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ABSTRACT

A method for inferring an area-averaged bottom stress and energy dissipation rate in a tidal estuarine
channel is presented. The one-dimensional continuity and momentum relations are developed using
simplifying assumptions appropriate for a well-mixed shallow and narrow estuary. The finite-difference
form of these relations is derived for a section of the Great Bay Estuary, New Hampshire, an estuary
which has been shown to have a relatively large energy dissipation rate. A set of current, bottom-pressure
and sea-level measurements from the Estuary is used to estimate time series of all important first- and
second-order terms in the momentum equation. Except near slack water, we find that the instantaneous
first-order balance must be between the surface-slope-induced pressure gradient and bottom-stress forces.
Important second-order contributions to the balance come from the inertial and convective acceleration
terms. Time series of bottom stress are inferred by summing the estimated terms. For this study site the
14-day rms bottom stress is 45.1 + 4.5 dyn cm™ with a corresponding rms and mean dissipation rate of
3526 = 420 and 2478 = 297 ergs cm™2 s, respectively. The role of the first-order tidal motion and non-
linearities in the mean second-order force balance is discussed.
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1. Introduction

Based on the observed acceleration of the earth-
moon system, Hendershott and Munk (1970) have
calculated a tidal energy dissipation rate of 2.7 x 10®
ergs s~! for the world’s oceans. The inferred dissipa-
tion is likely to occur in the shallower regions of the
oceans where the near-bottom velocity and hence
frictional dissipation is greatest. Miller (1966) has
estimated a dissipation rate of 1.7 x 10! = 50%
ergs s~! for the coastal regions of the deep oceans
and the shallow seas. The large uncertainty in this
estimate is attributed to the relatively sparse set of
current observations and a crude understanding of
the frictional processes that lead to tidal energy
dissipation.

Several attempts have been made to estimate the
dissipation of tidal energy in specific coastal water
bodies. One pioneering effort by Taylor (1919) was
based on energy-budget considerations for the Irish
Sea, where the net deficit of energy calculated for a
tidal cycle was attributed to dissipation due to bot-
tom friction plus work done by the Irish Sea on the
moon. McLellan (1958) modified Taylor’s method by
also accounting for the energy required to mix the
water column vertically, and he used the modified
scheme to estimate dissipation due to friction in the
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Bay of Fundy. More recently, Garrett (1975) has
shown that Taylor’s method incorrectly considers
the moon-sea interaction and thus the above esti-
mates of the frictional dissipation inferred from
Taylor/McLellan energy budgets are inaccurate.

Trask and Brown (1979) have corrected the Taylor
method in accordance with Garrett’s (1975) analysis
and estimated a frictional dissipation rate of 1.6 = 0.1
X 10" ergs s~! for the Great Bay Estuary, New
Hampshire. This is to be compared with the dissipa-
tion estimate of 0.9 + 0.1 x 10** (Levine and
Kenyon, 1975) for Narragansett Bay and a corrected
dissipation estimate of 3.0 X 10!7 ergs s~! for the Bay
of Fundy, respectively. Therefore, more tidal energy
is dissipated in Great Bay than in Narragansett Bay,
which has about 10 times more area. This difference
is due to the more energetic tidal currents found in
the estuaries bordering the Gulf of Maine.

Trask and Brown (1979) have shown that tidal
energy dissipation in Great Bay Estuary (the Estuary
henceforth) is due principally to bottom frictional
processes. This is a particularly good estuary for
this type of study because the effects of density gra-
dients and wind stress are small compared to those of
tidal forcing at the mouth. In this paper we explore
the relation among the tidal hydrodynamics, the
bottom stress and the energy dissipation. Smith and
McLean (1977) discuss some of the difficulties in
making local estimates of bottom stress from bound-
ary-layer flow measurements in a natural channel
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Fi1G. 1. Schematic diagrams of a rectangular section estuary.

with variable bottom topography. In addition, there
are unresolved difficulties in the hydrodynamic in-
terpretation of a few individual estimates of local
bottom stress. In this paper we avoid some aspects
of this problem by inferring total bottom stress from
the equations of motion. Bowden et al. (1959) have
had some limited success in using the two-dimen-
sional momentum equation to estimate the vertical
distribution of stress and eddy viscosity. Here we
describe a procedure for the ‘‘dynamic inference’’
of an area-averaged bottom stress using the one-
dimensional (cross-section averaged) continuity and
momentum equations, which are developed in Sec-
tion 2, and field measurements, which are described
in Section 3. A discussion of the stress and dis-
sipation estimates appears in Section 4. .

