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Abstract. In this paper, we analyse the algebraic immunity of symmetric Boolean functions.
We identify a set of lowest degree annihilators for symmetric functions and propose an efficient
algorithm for computing the algebraic immunity of a symmetric function. The existence of several
symmetric functions with maximum algebraic immunity is proven. In this way, a new class of
function which have good implementation properties and maximum algebraic immunity is found.
We also investigate the existence of symmetric functions with high nonlinearity and reasonable
order of algebraic immunity. Finally, we give suggestions how to use symmetric functions in a
stream cipher.

1 Introdution

Symmetric functions have the property that the function value is determined by the weight of the vector.
Therefore, a symmetric function in n variables can be defined by a vector of length n+1 which represents
the function values of the different weights of the vectors. For this reason, symmetric functions are very
interesting functions in order to obtain low memory in software. Also in hardware implementation,
only a low number of gates is required [15]. Properties such as balancedness and resiliency, propagation
characteristics and nonlinearity are studied in [1]. It is shown that these functions do not behave very
good in general with respect to a combination of the properties nonlinearity, degree, and resiliency, which
are important properties for resisting distinguishing and correlation attacks.
In 2002, several successfull algebraic attacks on stream ciphers were proposed. The success of these
attacks do not mainly depend on the classical properties of nonlinearity or resiliency, but mainly on the
weak behaviour with respect to the property of algebraic immunity. In this paper we study the resistance
against algebraic attacks for the symmetric functions. We identify a set of lowest degree annihilators of
a symmetric function. Since the size of this set is very small in comparison with the general case, the
algorithm for computing the algebraic immunity of a symmetric function becomes much more efficient.
We prove the existence of several symmetric functions with optimal algebraic immunity. The idea is
then to use these functions which have good algebraic immunity in combination with highly nonlinear
functions as building block in the design of a stream cipher.
First, Sect. 2 deals with some background on Boolean functions and more in particular on symmetric
Boolean functions. In Sect. 3, we investigate the algebraic immunity of homogeneous symmetric functions.
Based on the identification of a set of lowest degree annihilators of a symmetric function, we propose
an algorithm for computing the algebraic immunity of symmetric functions in Sect. 4. Sect. 5 presents
the proofs on several symmetric functions which possess maximum algebraic immunity. In Sect. 6, we
investigate the existence of symmetric functions with reasonable AI and better nonlinearity as the sym-
metric functions with maximum AI. Finally, we conclude in Sect. 7 by summerizing the good and bad
properties of symmetric functions when used in a concrete design. We also present some open problems.

2 Background

Let us first recall the basic background on Boolean functions together with some properties of symmetric
Boolean functions which were proven in [13].
Let Fn

2 be the set of all n-tuples of elements in the field F2 (Galois field with two elements), endowed
with the natural vector space structure over F2. An element u = (u0, . . . , un−1) in Fn

2 can be represented
by an integer Z2n belonging to the interval [0, 2n − 1], i.e., u =

∑n−1
i=0 ui2i. We will use both notations

interchangeable in the rest of the paper.
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A Boolean function f on Fn
2 is a mapping from Fn

2 onto F2. It can be uniquely represented by the truth
table (TT) which is the vector of length 2n consisting of its function values. The weight wt(v) of a vector
v ∈ Fn

2 is defined as the number of nonzero positions.
Another unique representation, called the ANF, is a polynomial in F2[x0, . . . , xn−1]/(x2

0−x0, . . . , x
2
n−1−

xn−1).

f(x) =
⊕

(a0,...,an−1)∈Fn
2

h(a0, . . . , an−1)xa0
0 . . . x

an−1
n−1 , h(a) =

∑
x�a

f(x), for any a ∈ Fn
2 ,

where x � a means that xi ≤ ai for all 0 ≤ i ≤ n − 1. The degree of the polynomial determines the
algebraic degree of this function. Basically, the ANF of a function consists of the modulo 2 sum of
polynomials (x0 ⊕ a0 ⊕ 1) · · · (xn−1 ⊕ an−1 ⊕ 1) for all a ∈ Fn

2 such that f(a) = 1. Denote the all-zero
function or vector by 0 and the all-one function or vector by 1.
The Walsh transform Wf of a function f on Fn

2 is defined as the real valued transformation

Wf (w) =
∑
x∈Fn

2

(−1)f(x)+w·x .

