On the Green function of Sturm-Liouville differential equation with normal operator coefficient

Serpil Öztürk Uslu and Mehmet Bayramoğlu

Abstract

Let H be a separable Hilbert space. In this work, we will study the Green function of the boundary value problem in $X=L_{2}(0, \infty ; H)$ which is formed by Sturm-Liouville differential equation $$
-y^{\prime \prime}+Q(x) y+\mu y=0 \quad, \quad 0 \leq x<\infty
$$

with the boundary condition

$$
y^{\prime}(0)-h y(0)=0
$$

where h is a complex number, $\mu>0$ is a real number and, for each value of x in $[0 ; \infty), Q(x)$ is the normal operator in H.
M.S.C. 2000: 34L05, 47A10.

Key words: Hilbert space, self-adjoint, normal operator, resolvent, spectrum.

1 Introduction

Let $Q(x)$ be the normal operator which is a transformation for each value $x \in[0, \infty)$. Assume that

1. D of $Q(x)$ is independent from x and $\bar{D}=H$, where \bar{D} represents closure of D in H.
2. The set of the regular points of $Q(x)$ is

$$
\Lambda=\left\{|\arg \lambda-\pi|<\epsilon_{0}, \quad 0<\epsilon_{0}<\pi, \quad \epsilon_{0} \text { is constant }\right\}
$$

3. For all $x \in[0, \infty)$, let $Q^{-1}(x)$ be a completely continous operator in H.
4. Let

$$
\left\|[Q(x)-Q(\xi)] Q^{-a}(x)\right\| \leq \quad c|x-\xi|, \quad c=\text { constant and } \quad 0<a<\frac{3}{2}
$$

where $|x-\xi| \leq 1$.

[^0]5. Let
$$
\left\|Q(\xi) e^{\frac{-1}{2}|x-\xi| Q^{\frac{1}{2}}(x)}\right\|<B, \quad B=\mathrm{constant}
$$
where $|x-\xi|>1$.
6. Let $\left|\alpha_{1}(x)\right| \leq\left|\alpha_{2}(x)\right| \leq \cdots \leq\left|\alpha_{n}(x)\right| \leq \cdots$ be the eigenvalues of $Q(x)$ in H for each value of x. Let $\sum_{i=1}^{\infty} \frac{1}{\left|\alpha_{i}(x)\right|^{3 / 2}}$ be a convergent series and its sum be $F(x) \in L_{1}(0, \infty)$, i.e. we have
$$
\int_{0}^{\infty} F(x) d x<\infty .
$$

In this work, we obtain the Green function of the following boundary value problem in $L_{2}(0, \infty ; H)$:

$$
\begin{gather*}
-y^{\prime \prime}+Q(x) y+\mu y=0, \quad 0 \leq x<\infty, \tag{1.1}\\
y^{\prime}(0)-h y(0)=0 \tag{1.2}
\end{gather*}
$$

where h is a fixed complex number and $\mu>0$ is a real number.
The Green function of Sturm-Liouville In [8], we see, for the first time, the asymptotic behaviour of the eigenvalues of our problem described above. Then, the Green function of Sturm-Liouville differential equation, having unbounded self-adjoint operator coefficient have been studied in [9].

This work have been developped and generalized for many other operator equations (see $[1,3,7,5]$).
The Green function of (1.1)-(1.2) above was examined in [4] while $Q *(x)=Q(x) \geq I$ (I is unit operator in H).
The Green function $G(x, \xi ; \mu)$ of (1.1)-(1.2) is defined as a linear bounded operator function which is a transformation in H at each value x and $\xi \in[0, \infty)$. Assume that we have:

1. $G(x, \xi, \mu)$ is a continous operator function of x and ξ in $[x, \xi]=[0, \infty)$.
2. When $x \neq \xi, \frac{\partial G(x, \xi, \mu)}{\partial \xi}$ is a continous function of (x, ξ) and

$$
\frac{\partial G(x, x+0, \mu)}{\partial \xi}-\frac{\partial G(x, x-0, \mu)}{\partial \xi}=-I
$$

where I is the identity operator on H.
When $x \neq \xi$, we have:
3.

$$
-\frac{\partial^{2} G(x, \xi ; \mu)}{\partial \xi^{2}}+Q(x) G(x, \xi ; \mu)+\mu G(x, \xi ; \mu)=0 .
$$

4.

$$
\frac{\partial G(x, 0 ; \mu)}{\partial \xi}-h G(x, 0 ; \mu)=0 .
$$

2 An Integral Equation for the Green Function

In this section, we are looking for $G(x, \xi ; \mu)$ as the solution of the following integral equation by using the parametrix method:

$$
\begin{equation*}
G(x, \xi ; \mu)=g(x, \xi ; \mu)-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] G(s, \xi ; \mu) d s \tag{2.1}
\end{equation*}
$$

Here $g(x, \xi ; \mu)$ is

$$
g(x, \xi ; \mu)=\frac{\chi^{-1}}{2}\left[e^{-\chi|x-\xi|}-(h-\chi)(h+\chi)^{-1} e^{-\chi(x+\xi)}\right]
$$

and χ is

$$
\chi=[Q(x)+\mu I]^{1 / 2}
$$

We want to show that (2.1) has the unique solution and this solution is the Green function of (1.1)-(1.2) above. For this, we consider the equation given in (2.1) in X_{2} defined below.
\mathbf{X}_{2} Space :
Let $A(x, \eta)$ be a Hilbert-Schmidt (H-S) operator function defined on $\mathrm{H}(0 \leq x, \eta<$ $\infty)$ such that

$$
\int_{0}^{\infty} d x\left\{\int_{0}^{\infty}\|A(x, \eta)\|_{2}^{2} d \eta\right\}<\infty
$$