2. Theoretical considerations

The following is a theoretical development con-
cerning tidal dynamics in a narrow and shallow
estuarine channel shown in Fig. 1. We will consider
the case for which sea level fluctuations 7 are small
compared to depth /4. Thus the tidal, density-driven
and wind-driven problems are linearly related and
can be treated separately. The dynamics will be ex-
pressed in terms of cross-section-averaged velocity
U(x), surface elevation n(x), depth A(x) and cross-
section area A(x); therefore we begin with the ver-
tically and horizontally integrated form of the con-
tinuity equation for a channel of arbitrary cross
section, i.e.,

0, . 1
ox ot M

where the tilde and braces denote the integrals

by by
|

-bl
respectively. Here we have assumed that velocities

normal to solid boundaries are zero. Since in general
A = {n + h} and &z = AU then (1) can be written

n
J -+- dzdy and J
—h

_bl

0A + AU _
ot ox

0. 2)

For discussion of the more restrictive case of a
rectangular channel of widthb = b, + b,, we define
the lateral average (using double overbars) as

1 (%
=1L,

so that (n + h) = b~{n + h}. Thus since 4 is inde-
pendent of time we can rewrite (1) as

dy,

o ., 1 AU) _
ot b O

0. 3

The x-momentum equation of interest is

— tu—+v—+w——fo
ot ox ay 0z
__l_ﬂ-yi%.q-l_%, (4)
pOox p oz p Oy

where v(u,v,w) is velocity, p = pg(n — z) is as-
sumed to be hydrostatic pressure, 7, is x-directed
stress, and p is density, which is assumed to be
constant. By adding u#(V-v) to (4) and collecting
terms we have
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When we integrate twice,
1 by n
_I J .-+ dzdy,
A |y Jon

while applying boundary conditions
w(n) = Dn/Dt, w(-=h) = D(—h)/Dt,
V(b;) = U(b,)8b,/8x, v(by) = U(—b,) — 8b,/8x

at the surface, bottom and two vertical sidewalls,
and make a liberal use of Leibnitz’s rule Eq. (5)
becomes
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where p(m) and 7, are the surface pressure and stress,

7, is the bottom stress, and 7|, and 7.|,, are the

vertical integrals of sidewall stress. Here the single

overbar defines the integral {7, - - - dz. Manipulating

the definitions of U and A it can be shown that
Lo o,y 101y g
A ot ot dx A Oox\A

Thus (6) on substitution of (7) becomes

(6)
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This relation can be simplified by assuming that the
fo_llowing terms are very small compared to others
in the equation: (i) p(n) < pgh; (ii) 7, <€ 75; (iii) Oh/0x
< 1; (iv) Kelvin number = fb/\/éﬁ < 1;_(v) hori-
zontal aspect ratio = h/b < 1; and (vi) uz/u < 1.
For the Estuary, assumptions (1) (iii) are valid and
thus terms (a) and (b) in (8) are simplified as shown
below. For a narrow estuary in which the width-
to-length ratio is very small, the Kelvin number is
small and the cross-channel geostrophic balance is
set up much more rapidly than changes in axial flow.
Thus Coriolis effects are unimportant and term (d)
of (8) can be neglected. In the Estuary A/b = 0.002
< 1 and therefore lateral stresses, which scale as
h, are less important than bottom stresses, which
scale as b, and thus term (c) can be neglected.
Finally, Johns (1978) has shown numerically that
assumption (vi) is true for an estuarine channel simi-
lar to the one considered here.
Therefore, Eq. (8) can be rewritten

oU  aU g an } 1
—+U—=—-={(n+h)—} —— )
U A[(n ot} o () ©
The pressure-gradient term of (9) can be simplified
further with the additional assumption (vii) n/h < 1
in which case A = ab. In this case

g (™ 6"0] gJ"z on
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and, furthermore, the right-hand side of (10) can be
written

b, by
-8 [%i— L" ndy + ?a%'b}; L,‘ ndy
@ (b)
2y 3 b b))
b ox b ox
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For small cross-channel elevation differences, such
that dn/n < 1, terms (b) + (¢) + (d) = 0. Thus, the
pressure gradient term in (9) is

1)

g a7
~ Sl m+h)— ~—g— 11
£l + w2 } e ap
and (9) can be approximated as
W, pdU_ o T
o ox ox ph

Note that (12) is in error by the omission of the
term —g/A mdn/ox; a point that will be explored
later.