From the Walsh transform, we derive the property of nonlinearity Nf = 2n−1− 1
2 maxw∈Fn

2
Wf (w), which

represents the smallest distance between a Boolean function and any affine function.
As response on the algebraic attacks, Meier et al. [10] introduced the concept of algebraic immunity (AI)
for a Boolean function f on Fn

2 . This measure defines the lowest degree of a non-zero function g from Fn
2

into F2 for which f · g = 0 or (f ⊕ 1) · g = 0. The function g for which f · g = 0 is called an annihilator
function of f . The set of all annihilators of f is denoted by An(f). The AI is upper bounded by

⌈
n
2

⌉
as

proven in [3].
Symmetric Boolean functions have the property that the function value of all vectors with the same
weight is equal. Consequently, the truth table of the symmetric function on Fn

2 can be replaced by a
vector vf of length n + 1 where the components vf (i) for 0 ≤ i ≤ n represent the function value for
vectors of weight i. The vector vf is called the value vector (VV) of the symmetric function f .
Also the ANF representation for a symmetric function can be replaced by a shorter form [1, Prop. 2],
called the simplified ANF (SANF). Denote the homogeneous symmetric function, which is the func-
tion that contains all terms of degree i for 0 ≤ i ≤ n, by σi. Then, the SANF is a polynomial in
F2[x0, . . . , xn−1]/(x2

0 − x0, . . . , x
2
n−1 − xn−1) with basis elements the homogeneous symmetric functions

σi for 0 ≤ i ≤ n:

f(x) =
n⊕

i=0

λf (i)σi, λf (i) =
∑
k�i

vf (k), for 0 ≤ i ≤ n .

The vector λf = (λf (0), . . . , λf (n)) is called the simplified ANF vector (SANF vector).

3 Algebraic Immunity of Homogeneous Symmetric Boolean Functions

Although the affine equivalence classes with representatives the homogeneous symmetric functions of
degree n−2 and n−3 have rather high distance to low order degree functions (see [8]), it does not mean
that they possess high security against algebraic attacks. Therefore, we will show in this section upper
bounds on the algebraic immunity of σn−2 and σn−3.

Lemma 1. The product of two homogeneous symmetric functions with degree a and b is again a homo-
geneous symmetric function with degree equal to a ∨ b.

Proof. Let f = σaσb. For any 0 ≤ i ≤ n, vf (i) = 1 iff a � i and b � i by Lucas’ theorem [7], or in other
words iff (a ∨ b) � i. Consequently, vσaσb

= vσa∨b
. ut

By applying the previous theorem, we obtain the following factorisation of a homogeneous symmetric
Boolean function.

Theorem 1. Let a = (a0, . . . , an−1) ∈ Fn
2 , then the homogeneous symmetric function σa on Fn

2 can be
factorized in σa = σ2a0 σ2a1 · · ·σ2an−1 .



3

This theorem enables us to immediately derive the following general result on the AI of homogeneous
symmetric functions.

Corollary 1. Let σa be the homogeneous symmetric function with 0 ≤ a ≤ n on Fn
2 where 2j−1 ≤ n < 2j.

Define i ∈ {0, . . . , j− 1} as the smallest integer for which ai 6= 0. Then the AI of σa is less or equal than
2i. An annihilator of degree 2i is given by σ2i ⊕ 1.

Example 1. Consider σ3 on Fn
2 with n ≥ 3. The AI(σ3) = AI(σ1σ2) = 1. Consequently σ1 ⊕ 1 is a

corresponding lowest degree annihilator of degree 1.

Theorem 2. The homogeneous symmetric function σ2j−1 on Fn
2 where 2j−1 ≤ n < 2j−1, can be written

as σ2j−1 = σ2j−1(σn−(2j−1−1) ⊕ 1)(σn−(2j−1−2) ⊕ 1) · · · (σ2j−1−1 ⊕ 1).

Proof. The proof follows immediately from the fact that vσn−c(k) = 0 for all n− 2j−1 +1 ≤ c ≤ 2j−1− 1
and 2j−1 ≤ k ≤ n. ut

Corollary 2. Let 2j−1 ≤ n < 2j − 1. The algebraic immunity of σa with a ≡ 1 mod 2j−1 in Fn
2 is less

or equal than n− (2j−1 − 1). An annihilator of degree equal to n− (2j−1 − 1) is given by σn−(2j−1−1).