Here, the norm is defined by

$$
\|A\|_{X_{2}}=\left(\int_{0}^{\infty} d x \int_{0}^{\infty}\|A(x, \eta)\|_{2}^{2} d \eta\right)^{\frac{1}{2}}
$$

If $g(x, \xi ; \mu) \in X_{2}$ and N is a contraction operator in X_{2} which is defined by

$$
N G(x, \xi ; \mu)=\int_{0}^{\infty} g(x, s, \mu)[Q(s)-Q(x)] G(s, \xi ; \mu) d s
$$

then the solution of the equation given in (2.1) exists and unique. Consider the spaces X_{1}^{p}, X_{2}^{p} and $X_{4}^{p} \quad(p<0 ; p>0)$ whose elements are the operator functions $A(x, \xi)$ and

$$
\begin{aligned}
\|A(x, s)\|_{X_{1}^{p}}^{2} & =\int_{0}^{\infty} d x\left\{\int_{0}^{\infty}\left\|A(x, s) Q^{p}(s)\right\|^{2} d s\right\} \\
\|A(x, s)\|_{X_{2}^{p}}^{2} & =\int_{0}^{\infty} d x\left\{\int_{0}^{\infty}\left\|A(x, s) Q^{p}(s)\right\|_{2}^{2} d s\right\} \\
\|A(x, s)\|_{X_{4}^{p}} & =\sup _{0 \leq x<\infty} \int_{0}^{\infty}\left\|A(x, s) Q^{p}(s)\right\| d s
\end{aligned}
$$

respectively.
These spaces are defined by B.M. Levitan in [9] in which he shows that they are all Banach spaces.

By using [9], we can prove the following lemmas:

Lemma 2.1 If $Q(x)$ satisfies the (1-6) conditions above then N is a contraction operator in X_{1} and X_{2} both for sufficiently large $\mu>0$.

Lemma 2.2 Let $Q(x)$ be a operator function satisfying (1) and (3) above and, in addition, we have

$$
\left\|Q^{-1 / 2}(x) Q^{1 / 2}(\xi)\right\| \leq c
$$

where $|x-\xi| \leq 1$.
In this case, $g(x, \xi ; \mu)$ belongs to $X_{4}^{(1 / 2)}$ i.e. we have

$$
\sup _{0 \leq x<\infty} \int_{0}^{\infty}\left\|g(x, \xi ; \mu) Q^{1 / 2}(\xi)\right\| d \xi<\infty
$$

Lemma 2.3 Let $Q(x)$ be a operator function satisfying (1) and (3) above and, in addition, we have

$$
\left\|Q^{1 / 2}(x) Q^{-1 / 2}(s)\right\| \leq c
$$

where $|x-s| \leq 1$.
In this case, we have

$$
\frac{\partial^{2} g(x, \xi ; \mu)}{\partial s^{2}} \in X_{4}^{(-1 / 2)}, \quad x \neq s
$$

i.e. we have

$$
\sup _{0 \leq x<\infty} \int_{0}^{\infty}\left\|\frac{\partial^{2} g}{\partial s^{2}} Q^{-1 / 2}(s)\right\| d s<\infty
$$

2.1 First Derivative of the Green Function

Consider the formal derivative of (2.1) according to ξ

$$
\frac{\partial G(x, \xi ; \mu)}{\partial \xi}=\frac{\partial g(x, \xi ; \mu)}{\partial \xi}-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial G(s, \xi ; \mu)}{\partial \xi} d s
$$

Now consider the following equation in the Banach space $X_{3}^{(p)},(p \geq 1)$,

$$
\begin{equation*}
K(x, \xi ; \mu)=\frac{\partial g(x, \xi ; \mu)}{\partial \xi}-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] K(s, \xi ; \mu) d s \tag{2.1.1}
\end{equation*}
$$

$\frac{\partial g(x, \xi ; \mu)}{\partial \xi} \in X_{3}^{(p)}$, i.e. we have

$$
\sup _{0 \leq x<\infty} \int_{0}^{\infty}\left\|\frac{\partial g(x, \xi ; \mu)}{\partial \xi}\right\|^{(p)} d \xi<\infty
$$

So, $K(x, \xi ; \mu) \in X_{3}^{(p)}$ and, in particular it is an element of $X_{3}^{(1)} \equiv X_{3}$.

Here,

$$
\frac{\partial g(x, \xi ; \mu)}{\partial \xi}= \begin{cases}\frac{-1}{2} e^{-\chi(\xi-x)}+\frac{1}{2}(h+\chi)^{-1}(h-\chi) e^{-\chi(x+\xi)}, & x<\xi \tag{2.1.2}\\ \frac{1}{2} e^{-\chi(x-\xi)}+\frac{1}{2}(h+\chi)^{-1}(h-\chi) e^{-\chi(x+\xi)}, & x>\xi\end{cases}
$$

Assume that $\xi<x$ (note that we can do the same process for $\xi>x$). The integration of (2.1.1) gives us

$$
\begin{equation*}
\int_{\infty}^{\xi} K(x, \xi ; \mu) d \xi=g(x, \xi ; \mu)-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \int_{\infty}^{\xi} K(s, \xi ; \mu) d s d \xi \tag{2.1.3}
\end{equation*}
$$