Consider the application of (3) and (12) to the case

of a tidal wave with amplitude, frequency and wave-

numbers of ay, o and Kk = 27/\ in an estuary of con-
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stant depth & whose characteristic length scale L,
is much less than the tidal wavelength A. For the
case of a uniform-width channel L, is the estuary
length; otherwise L, is the characteristic width-vari-
ability scale. To explore the relative importance of
the terms in (3) and (12), we scale the variables
as follows:

U= an,

and 7='b = pCD Uoz%b’

= aO';)s X = Lofc,

=gt

~

where Cj is a dimensionless bottom drag coefficient
(~1073) and the caret identifies nondimensional O(1)
variables. Spatial variations in 9, U and b, which are
scaled with &n, 8U and &b, respectively.

It is informative to rewrite the continuity equa-
tion as

Agg—_-_bi’l_u_%. (13)
ox ot ox
(@) (b)

to show how the divergence of the transport on the
* left-hand side of (13) is related to wave and geometry
effects of terms (a) and (b), respectively on the right-
hand side of (13). The scaled form of (13) becomes

o =[5 5 (g se] o0

b \N8U/) oz
and the corresponding scaled form of (12) becomes

oi (5U )A ol
—_— + U-—
= —(——ga” )33 - (C”U")‘b 15)
G'U()Lo ax oh

a. Uniform-width channel

It is clear from (14) that for a uniform-width
channel (8 = 0) and for n/h < 1, Eq. (3) can be
approximated by

7 oU
_61+ _:0_

16

ot ox (16)

In addition, (14) shows that 8U = a,oL,/h. But
o = k(gh)'? so that

g 1/2
oU = ao(h—) Lok = UsLok, a7

where U, = a((g/h)"? is the progressive wave
velocity scale.

If we scale 87 likewise as Loka, then (15) can be
rewritten as
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Upon substitution of typical Estuary values of U,

=1ms™ a,=1m, h = 10 m and o/k = (gh)'?
~ 10 m s7! Eq. (18) becomes
o i o
— + (0 — =~ — — T} 19
o 105 w1 @
Therefore, for §, = 0 the approximate form of (12) is
U _ _, 001 _ % (20)
ot Ox ph

b. Variable-width channel

For the more realistic case of a constant-depth
and variable-width channel, in which 8b varies on
spatial scales of L,, the 8U scale can be determined
from the continuity form (14). In particular, for the
Estuary, where 6b/b = 107! over scales L, = 10° m
and the other scales are as above, the first-order
balance is between the 9i1/0x and & 9b/di terms
which means 8U scales as Uy8b/b. Thus, Eq. (3)
can be approximated by

2D

Using the same 8U scaling the momentum equation
(15) becomes

aa (UO )(Sb)A ai
RS _— iy —
ot oL, \ b ox
- _( £8m )3’@

oU,L,/ 3%

_ (C”;]“)e,,. 22)

gl

At this point the scaling for 87 is undetermined be-
cause the wave-scaling Lqka, is no longer appropri-
ate. We could choose to scale 8% in terms of the
bottom stress but rather we choose to find a balance
in terms of the convective term U&U/éx, whose
effect is going to become dominant as 8b/b in-
creases. In a form that more nearly corresponds
to 8U scaling we find that 87 scales as (Uy?%/ g)(8b/b).
Eq. (22) then becomes

ol (U0 )(Sb)kaﬁ
_A+ —_— Y —
ot oL, b 0x

(UO )(Bb )61‘7 (CDUO)A

= -1 - - - The

oL N\ b Jaz oh |’

Thus for 8b/b = 107! and other values as used
above, Eq. (23) becomes
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We seek a finite-difference form of (25) with which
to compare observations. It is found by integrating
from the upstream transect at x, to the downstream
transect at x,:

1 [ J o _aE dx + ra ——-—6( U2) dx]

Frankfort

(xg — x L)z, O e, OX
— Ty AF 1 ER
=—;"——U i’-dx+—,_—f ?bdx} .
(x2 — xy) z, OX ph x
This reduces to
2
8(U) " 8(U%2) - _5_7) _ (7s) . 26)
&t Sx ox ph

where &x = x; — x;, 8(U?%2) and &% are the differ-
ences U(x;)*? — U(x,)? and 9(xz) — 7(x,), respec-
tively, and angle braces indicate a study-site spatial
average. Thus, using a rearranged form of (26), the
space-averaged bottom stress can be determined

simplex using estimates of the other terms according to

.

