), have also been
neglected in our theory, but could be important
factors. In particular, for the first-mode wave on the
Oregon shelf, Brink and Allen (1978) obtained a
decay time scale (e-folding time) of 5 days due to
bottom friction. In contrast, the time scale for
resonant energy transfer is about 12 days from our
theory. The actual balance between frictional effects
and nonlinear energy transfer requires further in-
vestigation. Moreover, we note that the triad theory
predicts two very short shelf waves (with wave-
lengths = 100-140 km), and it is conceivable that
such short waves may be strongly affected or dis-
sipated by the presence of bottom irregularities
and friction.

In this paper, we have focused primarily on
resonant triads involving waves of the lowest pos-
sible modes (two first-mode waves, one second-
mode wave). Resonant triads involving higher modes
are also possible. Bottom friction and irregularities
may decide which of these triads will be excited
more readily than others. Furthermore, the two
secondary members of the triad extracting energy
from the dominant member may in turn interact
resonantly with other waves, forming additional
resonant triads, and this process may be repeated.

The alongshore variation in the shelf width has
also been overlooked. The changes in the width and
shape of the shelf alter the dispersion curves. The
triad may have formed some distance to the south
where the shelf and the dispersion curves can be
very different. By the time the triad reaches the
region under investigation, the waves may no longer
satisfy the ‘‘parallelogram’ relations for a resonant
triad.
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Atmospheric forcing has also been omitted in our
theory. However, we must emphasize the fact that
when applying our theory to the Oregon shelf, we
have assumed that the dominant member of the
triad is generated by (and receiving energy from) the
atmospheric system. Without this input of energy,
all the waves will eventually be damped out by the
frictional effects. The works of Adams and Buch-
wald (1969) and Gill and Schumann (1974) have
dealt with the generation of shelf waves by the
wind. However, in addition to genuine shelf waves,
~ Gill and Schumann (1974) found that the wind may
generate forced waves which need not lie on the
shelf wave dispersion curves.

Finally, we note that our theory is for interac-
tions between three shelf waves of discrete fre-
quencies and wavenumbers. An alternative ap-
proach is to study shelf wave interactions that oc-
cur continuously over a broad band in w-k space
(e.g., see Hasselmann, 1968). The continuum ap-
proach in general yields smaller growth rates than
the discrete approach. Since distinct peaks are
actually present in the spectra of CS and HHSSP,
our discrete approach is probably adequate.

9. Summary and conclusion

Neglecting stratification, bottom friction, along-
shore variations in bottom topography and at-
mospheric forcing, we show that the nonlinear long-
wave equations allow resonant interactions to occur
between three shelf waves. The equations govern-
ing the amplitude and the energy of the individual
waves in a resonant triad are derived. The energy
equation shows that energy is transferred between
the waves by the nonlinear terms, but with the
total energy conserved. Neglecting the alongshore
derivative 4/dY in the amplitude equations, the
wave amplitudes are given by elliptic functions in
the case of maximum energy exchange. The theory
is then applied to the familiar exponential shelf
profile, where the coupling coefficients are obtained
analytically.

The theory is tested against observations made on
the Oregon shelf by other researchers. In their
spectral analysis, Cutchin and Smith (1973) found a
dominant signal at 0.22 c¢pd, and two secondary
ones at 0.40 and 0.65 cpd. For interactions involv-
ing waves of lowest possible modes, we find that a
0.22 c¢pd first-mode shelf wave can, in theory, inter-
act resonantly with (and transfer energy to) two
short shelf waves of frequencies 0.40 and 0.62 cpd—
in excellent agreement with the observed:- fre-
quencies. Similarly, from the rotary spectra of
Huyer et al. (1975), two secondary sigrials observed
at the clockwise frequencies of 0.42°and 0.55 cpd
also agree well with the theoretical values of 0.40
and 0.55 cpd. The time scale for energy transfer
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is estimated to be of order 12 days on the Oregon
shelf.

We envisage the following scenario on the con-
tinental shelf: From the works of Adams and Buch-
wald (1969) and Gill and Schumann (1974), we be-
lieve the wind to be the dominant mechanism in
generating shelf waves. However, the nonlinearity

“of the media allows energy to be transferred

from the wind-generated spectral peak to other
frequencies. Though the energy transfer is usually
small, it becomes significant for certain specific
frequencies and wavenumbers which happen to
form a resonant triad with the dominant wind-
generated signal. Secondary spectral peaks will then
emerge at these resonant frequencies.

There are two notable features in our study.
First, the energy transfer time scale of 12 days is
relatively small when compared to the typical
shelf wave periods of a few days. This is even more
remarkable when one notes that the Rossby number
€, which characterizes the size of the nonlinear
terms, is only ~0.01.

Second, in the resonant interaction, the low-
frequency, long shelf wave tends to generate two
higher frequency shelf waves with much shorter
wavelengths, 100-140 km. This implies a transfer of
energy to the smaller scales.

The detection of these short shelf waves would
provide strong support for our theory. In the mean-
time, we would like to point to another observa-
tion on the Oregon shelf reported in Kundu and
Allen (1976), where it was found that the offshore
velocity component # had much shorter correlation
scales in all directions than the alongshore com-
ponent v, and that there was lower correlation
between « and the alongshore wind stress 7, than
between v and 7,. For long shelf waves |u| < |v|,
but for the short shelf waves |u| = |v|. Hence
the observed v would be dominated by the wind-
generated long-shelf wave, but the observed u would
be complicated by the two short shelf waves which
are also uncorrelated with the wind. Hence the pres-
ence of short shelf waves is consistent with the
observations in Kundu and Allen (1976). Clearly,
more observational evidence is needed to fully
confirm our theory.
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APPENDIX
The Group Velocity

In Section 3, we claimed that the ¢, which shows
up in the amplitude equation (3.16) and defined by \
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Egs. (3.18) and (3.19) is indeed the group velocity
of the jth wave, i.e.,

awj
% = o (A1)
The proof is as follows:

First multiply Eq. (3.2) by ¢, replace c¢; by w;/k;,
and then differentiate the entire equation with re-
spect to k;. From this, subtract off Eq. (3.2) multi-
plied by 28¢;/8k;, yielding

bor(5 4) - (5 4) 222k o7

ok\h ok,
1 A kj 6(0} h' _
Tkt ¢ + o a_k,-Fd)jz =0. (A2)

Next, we integrate this equation with respect to x
from 0 to «. Integrating by parts and applying the
boundary conditions (3.3), the first two terms cancel,
leaving
i -] hl
% J — d)jde
Ok; Jo h*
=2 r b pdx + 207 r L gz, (A3
k} . B j j . h j .

Under the normalization condition (3.15), this re-
duces to Eq. (A1) with ¢, defined by Egs. (3.18)
and (3.19).
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