This is same as the equation (2.1) and we have

$$
\int_{\infty}^{\xi} K(s, \xi ; \mu) d \xi=G(x, \xi ; \mu)
$$

since (2.1) has the unique solution.
Now, we will show that the operator function $K(x, \xi ; \mu)$ is continous with respect to $\xi \neq x$,

$$
\|K(x, \xi+h ; \mu)-K(x, \xi ; \mu)\| \longrightarrow 0
$$

when $h \longrightarrow 0$.
For this reason, we write the equation (2.1.1) as below:

$$
\begin{align*}
K(x, \xi ; \mu) & -\frac{\partial g(x, \xi ; \mu)}{\partial \xi}=-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial g(s, \xi ; \mu)}{\partial \xi} d s- \tag{2.1.4}\\
& -\int_{0}^{\infty}\{g(x, s ; \mu)[Q(s)-Q(x)]\}\left\{K(s, \xi ; \mu)-\frac{\partial g(s, \xi ; \mu)}{\partial \xi}\right\} d s
\end{align*}
$$

Let

$$
L(x, \xi ; \mu)=K(x, \xi ; \mu)-\frac{\partial g(x, \xi ; \mu)}{\partial \xi}
$$

and

$$
l(x, \xi ; \mu)=\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial g(s, \xi ; \mu)}{\partial \xi} d s
$$

Hence (2.1.4) becomes

$$
\begin{equation*}
L(x, \xi ; \mu)=l(x, \xi ; \mu)-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] L(s, \xi ; \mu) d s \tag{2.1.5}
\end{equation*}
$$

If we denote

$$
\Delta L(x, \xi ; \mu)=L(x, \xi+h ; \mu)-L(x, \xi ; \mu)
$$

and

$$
\Delta l(x, \xi ; \mu)=l(x, \xi+h ; \mu)-l(x, \xi ; \mu)
$$

then, by (2.1.5), we obtain

$$
\begin{equation*}
\Delta L=\Delta l-N(\Delta L) . \tag{2.1.6}
\end{equation*}
$$

We study the equation (2.1.6) in the space X_{5}. We know from [9] that X_{5} is Banach space of operator functions $A(x, \xi),(0 \leq x ; \xi<\infty)$, defined on H with

$$
\|A(x, \xi)\|_{X_{5}}=\sup _{0 \leq x<\infty} \sup _{0 \leq \xi<\infty}\|A(x, \xi)\|_{H}
$$

As in Lemma 2.1, it can be seen that N is a contraction operator for sufficiently large $\mu>0$ in X_{5}.

According to this, $(I+N)^{-1}$ exist and is bounded in X_{5}. Let $\left\|(I+N)^{-1}\right\|_{X_{5}}=A$. In this case, we have

$$
\begin{equation*}
\|\Delta L\|_{X_{5}} \leq A\|\Delta l\|_{X_{5}} . \tag{2.1.7}
\end{equation*}
$$

Lemma 2.4 For arbitrary $\epsilon>0$, when $|h|<t$ there exists $\delta>0$ such that

$$
\begin{equation*}
\|L(x, \xi+h ; \mu)-L(x, \xi ; \mu)\|_{X_{5}}<\epsilon \tag{2.1.8}
\end{equation*}
$$

when $|h|<t$.
So, the operator function $K(x, \xi ; \mu)-\frac{\partial g(x, \xi ; \mu)}{\partial \xi}$ is continous with respect to ξ. Moreover,
$K(x, \xi ; \mu)=\frac{\partial G(x, \xi ; \mu)}{\partial \xi}$ is continous for $\xi \neq x$. Let us see that $\frac{\partial g}{\partial \xi}$ is continous with respect to ξ when $\xi \neq x$.

$$
\frac{\partial g(x, \xi ; \mu)}{\partial \xi}= \begin{cases}\frac{-1}{2} e^{-\chi(\xi-x)}+\frac{1}{2}(h+\chi)^{-1}(h-\chi) e^{-\chi(x+\xi)}, & x<\xi \\ \frac{1}{2} e^{-\chi(x-\xi)}+\frac{1}{2}(h+\chi)^{-1}(h-\chi) e^{-\chi(x+\xi)}, & x>\xi\end{cases}
$$

Let $\xi<x$. In this case, we have

$$
\frac{\partial g}{\partial \xi}=\frac{1}{2} e^{-\chi(x-\xi)}+\frac{1}{2}(h+\chi)^{-1}(h-\chi) e^{-\chi(x+\xi)} .
$$

Put $x-\xi=t$. Assume that h is a smaller number. We can show that

$$
\left\|\frac{\partial g(x, \xi+h ; \mu)}{\partial \xi}-\frac{\partial g(x, \xi ; \mu)}{\partial \xi}\right\| \longrightarrow 0
$$

when $h \longrightarrow 0$. With respect to the spectral expansion formula, we can write

$$
\begin{aligned}
\left\|e^{-\chi(t-h)}-e^{-\chi t}\right\|_{H} & =\sup _{\|f\|=1}\left|\int_{\sigma}\left(e^{-\sqrt{\lambda+\mu(t-h)}}-e^{-\sqrt{\lambda+\mu t}}\right) d\left(E_{\lambda} f, f\right)\right| \leq \\
& \leq \sup _{\|f\|=1} \int_{\sigma}\left|\left(e^{-\sqrt{\lambda+\mu(t-h)}}-e^{-\sqrt{\lambda+\mu t}}\right)\right| d\left(E_{\lambda} f, f\right) \\
& =\sup _{\|f\|=1}\left(\int_{\cap \cap K_{R}}\left|\left(e^{-\sqrt{\lambda+\mu(t-h)}}-e^{-\sqrt{\lambda+\mu t}}\right)\right|\right) d\left(E_{\lambda} f, f\right)+ \\
& +\int_{\sigma \cap K_{R}^{\prime}}\left|\left(e^{-\sqrt{\lambda+\mu(t-h)}}-e^{-\sqrt{\lambda+\mu} t}\right)\right| d\left(E_{\lambda} f, f\right) \\
& =I_{1}+I_{2}
\end{aligned}
$$