Newington ~
Station Power Plant™"

43107]

Simplex

Schiller
Piant

Current
Meter

Portsmouth 4

©7ese’ o P40’

| 1 I |

Fic. 2. The Great Bay Estuary and the area of interest in the
1978 field program. Locations of the NOS tide stations (A), the:
transect station locations (@), the current-meter location (D)
and the pressure-instrument locations (M) Kiwi and Picket are
shown. The depth contours are in meters relative to mean low
water (MLW).

o , on a7
i = =g, 24)
ot ox ox :
which shows that for even small channel-width vari-
ations all terms can be equally important.
For 8b/b = O(10™") the appropriate -dimensional
momentum equation is
9 U 07 7 '
——U +U—=—g g _ T . (25) FiG. 3. A schematic drawing of the tripod anchor frame used to
ot ox - ox ph secure the Geodyne current meter in the center of the channel.
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FiG. 4. A summary of data acquisition during the 1978 field program. The times of the 13-h down-
stream (2) and upstream (1) transects are indicated as well as the 2-day overlap period of the pressure
and current measurements. The mean values have been removed from the temperature and pres-

sure series.
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The corresponding finite difference form of (20) for
a uniform width channel is

S U) 87)) .

(™) "(at g

(r0) = —ph( ) ey

(28)

3. Field program

A field program was designed to provide esti-
mates of the terms in (27).in a region of the Great
Bay Estuary, New Hampshire. A 2 km section of the
Estuary shown in Fig. 2 was selected for the study
because of its relatively high currents and uniform
geometry. Previous observations described by
Swenson et al. (1977) and Silver and Brown (1979)

show that the properties of the Estuary at this loca-
tion are sufficiently uniform throughout the tidal
cycle that a constant density approximation is
reasonable.

In order to estimate 87/8x, a pair of internally
recording instruments using Paroscientific Digi-
quartz pressure sensors and thermistors was
deployed on the 10 m isobath as shown in Fig. 2.
A thermistor record was used to correct for the tem-
perature sensitivity of the pressure sensor. These
pressure sensors have short-term precisions better
than 1 mm and long-term stability of about 1 cm
per month, Because of the uncertainty in the depth
of each instrument, however, the mean value of
8m/8x cannot be measured and has been assumed
to be zero. This assumption is consistent with the
very low ratio of river flow to tidal prism of 1:640
found for this estuary by Arellano (1978).

A set of current-profile and moored-current meas-
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Fi1G. §. A seaward view of typical sections of longitudinal current at the up-
stream and downstream transects of the study area. Ebb or seaward currents are
positive. Contour interval is 20 cm s~!, dashed horizontal line indicates mean low
water, solid line indicates the water surface and the circles indicate the locations

of current measurements.

urements was made for purposes of estimating the
current and current-derivative terms in (27). Cur-
rents were sampled at 10 min intervals by a single
Geodyne 102 film-recording current meter, which
was deployed for about a month in a configura-
tion as shown in Fig. 3 at the location shown in
Fig. 2. The rotor height was restricted to 75 cm above
the bottom at this center-channel location to avoid
interference with the deep-draft oil tanker traffic in
this section of the Estuary. In addition to the moored
current measurements, a series of current profiles
was measured with a Marsh and McBirney electro-
magnetic current meter at the two transects indi-
cated on Fig. 2 and at the current-meter site. The
purpose of the profile measurements was to deter-
mine the relations between the moored current
observations and the section-averaged currents at

the three sites. At the outset we assumed that the
relationships between the different current measure-
ments determined for a single tidal cycle would be
applicable for other times.