Example 2. For 8 ≤ n < 15, we have that

n = 8 : σ8 = σ8(σ1 ⊕ 1) · · · (σ7 ⊕ 1),
n = 9 : σ8 = σ8(σ2 ⊕ 1) · · · (σ7 ⊕ 1),

...
n = 14 : σ8 = σ8(σ7 ⊕ 1).

Note that Corollary 2 can be made stronger by taking also the upper bound of Corollary 1 into account.
Finally, as a direct application of corollaries 2 and 1, we derive an upper bound on the AI of the
symmetric function σd for d = n− 2 and n− 3.

Corollary 3. If n is odd, then the AI of σn−2 is equal to 1. If n = 4k with k ≥ 1, then the AI of σn−2 is
equal to 2. If n = 2i +2 for i ≥ 2, then AI(σn−2) ≤ 3. Finally, if n = 2i+1k +2i +2, then AI(σn−2) ≤ 2i

for k ≥ 1, i ≥ 2.

Corollary 4. If n is even, then the AI of σn−3 is equal to 1. If n = 4k + 1 with k ≥ 1, then the AI
of σn−3 is equal to 2. If n = 2i + 3 for i ≥ 2, then AI(σn−3) ≤ 4. Finally, if n = 2i+1k + 2i + 3, then
AI(σn−3) ≤ 2i for k ≥ 1, i ≥ 2.

Moreover, the set of dimensions in which a homogeneous symmetric function that can reach the maximum
algebraic immunity exists, is very small.

Corollary 5. The only homogeneous symmetric function with maximum algebraic immunity is equal to
σ2j−1 in dimensions n = 2j , 2j−1, 2j−2. For all other dimensions no homogeneous symmetric functions
with maximum AI exist.

Proof. From corollaries 1 and 2, we derive that the homogeneous symmetric function σ2j−1 in dimen-
sion n with 2j−1 < n ≤ 2j is the only function for which the maximum AI can be reached, since
all other homogeneous symmetric functions can be decomposed into the product of homogeneous sym-
metric functions of smaller degree. However, by Theorem 2, we derive that for n = 2j − 3 holds that
σ2j−1 = σ2j−1(σ2j−3−2j−1+1 ⊕ 1) · · · (σ2j−1−1 ⊕ 1). Since 2(2j − 2j−1 − 2) < 2j − 3, this function has
an annihilator of degree strictly less than

⌈
n
2

⌉
. Trivially, the same argument holds for all dimensions

2j−1 + 1 ≤ n ≤ 2j − 3. ut

We will show in Section 5 that these functions have indeed maximum AI.



4

4 Annihilators of Symmetric Functions

We first distinguish a set of annihilators of a symmetric function. Based on this set, we propose an
efficient algorithm for computing the AI of a symmetric Boolean function.
Denote the homogeneous symmetric function of degree i which depends on the j variables {xn−j ,

xn−j+1, . . . , xn−1} with j ≥ i by σj
i . We also use the notation of P l

k to represent the set of polyno-
mials where each polynomial contains all k variables {x0, . . . , xk−1} and consists of the product of at
most l factors where every factor is either the sum of two variables, one variable, or the complement of
one variable. Consequently

⌈
k
2

⌉
≤ l. Note that the variables in the polynomials P l

k play the same role,
which means that changing the indices of the variables do not introduce new polynomials in P l

k. There-
fore, we define the role of the variables {x0, . . . , xk−1} in the polynomials of P l

k as follows. Depending
on l, the first factors involving the first variables (starting from x0, x1, . . .) may consist of one variable,
the complement of one variable or the sum of two variables. The following factors may consist of one
variable and the sum of two variables, while the last factors consist of the sum of two variables.

Example 3. If
⌈

k
2

⌉
= l, only the polynomial (x0 ⊕ x1)(x2 ⊕ x3) · · · (xk−2 ⊕ xk−1) for k even and the

polynomial x0(x1 ⊕ x2)(x3 ⊕ x4) · · · (xk−2 ⊕ xk−1) for k odd belongs to P
d k

2 e
k . If

⌈
k
2

⌉
= l − 1, the

polynomials x0x1(x2⊕x3) · · · (xk−2⊕xk−1), (x0⊕ 1)x1(x2⊕x3) · · · (xk−2⊕xk−1), (x0⊕ 1)(x1⊕ 1)(x2⊕
x3) · · · (xk−2 ⊕ xk−1), (x0 ⊕ x1)(x2 ⊕ x3) · · · (xk−2 ⊕ xk−1), belong to P

d k
2 e+1

k for k even.