Here, K_{R} is a circle with center at origin and radius R, K_{R}^{\prime} is the exterior of the circle K_{R} and $E_{\lambda}=E_{\lambda}(x)$ is a resolution of the identity corresponding to $Q(x)$ [12].
Let $\epsilon>0$ be an arbitrary positive number. Assume that $|h|<t$. We can choose a sufficiently large R for $|\lambda+\mu|>R$. We have

$$
\left|e^{-\sqrt{\lambda+\mu}(t-h)}-e^{-\sqrt{\lambda+\mu} t}\right|<\frac{\epsilon}{2}
$$

In this case, we have

$$
I_{2}<\frac{\epsilon}{2}
$$

Now, let R be in I_{2}. We can choose a sufficiently small $\delta>0$ such that $|h|<\delta$ for $|\lambda+\mu|<R$

$$
\left|e^{-\sqrt{\lambda+\mu(t-h)}}-e^{-\sqrt{\lambda+\mu t}}\right|=\left|e^{-\sqrt{\lambda+\mu t}}\left(e^{-\sqrt{\lambda+\mu h}}-1\right)\right|<\frac{\epsilon}{2}
$$

Similarly, we have

$$
I_{1}<\frac{\epsilon}{2}
$$

Therefore, there are $\delta>0$ such that

$$
\left\|e^{-\chi(t-h)}-e^{-\chi t}\right\|_{H}<\epsilon
$$

when $|h|<\delta$. Recall that we can repeat the same process for the case $\xi>x$.
We can show that $\frac{\partial g}{\partial \xi}$ has a jump at the $x=\xi$:
Since, in (2.1.2), the second terms are continous with respect to ξ we need to see the first terms. Assume that $h>0$. We have

$$
\begin{aligned}
&\left.\frac{\partial g}{\partial \xi}\right|_{\xi=x+h}=-\frac{1}{2} e^{-h \chi},\left.\quad \frac{\partial g}{\partial \xi}\right|_{\xi=x-h} \\
& {\left[\left.\frac{\partial g}{\partial \xi}\right|_{\xi=x+h}\right.}\left.+\frac{1}{2} I\right]^{-h \chi} \\
&\|\alpha(x, \xi, h)\|=\frac{1}{2}\left(e^{-h \chi}-I\right) \chi^{-2}=\alpha(x, \xi, h) \\
&=\sup _{\|f\|=1}\left|\int_{\sigma}-\frac{1}{2} \frac{1}{\lambda+\mu}\left[e^{-h \sqrt{\lambda+\mu}}-1\right] d\left(E_{\lambda} f, f\right)\right| \\
& \leq \sup _{\|f\|=1} \int_{\sigma}\left|\frac{1}{\lambda+\mu}\left[e^{-h \sqrt{\lambda+\mu}}-1\right]\right| d\left(E_{\lambda} f, f\right) \\
&=\sup _{\|f\|=1} \int_{\sigma \cap K_{R}}\left|\frac{1}{\lambda+\mu}\left[e^{-h \sqrt{\lambda+\mu}}-1\right]\right| d\left(E_{\lambda} f, f\right)+ \\
&+\sup _{\|f\|=1} \int_{\sigma \cap K_{R}^{\prime}}\left|\frac{1}{\lambda+\mu}\left[e^{-h \sqrt{\lambda+\mu}}-1\right]\right| d\left(E_{\lambda} f, f\right) \\
&=I_{1}+I_{2}
\end{aligned}
$$

For $\mathbf{I}_{\mathbf{2}}$: Let $\epsilon>0$ be an arbitrary number. We can choose R such that we have $\lambda \in \sigma \cap K_{R}^{\prime}$ with $\left|\frac{1}{\lambda+\mu}\right|<\frac{\epsilon}{4}$. In this case, $I_{2}<\frac{\epsilon}{2}$.
For \mathbf{I}_{1} : Let R be as in I_{2}. We can choose $\delta>0$ and $h<\delta$ such that $\lambda \in \sigma \cap K_{R}$ and $\left|\frac{1}{\lambda+\mu}\left(e^{-h \sqrt{\lambda+\mu}}-1\right)\right|<\frac{\epsilon}{2}$. In this case, $I_{1}<\frac{\epsilon}{2}$.