4. Results

A summary of the moored-instrument data ac-
quisition during the summer 1978 field study is
shown in Fig. 4. Originally the study was to consist
of one month of overlapping records but a variety of
instrumentation problems led to the reduced length
of records shown. The 2-day overlap of the pressure
and current records, which is used in the analysis to
follow, is indicated, along with the days during
which the current transects were made. Clearly, the
tides are dominant in all of the observed records.
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a. Dynamic inferrence of bottom stress

The section-averaged currents, which are used to
estimate the velocity gradient term 8U/dx, were
determined from the transport estimates for the up-
stream and downstream transects. A 13 h series of
transport values has been estimated at each transect
from current maps like those shown in Fig. 5. The
current-profile measurements were made near neap
tide for the upstream section and near spring tide
for the downstream section, with tidal ranges of 1.50
and 2.94 m, respectively. These transport estimates
were normalized to the mean tidal range of 2.00 m
and are compared in Fig. 6. The diurnal inequality
is evident in these pictures of ebb and flood trans-
port. A comparison of the time-integrated transports
with known estimates of tidal-prism volumes (see
Trask and Brown, 1979) indicates that this method
underestimates the actual transport by 'about 10%,
on account of failure to account properly for cur-
rent on the flanks of the channel. Therefore, we have
amplified our estimates by that percentage.

The relation between the moored currents and
transports at the upstream and the downstream
transects has been determined from the calculated
regressions only (Fig. 7) because there was no sig-
nificant phase lag between the observations. The
zero intercept of the regression was fortuitous. Be-
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FiG. 6. Time series of the normalized volume transports
(see text) at the upstream and downstream transects. The upper
plot (a) shows downstream transport data collected on 22
August 1978, and the lower plot (b) shows upstream transport
data collected on 29 August 1978.
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FiG. 7. (a) The longitudinal current (x) versus upstream-
transect transport (y). The linear best fit of the dataisy = 116.9x
with a corresponding r-square value of 0.975. (b) The longitudinal
current (x) versus downstream-transect transport (y). The linear
best fit of the data is y = 114.2x with a corresponding r-square
value of 0.981.

cause tidal flow dominates the kinematics and
dynamics in the Estuary we have assumed that the
calculated regressions between moored and transect-
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FiG. 8. A comparison of the inertial (dotted), convective-
acceleration (dot-dashed) and pressure-gradient-term (solid) [see
(27) in text] contributions to the bottom stress 7, (dashed) over
a diurnal tidal cycle. Except near slack water, where 8%/6x is
zero, the principal balance is between the pressure-gradient and
bottom-stress terms.

averaged currents are approximately true at all
times. Thus we have been able to calculate ( U) and
dU? for times other than those of the observed
transports. '

These data have been used to estimate the in-
dividual terms in (27), which are compared for one
tidal cycle in Fig. 8. The pressure gradient term
g8n/dx is estimated from the difference between
Picket and Kiwi bottom pressure. The inertial term
8(U)/dt has been calculated by first differencing

<7p>

3(0%2)

—ph 8x

_p <>
P8
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the 10 min values of (U) and filtering out frequencies
about 3 cph. We justify this procedure because we
are principally interested in the tidal dynamics and
much of the high-frequency variability in the ob-
served acceleration was found to be spurious, as
discussed by Trask and Brown (1979). The convec-
tive acceleration term &U?22)6x was calculated
from the transport estimates at each transect. With
the exception of periods near slack water, when
dm/éx is small, the principal dynamic balance is
between the bottom stress and the pressure gradient.
A smaller order contribution to that balance is due
to convective and inertial accelerations (see Fig. 8).
These results are summarized in Table 1.

In order to explore the spring through neap tide
variability in the bottom stress, a 14-day series of
the terms in (27) was calculated with the current-
related terms computed as before and a pressure-
gradient term now based on predicted sea levels.
The stress series and its component terms are shown
in Fig. 9, and the rms values are compared with the
2-day results in Table 1. A synthetic pressure gra-
dient term was used because the required data were
not available (see Fig. 4). The sea level predictions
are based on the tidal-harmonic analysis of sea level
measurements made by the National Ocean Survey
and the University of New Hampshire during a 1975
field program described by Swenson et al. (1977).
Trask and Brown (1979) describe how the pressure-