So, for $\epsilon>0$, there exists $\delta>0$ such that $h<\delta$ such that $\|\alpha(x, \xi ; \mu)\|_{H}<\epsilon$. Thus, we obtain

$$
\left\|\left[\left.\frac{\partial g(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=x+h}-\frac{1}{2} I\right] \chi^{-2}\right\|_{H} \overrightarrow{h \rightarrow 0} 0
$$

By the same way, we can see that

$$
\left\|\left[\left.\frac{\partial g(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=x-h}+\frac{1}{2} I\right] \chi^{-2}\right\|_{H} \xrightarrow[h \rightarrow 0]{ } 0
$$

Hence, we have

$$
\begin{aligned}
& \left\|\left[\left.\frac{\partial g(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=x+h}-\left.\frac{\partial g(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=x-h}+I\right] \chi^{-2}\right\|_{H}= \\
& =\left\|\left[\left.\frac{-\partial g(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=x+h}-\frac{1}{2} I\right] \chi^{-2}+\left[\left.\frac{\partial g(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=x-h}+\frac{1}{2} I\right] \chi^{-2}\right\|_{H} \leq \\
& \leq\left\|\left[\left.\frac{\partial g(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=x+h}-\frac{1}{2} I\right] \chi^{-2}\right\|_{H} \\
& +\left\|\left[\left.\frac{-\partial g(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=x-h}+\frac{1}{2} I\right] \chi^{-2}\right\|_{H} \overrightarrow{h \rightarrow 0} 0
\end{aligned}
$$

If we consider the remaining terms in $\frac{\partial g}{\partial \xi}$ which are continous with respect to ξ then we have

$$
\left\|\left[\left.\frac{\partial g(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=x+h}-\left.\frac{\partial g(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=x-h}+I\right] \chi^{-2}\right\|_{H} \overrightarrow{h \rightarrow 0} 0
$$

Since, $\frac{\partial G}{\partial \xi}$ has the same jump as $\frac{\partial g}{\partial \xi}$ for $\xi=x$ the operator function $\frac{\partial G}{\partial \xi}-\frac{\partial g}{\partial \xi}$ is continous for $\xi=x$.

Thus, we obtain

$$
\begin{equation*}
\left\|\left[\left.\frac{\partial G(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=x+h}-\left.\frac{\partial G(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=x-h}+I\right] \chi^{-2}\right\|_{H} \xrightarrow[h \rightarrow 0]{ } 0 \tag{2.1.9}
\end{equation*}
$$

Let $f \in D=D[Q(x)]$. Obviously, f belongs to the domain of definition of the operator $[Q(x)+\mu I]$. This gives $[Q(x)+\mu I] f=g$. Then we obtain

$$
\begin{aligned}
& \left\|\left[\left.\frac{\partial G}{\partial \xi}\right|_{\xi=x+h}-\left.\frac{\partial G}{\partial \xi}\right|_{\xi=x-h}+I\right] f\right\| \quad\left\|\left[\left.\frac{\partial G}{\partial \xi}\right|_{\xi=x+h}-\left.\frac{\partial G}{\partial \xi}\right|_{\xi=x-h}+I\right] \chi^{-2}\right\|_{H}\|g(x)\|_{H}< \\
\leq & \epsilon\|g(x)\|_{H}
\end{aligned}
$$

for small values of h.
Furthermore, we have

$$
\left[G_{\xi}^{\prime}(x, x+0, \mu)-G_{\xi}^{\prime}(x, x-0, \mu)\right] f=-f
$$

for $\xi=x$.
Thus, we obtain that $G(x, \xi ; \mu)$ has a jump at $\xi=x$ and this jump equals to $-I$, that is,

$$
\left[G_{\xi}^{\prime}(x, x+0 ; \mu)-G_{\xi}^{\prime}(x, x-0 ; \mu)\right]=-I
$$

2.2 Second Derivative of the Green Function

Consider

$$
\begin{equation*}
\frac{\partial G(x, \xi ; \mu)}{\partial \xi}=\frac{\partial g(x, \xi ; \mu)}{\partial \xi}-\int_{0}^{\infty} g(x, s, \mu)[Q(s)-Q(x)] \frac{\partial G(s, \xi ; \mu)}{\partial \xi} d s \tag{2.2.1}
\end{equation*}
$$

Let us write (2.2.1) as

$$
\begin{align*}
\frac{\partial G}{\partial \xi}-\frac{\partial g}{\partial \xi}= & -\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial g(s, \xi ; \mu)}{\partial \xi} d s- \tag{2.2.2}\\
& -\int_{0}^{\infty}\{g(x, s ; \mu)[Q(s)-Q(x)]\}\left[\frac{\partial G}{\partial \xi}-\frac{\partial g}{\partial \xi}\right] d s
\end{align*}
$$

Let

$$
L(x, \xi ; \mu)=\frac{\partial G}{\partial \xi}-\frac{\partial g}{\partial \xi}
$$

and

$$
l(x, \xi ; \mu)=-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial g(s, \xi ; \mu)}{\partial \xi} d s
$$

In this case, (2.2.2) becomes

$$
L(x, \xi ; \mu)=l(x, \xi ; \mu)-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] L(s, \xi ; \mu) d s
$$

Differentiating formally each side of this equation with respect to ξ, we obtain

$$
\frac{\partial L(x, \xi ; \mu)}{\partial \xi}=\frac{\partial l(x, \xi ; \mu)}{\partial \xi}-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial L}{\partial \xi} d s
$$

By using the fact that

$$
\frac{\partial g(x, x+0 ; \mu)}{\partial \xi}-\frac{\partial g(x, x-0 ; \mu)}{\partial \xi}=-I
$$

and

$$
\begin{aligned}
l(x, s ; \mu) & =\int_{0}^{\xi-0} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial g(s, \xi ; \mu)}{\partial \xi} d s- \\
& -\int_{\xi+0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial g(s, \xi ; \mu)}{\partial \xi} d s
\end{aligned}
$$

we obtain

$$
\begin{gathered}
\frac{\partial l}{\partial \xi}=-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial^{2} g(s, \xi ; \mu)}{\partial \xi^{2}} d s+ \\
+\quad g(x, \xi ; \mu)[Q(\xi)-Q(x)]\left\{\frac{\partial g(\xi+0, \xi ; \mu)}{\partial \xi}-\frac{\partial g(\xi-0, \xi ; \mu)}{\partial \xi}\right\} . \\
\frac{\partial l}{\partial \xi}=-g(x, \xi ; \mu)[Q(\xi)-Q(x)]-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial^{2} g(s, \xi ; \mu)}{\partial \xi^{2}} d s \\
\frac{\partial l}{\partial \xi}=l_{1}(x, \xi ; \mu) .
\end{gathered}
$$

Lemma 2.5 If the operator function $Q(x)$ satisfies the conditions of Lemma 2.1 then N is a contraction operator in $X_{1}^{(s)}, X_{2}^{(s)}$ and $X_{4}^{(s)}$ for large values of $\mu>0$.

Since there is a unique solution of

$$
\begin{equation*}
M(x, \xi ; \mu)=l_{1}(x, \xi ; \mu)-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] M(s, \xi ; \mu) d s \tag{2.2.3}
\end{equation*}
$$

and this solution belongs to $X_{4}^{(-1 / 2)}, l_{1}$ belongs to $X_{4}^{(-1 / 2)}$ according to Lemma 4.1. If $f \in D\{Q(x)\}$ is a solution of (2.2.3) we can show that f satisfies

$$
\frac{\partial L}{\partial \xi}(f)=M(f) \quad(s \neq \xi)
$$

Let $f \in D\{Q(x)\}=D$. Then, (2.2.3) becomes

$$
M(f)=l_{1}(f)-\int_{0}^{\infty} g[Q(s)-Q(x)] M(s, \xi ; \mu)(f) d s
$$

The integration from ξ_{0} to ξ

$$
\int_{\xi_{0}}^{\xi} M(f) d \xi=\int_{\xi_{0}}^{\xi} l_{1}(f) d \xi-\int_{0}^{\infty} g[Q(s)-Q(x)]\left(\int_{\xi_{0}}^{\xi} M(s, \xi ; \mu)(f) d \xi\right) d s
$$

gives

$$
\begin{align*}
& {\left[L(x, \xi ; \mu)-L\left(x, \xi_{0} ; \mu\right)\right]=\left[l(x, \xi ; \mu)-l\left(x, \xi_{0} ; \mu\right)\right] f-} \tag{2.2.4}\\
& \quad-\int_{0}^{\infty} g[Q(s)-Q(x)]\left[L(s, \xi ; \mu)-L\left(s, \xi_{0} ; \mu\right)\right] f d s
\end{align*}
$$

If we show

$$
\int_{\xi_{0}}^{\xi} l_{1}(x, \xi ; \mu)(f) d \xi=\left[l(x, \xi ; \mu)-l\left(x, \xi_{0} ; \mu\right)\right] f
$$

we can obtain the following equation from the uniqueness of the solution of (2.2.4):

$$
\int_{\xi_{0}}^{\xi} M(x, \xi ; \mu)(f) d \xi=\left[L(x, \xi ; \mu)-L\left(x, \xi_{0} ; \mu\right)\right](f)
$$

i.e. we have

$$
\begin{equation*}
M(x, \xi ; \mu)(f)=\frac{\partial L}{\partial \xi}(f) \tag{2.2.5}
\end{equation*}
$$

since

$$
L(x, \xi ; \mu)=\frac{\partial G(x, \xi ; \mu)}{\partial \xi}-\frac{\partial g(x, \xi ; \mu)}{\partial \xi}
$$

Hence, $\frac{\partial^{2} G(s, \xi ; \mu)}{\partial \xi^{2}}$ exists and belongs to $X_{4}^{(-1 / 2)}$ at $s \neq \xi$. So we need to prove (2.2.5). For this, consider

$$
l(x, \xi ; \mu)=-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial g(s, \xi ; \mu)}{\partial \xi} d s
$$

Let us choose arbitrary $\bar{\xi}$ in $\left(\xi_{0}, \xi\right)$. Then $Q^{-1}(\xi) Q(\bar{\xi})$ is bounded operator in H. Indeed, let $\xi>\bar{\xi}$. In this case, we can write $\xi=\bar{\xi}+k+r \quad(k$ integer $0<r<1)$. Assume that $\left\|Q(x) Q^{-1}(\xi)\right\|<c$ when $|x-\xi| \leq 1$. Obviously,

$$
Q^{-1}(\xi) \cdot Q(\bar{\xi})=Q^{-1}(\xi) Q(\xi-1) Q^{-1}(\xi-1) \cdots Q^{-1}(\bar{\xi}+r) Q(\bar{\xi})
$$

Consequently,

$$
\begin{aligned}
& \left\|Q^{-1}(\xi) \cdot Q(\bar{\xi})\right\| \leq \\
\leq \quad & \left\|Q^{-1}(\xi) Q(\xi-1)\right\|\left\|Q^{-1}(\xi-1) Q(\xi-2)\right\| \cdots\left\|Q^{-1}(\bar{\xi}+r) Q\left(\xi_{n}\right)\right\| \leq c
\end{aligned}
$$