T T T T 1 T LR T l T T T T 1
22 23 2425 2627 28293031 I 2 3 4 5

AUGUST

SEPTEMBER
1978

F1G. 9. A 14-day comparison of the bottom-stress term (7,) with the components
from which it was formed in accordance with Eq. (27). The inertial and convec-
tive-acceleration terms were formed in the manner described in the text with
measured currents, and the pressure-gradient term was estimated from predicted
sealevels. The spring neap tidal cycle is clearly apparent in these results. See Fig. 8
for the relative phase of the different components during the period indicated by
the dotted lines. The units of all terms are in dyn cm™2 and times are GMT.
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TaBLE 1. The rms and mean values of the component terms in (27) are shown in units of dyn cm2 for the 1-, 2- and 14-day averaging
periods discussed in the text. The corresponding rms and mean values of the study area averaged dissipation (¢) in units of

ergs cm~% s~! are also included.

&m 3(U%2) s(U)
- —_ - ]
peh = = i (1) (¢

Average
period rms Mean rms Mean rms Mean rms Mean rms Mean

1 39.1 20 — 109+13 84+10 93x05 -03x05 363x36 8108 2525 2021 % 243

2 368 + 1.8§ — 97+12 7.1x09 8304 -02=x05 33734 7.0=x07 2236 1696 = 203

14 478 24 — 116 14 8510 9705 0.1 05 45145 7808 3526

2478 + 297

gradient estimate was computed from the predicted
sea levels at Atlantic Heights, Simplex and the
Schiller Power Plant (see Fig. 2). The calculated
rms bottom stresses (7,) for the observed and syn-
thetic pressure gradients for the one day period in-
dicated in Fig. 9 are 36.3 = 3.6 and 35.3 = 3.5 dyn
cm™2, respectively. Thus, we conclude that bottom
stress computed on the basis of predicted data
is a good approximation of the observed-data
computation.

In summary, the results above show that for a
relatively straight section of this well-mixed tidal
estuary the bottom stress can be estimated to within
20% using sea level measurements alone. Further-
more the estimate can be improved by correcting
for the contribution of the convective-acceleration
term, which can be estimated from the channel
geometry and the tidal prism volume. The resultant
stress estimated, using this dynamical-inference

method, can be interpreted as a bottom stress
which is spatially averaged over the region of the
measurements.

b. Dissipation

The tidal energy dissipation has been calculated
in accordance with the relation (¢) = (1,)(U),
which is the study-area-averaged dissipation rate per
unit area. An example of that calculation for the
1-day results (see Fig. 8) is displayed in Fig. 10,
which shows a comparison of the component terms
(75) and ( U) and the dissipation {¢). (The nonzero
values are probably related to the uncertainties in
our estimates of (U) and (r,).) Thus, as expected,
we find an oscillating dissipation with a nonzero
mean of 2021 + 243 ergs cm™2 s™! in this case. A
value of 2478 + 297 ergs cm™2 s~! was found for the
14-day calculation, which correctly averages the
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F1G. 10. Tidal energy dissipation, (¢) = (7,)( U) for the one-day resuits (see Fig. 8)
is compared with the component terms (7,) (solid) and {(U) (dashed) below.
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spring neap tidal effects. (The bias introduced by the
longer period tidal components is much smaller.)

Using the same data set presented here and the
corrected Taylor method, Trask (1979) has calcu-
lated a study-area averaged dissipation rate of 4940
+ 2519 ergs cm™ s™1. These two methods provide
results that barely agree within the uncertainty limits
of both. The large uncertainty limits associated with
the Taylor calculation are associated with difficulty
in differencing the very large transport values at the
upstream and downstream transects. This source of
uncertainty is not nearly so important for the dynam-
ical
acceleration term, which depends on such a differ-
ence, is small. Therefore, we have reason to be more
confident in the lower number.

5. Discussion
a. Dynamical balances

The results presented above clearly show that the
first-order instantaneous force balance in the study
area is between the bottom-stress and pressure-
gradient forces if the assumptions underlying (27)
are satisfied in the Estuary. The assumptions leading
to (9) are satisfied, but since n/h = 0.2 and 4 is not
constant, the assumptions leading to (27) are not
strictly satisfied. Thus the magnitude of the errors
introduced by these violations must be examined.

From (10) the error term e, associated with the
assumption n/h < 1 is

by
en = —(phglA) j n(@n/dx)dy,
-0

1

where A = bh, 7} = a cosot, dn/dx = ¢ sinot with
= 100 cm and ¢ = 5 X 1075, Thus

pglac/2V2)
1.77 dyn cm™2,

which is small even in comparison with the second-
order inertial and convective acceleration effects
(see Table 1), and can therefore be neglected.

If we had not assumed that A = constant, then
(27) would have been

< T > 8(u) s(U2) . on

—) = + +g—.

ph ot ox &x

To determine the error incurred by assuming A
= constant we find a Taylor series expansion of

(ph) (rolphy = (1p) + (B) () Th*(x5)
~ B x)] + -
An estimate of the expansion error term
& = (h) (n) [ (xs) — B X(xy)]
=108 X 35 X 5§ % 107 = 1.75 dyn cm™2

i

TMS €; ~ pg rms (70n/8x)

- second-order terms.
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shows that for the Estuary e, is also small compared
to the second-order terms and can be neglected here.
Thus our use of (7,) is valid to second order.

Therefore, the first-order .results from the Estuary,
with finite breadth changes, are consistent with
Ianniello’s (1979) analysis for very small breadth
variation. The second-order departures from the.
primary balance are due to the combined effects of
the convective and the inertial accelerations [terms
(c) and (b) in (27)], while the third-order depar-
tures, such as ¢, and ¢, are unresolved within our
measurement uncertainties.

The effect of the small downstream divergence
in the study area is to produce a positive definite
fluctuation in the convective acceleration term
—phd(U?2)/5x, with aresulting bias in our estimates
of the downstream bottom stress. But this is mis-
leading because we are not able to measure the mean
pressure gradient force and have removed the mean
from our analyses. An estimate of the magnitude
of the pressure gradient force can be made by con-
sidering Ianniello’s (1979) solution of tidal flow in a
breadth-variable estuary. Although his solution is
strictly applicable for breadth variations that are
smaller than those in the Estuary, the qualitative
features of that solution should be applicable.

Ianniello finds the vertical structure of the second-
order time-averaged Eulerian flow i, and pressure
gradient 9dm,/0x from his dimensionless second-
order momentum equation

s
10 N (29)
2 dz 0z
and the continuity equation, where the first-order
flow u,, w, is known and N is a constant eddy vis-

- cosity. If we assume that u,0u,/8x is the most im-

portant convective acceleration term, then we can
rewrite (29) as

ORI _om\ (N ¥\ _
[—__ax ]+( a—x)+<? az2>‘°' (30)
(a) "~ (b) (©)

and consider the vertical structure of each term.
In a diverging channel the convective acceleration
term (a) is positive definite with a decrease with
depth as shown in Fig. 11. The stress term (c) dis-
tribution can be crudely inferred from the Ianniello
(1979) Eulerian residual-flow structure, which shows
a near-surface flow toward +x and a relatively
stronger near-bottom flow toward —x. The stress
structure shown is consistent signwise. In order for a
balance to be achieved in (30) the pressure-gradient
term (b), which is depth-independent, must be nega-
tive and of the same order as term (a). According to
our estimates of mean convective acceleration

- shown in Table 1, this means that d7,/dx is of order
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+1073 (or 1 cm km™) in the study area under con-
sideration. This compares with an rms 87,/dx of
4 x 107° for the first-order tidal motion. Thus there
are significant steady tilts which might be resolved
with an accurate geodetic leveling of adjacent tide-
measuring stations in the study area.

b. Bottom-stress parameterization

It is common practice to relate bottom stress 7,
and current u,o, at 100 cm above the bottom accord-
ing to 7, = pCigolt100°, Where p is the average water
density and C,q, the drag coefficient corresponding
to u10o- In order to compare our results with others,
we compute a semidiurnal-tidal time series of section-
averaged values of C,4, from the above relationship
by assuming that the values of 7, in Fig. 10 are
accurate and by estimating u,,, in accordance with
the relation u,o, = 0.75 {U). (The latter relation has
been verified with the current profile measurements.)
The results of this computation, using data shown in
Fig. 10, appear in Table 2 and show that C,, is about
an order of magnitude larger than most reported
values, varies in time by more than an order of mag-
nitude, and is asymmetric relative to the tidal current.