This says that $Q^{-1}(\xi) \cdot Q(\bar{\xi})$ is a bounded operator.
Applying l to f

$$
\begin{aligned}
l(x, \xi ; \mu)(f) & =\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial g(s, \xi ; \mu)}{\partial \xi}(f) d s \\
& =\int_{|x-s| \leq 1} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial g(s, \xi ; \mu)}{\partial \xi}(f) d s+ \\
& +\int_{|x-s|>1} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial g(s, \xi ; \mu)}{\partial \xi}(f) d s \\
& =a_{1}+a_{2}
\end{aligned}
$$

Let us examine the $a_{1}(x, \xi ; \mu)$ in two cases [9]:

1) When $|x-\xi|>2$,

$$
|s-\xi| \geq|x-\xi|-|x-s|>1
$$

is the function under the integral and its derivative with respect to ξ is a bounded operator.
2) When $|x-\xi|<2$: Let $f=Q^{-1}(\xi) h, h \in H$. In this case, we have the integral which is itself under integral and its derivative with respect to ξ are bounded operator.

Let us examine $a_{2}(x, \xi ; \mu)$:

$$
a_{2}(x, \xi ; \mu)=\int_{|s-\xi|>1} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial g(s, \xi ; \mu)}{\partial \xi}(f) d s
$$

Here, the function, under the integral, is bounded operator function because of the multiplier $g(x, \xi ; \mu)$ and the condition 5). In addition, $a_{2}(x, \xi ; \mu)$ can be differentiated under the integral sign similiar with bounded operator. This integral is bounded operator when it is derived with respect to ξ.
Indeed, it is clear when $|s-\xi|<\gamma>0$. We take the element f as $f=Q^{-1}(s)\left[Q(s) Q^{-1}(\bar{\xi})\right] Q(\bar{\xi}) f$ for the value of $s-\xi$ which is near zero.
Therefore the operator function, under the integral, can be differentiated with respect to ξ as in bounded operator. We obtain equation (2.2.3) that is the formal derivation written for $\frac{\partial l}{\partial \xi}$.

2.3 The Case that Green Function Satisfies the Third Condition

The derivation of the following equation with respect to ξ

$$
\frac{\partial G}{\partial \xi}=\frac{\partial g(x, \xi ; \mu)}{\partial \xi}-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial G(s, \xi ; \mu)}{\partial \xi} d s
$$

gives

$$
\frac{\partial^{2} G}{\partial \xi^{2}}=G(x, \xi ; \mu)[Q(\xi)+\mu I]
$$

We have

$$
\begin{equation*}
\frac{\partial^{2} G}{\partial \xi^{2}}=g[Q(\xi)+\mu I]-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial^{2} G(s, \xi ; \mu)}{\partial \xi^{2}} d s \tag{2.3.1}
\end{equation*}
$$

For $f \in D$ (D is the definition set of $Q(x)$) we have

$$
\begin{align*}
\frac{\partial^{2} G}{\partial \xi^{2}}(f) & =g[Q(\xi)+\mu I](f)- \tag{2.3.2}\\
& -\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial^{2} G(s, \xi ; \mu)}{\partial \xi^{2}}(f) d s
\end{align*}
$$

Let $[Q(\xi)+\mu I](f)=\alpha$. According to this, (2.3.2) can be rewritten as

$$
\begin{equation*}
\frac{\partial^{2} G}{\partial \xi^{2}}[Q(\xi)+\mu I]^{-1} \alpha=g(x, \xi ; \mu) \alpha- \tag{2.3.3}
\end{equation*}
$$

$$
-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial^{2} G(s, \xi ; \mu)}{\partial \xi^{2}}[Q(\xi)+\mu I]^{-1} \alpha d s
$$

Let us compare (2.3.3) and (2.1). If (2.1) has a unique solution, we obtain

$$
\begin{equation*}
\frac{\partial^{2} G}{\partial \xi^{2}}[Q(\xi)+\mu I]^{-1} \alpha=G(x, \xi ; \mu) \alpha \tag{2.3.4}
\end{equation*}
$$

If $[Q(\xi)+\mu I]^{-1} \alpha=f$ and $\alpha=[Q(\xi)+\mu I] f$ then (2.3.4) can be rewritten as

$$
\frac{\partial^{2} G}{\partial \xi^{2}} f=G(x, \xi ; \mu)[Q(\xi)+\mu I] f
$$

Since the set of the elements f is dense in H for every $\xi \geq 0$, we have (consider $\bar{D}=H$)

$$
-\frac{\partial^{2} G}{\partial \xi^{2}}+G(x, \xi ; \mu)[Q(\xi)+\mu I]=0, \quad(\xi \neq x)
$$

2.4 To Satisfy the Boundary Condition

We will show that $G(x, \xi ; \mu)$ satisfies the boundary condition

$$
\begin{equation*}
\left.\frac{\partial G(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=0}-\left.h G(x, \xi ; \mu)\right|_{\xi=0}=0 \tag{2.4.1}
\end{equation*}
$$

The derivative of the equation

$$
G(x, \xi ; \mu)=g(x, \xi ; \mu)-\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] G(s, \xi ; \mu) d s
$$

at $\xi=0$ is

$$
\begin{align*}
& \left.\frac{\partial G(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=0}=\left.\frac{\partial g(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=0}- \tag{2.4.2}\\
& \quad-\left.\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial G(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=0} d s \\
& \left.h G(x, \xi ; \mu)\right|_{\xi=0}=g(x, \xi ; \mu) h- \tag{2.4.3}\\
& \quad-\left.\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] G(s, \xi ; \mu)\right|_{\xi=0} h d s
\end{align*}
$$

Replace (2.4.2) and (2.4.3) in (2.4.1)

$$
\begin{aligned}
\left.\frac{\partial G(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=0} & -\left.h G(x, \xi ; \mu)\right|_{\xi=0}=\left.\frac{\partial g(x, \xi ; \mu)}{\partial \xi}\right|_{\xi=0}- \\
& -\left.\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial G(s, \xi ; \mu)}{\partial \xi}\right|_{\xi=0} d s- \\
& -g(s, \xi ; \mu) h+ \\
& +\left.\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] h G(s, \xi ; \mu)\right|_{\xi=0} d s
\end{aligned}
$$

This can be rewritten as

$$
\begin{aligned}
\left.\frac{\partial G}{\partial \xi}\right|_{\xi=0}-\left.h G\right|_{\xi=0}= & -\left.\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] \frac{\partial G(s, \xi ; \mu)}{\partial \xi}\right|_{\xi=0} d s+ \\
& +\left.\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)] h G(s, \xi ; \mu)\right|_{\xi=0} d s
\end{aligned}
$$

since $\left.\frac{\partial g}{\partial \xi}\right|_{\xi=0}-\left.h g\right|_{\xi=0}=0$. Thus, we obtain

$$
\begin{aligned}
& {\left[\frac{\partial G}{\partial \xi}-h G\right]_{\xi=0}=} \\
= & -\int_{0}^{\infty} g(x, s ; \mu)[Q(s)-Q(x)]\left[\frac{\partial G(s, \xi ; \mu)}{\partial \xi}-h G(s, \xi ; \mu)\right]_{\xi=0} d s .
\end{aligned}
$$

Since N is a contraction operator the homogenous equation obtained above has only the zero solution. This gives

$$
\frac{\partial G}{\partial \xi}-\left.h G\right|_{\xi=0}=0
$$

If we construct the integral operator in H_{1}

$$
A_{\mu} f=\int_{0}^{\infty} G(x, \xi ; \mu) f(\xi) d \xi, \quad \mu>0
$$

by using the obtained Green function, then A_{μ} is an operator of Hilbert-Schmidt type in H_{1} since

$$
\int_{0}^{\infty} \int_{0}^{\infty}\|G(x, \xi ; \mu)\|_{2}^{2} d x d \xi<\infty
$$

By using the Green function, one can examine the boundary value problem of the non-homegeneous equation

$$
\begin{gathered}
-y^{\prime \prime}+Q(x) y+\mu y=0, \quad f(x) \in L_{2}(0, \infty ; H), \\
y^{\prime}(0)-h y(0)=0 .
\end{gathered}
$$

References

[1] A.A. Abudov, The Green function of differential equation with operator coefficient given in semi-axis, Izv.AN Azerb.SSR, ser. fiz-tekn. imatem, nauk 2 (1981), 10-25.
[2] G.I. Aslanov, About differential equation with operator coefficient in Hilbert spaces, Mat. zametki, t.53, vıp. 3 (1993), 153-155.
[3] M. Bayramoğlu, Asymptotic behaviour of ordinary differential equation with operator coefficient, "Functional Analysis and Its Applications" (Text), Sbornik, Baku: Bilim (1971), 144-166.
[4] M. Bayramoğlu and Z. Oer, The Green function of given Sturm-Liouville equation with operator coefficient given in semi-axis, International Journal of Differential Equations and Applications, 5 (2002), 1, 85-106.
[5] M. Bayramoğlu and S. Kızılbudak, On the Green function of fourth order differential equation with two term given in semi-axis, Intern. Math. Journal, 3 (2003), 11, 1177-1192.
[6] M. Duṣdurov, On the Green function of Sturm-Liouville equation with normal operator coefficient given in semi-axis, Dep. VINITI, No: 3249-82.
[7] E.G. Kleiman, On the Green's function for the Sturm-Liouville equation with a normal operator coefficient, Vestnik Mosk. Univ. 5 (1977), 47-53.
[8] B.M. Levitan and A.G. Kostyucenko, Astymptotic behaviour of eigenvalues of the operator Sturm-Liouville problem, Functional Anal. i Qril. 1 (1967), 1, English translation in Functional Anal. Appl. 1 (1967), 86-96.
[9] B.M. Levitan, Examine the Green Function of Sturm-Liouville problem with operator coefficient, Mat. Sb. 76 (118) (1968), 2, 239-270.
[10] M.O. Otelbayev, Boundedness of the spectrum of Sturm-Liouville operator, AlmaAta, 1990.
[11] I. Stakgold, Green's Functions and Boundary Value Problems, John- Wiley \& Sons, New York, 1998.
[12] K., Yosida, Functional Analysis, Berlin-Göttingen-Hiedelberg: Springer Verlag, 1980.

Authors' addresses:
Serpil Öztürk Uslu
Department of Mathematics, Faculty of Arts and Science, Yıldız Technical University,
Davutpaṣa Campus, 34210 Esenler İstanbul- Turkey, email: uslu@yildiz.edu.tr
Mehmet Bayramoğlu
Department of Engineering of Mathematics Faculty of Chemistry and Metalurgy, Yıldız Technical University Davutpaṣa Campus, 34210 Esenlerİstanbul- Turkey,
email: mbayram@yildiz.edu.tr

[^0]: Applied Sciences, Vol.7, 2005, pp. 161-175.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2005.