If one accepts the accuracy of our 7, estimates
then it is clear from Fig. 8 that the variability and
asymmetry in C,,, are related to the variability in the
dynamical balances. For example, the inertial and
convective-acceleration terms produce a consider-
able asymmetry in the ebb and flood bottom stress in
contrast to the near symmetry of current velocity it-
self as shown in Fig. 10. Since this simple bottom-
stress parameterization is based on a steady momen-
tum balance involving a typical local flow at 100 cm
elevation, it is not surprising that it is inadequate

a(u?rs2) a7, IV
“ax Tt ANT 0
(o) (b) (c)
- 0+ - o  + - 0 4
i
;
'
t B
777 77I77777777' 7777

+X —

Fi1G. 11. Crude estimates of the vertical structure of the terms
in (30) are shown. The form of (a) is found in a diverging channel
with bottom friction and the form of (¢) is inferred from Ianniello’s
(1979) solution for the Eulerian mean flow in a diverging channel.
The inferred distribution of the pressure-gradient term required
for a balance is shown in (b).
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TABLE 2. A time series of computed drag coefficients based
on bottom stress and velocity values shown in Fig. 10. The co-
efficients C, and C,q are based on (U) and u,y (see text),
respectively.

Time T (U) U100
(h) (dyncm™) (cms™)  (cmsTh) Cy Cioo
3 60 82 62 0.009 0.015
5 23 40 30 0.014 0.025
7 -39 -27 -20 0.052 0.095
9 =30 -97 =73 0.003 0.006
11 -30 —-50 —38 0.012 0.020
13 15 20 15 0.037 0.065
15 53 70 53 0.011 0.018

for describing hydrodynamic stress in some tidal
channels, where the magnitude and phase of addi-
tional terms in the momentum balance may be im-
portant. For example, we find that the tidal mean
value of C,qis 3.5 X 1072, This is about an order of
magnitude larger than those found by Sternberg
(1968), using a log-profile method in a few tidal chan-
nels in the northwest. The implication here is that a
relatively larger mean bottom stress is required in
the local Estuary to balance the characteristic mean
pressure gradient. Furthermore we believe that al-
though a significant amount of the scatter in Cg
observed by Sternberg (1968) is due to sampling
variability as pointed out by Heathershaw and Simp-
son (1978), some of the variability is real and due to
the unsteadiness in the dynamics. In order to model
residual flows due to hydrodynamic nonlinearity, it
may be important to specify bottom stress in a more
realistic way.

c. Dissipation

Finally, we compare our dissipation results with
an independent estimate. From the work of Ippen
(1966) it can be shown that an alternative relation
for calculating the average rate of dissipation ¢ for a
long wave is

0 A
= J ! J pv(duldz)*dxdz,
~h

0

where A is the tidal wavelength and v the kinematic
viscosity. Velocity-profile data from the study site
and the eddy viscosity, v, = 0.0236z — 0.00238z2,
which was determined in accordance with the results
of Swift et al. (1979) for the Estuary, have been used
to determine ¢ = 4800 ergs cm™2 s~'. This value,
which is based on central-channel velocity profiles,
is twice the 14-day mean value of (¢$) = 2478 and
therefore may provide a measure of the lateral vari-
ability of dissipation rate within the study site.
Future studies including direct measurements of
bottom stress will shed more light on this question.
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d. Summary of conclusions

In this paper we demonstrate a dynamical method
for inferring a space-averaged tidal bottom stress

and associated energy dissipation rate for a shallow

well-mixed estuary. We find a first-order dynamical
balance between along-estuary pressure gradient
and bottom friction, and thus sea level measure-
ments alone may be useful in estimating dissipation
for estuaries where similar dynamical conditions
prevail. Because of the spatial averaging, how-
ever, we would not expect agreement between these
stress estimates and those made on the basis of point
measurements.

As a consequence of this approach we are able to
show how instantaneous bottom-stress values depend
upon a time-varying blend of contributions from
the different terms in the momentum balance. In
particular for this estuary a combination of the
second-order inertial and convective-acceleration
terms causes an asymmetry in the ebb and flood
bottom stress. Under the conditions described the
use of a constant drag coefficient with a depth-
. averaged velocity is an inaccurate way of param-
eterizing bottom stress.
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