The goal of this section is to show that at least one of the lowest degree annihilators with degree strictly
less than

⌈
n
2

⌉
of a symmetric function on Fn

2 is a linear combination of the polynomials of the form for
n even:

σ2
0P

n
2−1

n−2 , σ3
0P

n
2−1

n−3 , . . . , σn−1
0 P

n
2−1

1 , σ0,

σ4
1P

n
2−2

n−4 , . . . , σn−1
1 P

n
2−2

1 , σ1, . . . , σ
n−2
n
2−2P

1
2 , σn−1

n
2−2P

1
1 , σn

2−2, σn
2−1,

and for n odd:

σ1
0P

dn
2 e−1

n−1 , σ2
0P

dn
2 e−1

n−2 , . . . , σn−1
0 P

dn
2 e−1

1 , σ0,

σ3
1P

dn
2 e−2

n−3 , . . . , σn−1
1 P

dn
2 e−2

1 , σ1, . . . , σ
n−2

dn
2 e−2

P 1
2 , σn−1

dn
2 e−2

P 1
1 , σdn

2 e−2, σdn
2 e−1.

Due to the fact that
⌈

k
2

⌉
≤ l, the restrictions of the functions σk for k ∈ {0, . . . ,

⌈
n
2

⌉
− 1} need to be

considered starting from dimension 2k + 2 for n even and dimension 2k + 1 for n odd in order to obtain
annihilators of degree less or equal than

⌈
n
2

⌉
− 1. We will call this set of annihilators ANS . We now give

some examples of such annihilators.

Example 4. Let n = 16, and suppose f is a symmetric Boolean function on Fn
2 with value vector vf

which satisfies vf (i) = 0 for i ∈ {6, 7, 10, 11}. Then the function g(x) = σ9
2x0(x1 ⊕ x2)(x3 ⊕ x4)(x5 ⊕ x6)

represents an annihilator of the function f . This follows from the fact that σ9
2 is equal to 1 only for

vectors in F9
2 with weight equal to 2,3,6,7. The function x0(x1 ⊕ x2)(x3 ⊕ x4)(x5 ⊕ x6) is equal to 1 only

for a subset of vectors in F7
2 with weight 4. Consequently the function g is equal to 1 only for a subset

of vectors of weight 6,7,10,11.
If the value vector in the coordinates 2 and 6 is equal to c where c ∈ {0, 1} for a symmetric function f
in 10 variables, then (x0 ⊕ 1)(σ9

2 ⊕ σ9
3) represents an annihilator with degree 3 of f if c = 0, or f ⊕ 1 if

c = 1.

Annihilators of symmetric functions are equal to 0 for all vectors of certain weight which belong to
the support of the corresponding symmetric function. But the annihilators can be 0 or 1 for vectors
which do not belong to the support of the symmetric function. Therefore, an example of an annihilator
is the one which consists of the product of a symmetric function which is restricted to the last n − k
variables in order to guarantee that the function value is 1 for vectors of the same weight, together with
a polynomial that depends on the other k variables and which is 1 for a subset of vectors with fixed
weight. The polynomials P l

k of the annihilators ANS are constructed in such way that they are equal to
1 only for a subset of vectors which have exactly the same weight. We will prove that the annihilators
in ANS have lowest possible degree by showing that if one of the factors of the polynomial P l

k would
consist of more than 3 variables (in order to decrease the degree), then there also exists an annihilator
of the set ANS whose support is contained in the support of this annihilator and which has smaller or
equal degree. Therefore, we first prove Lemma 2.
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Remark 1. We note that the annihilators of ANS do not determine the complete basis of the ideal
of annihilators with degree strictly less than

⌈
n
2

⌉
of a symmetric function. For instance, the function

x0σ3 on F10
2 is annihilator of all symmetric functions on F10

2 for which vf (4) = vf (8) = 0. But also
the function x0σ

9
3 ∈ANS satisfies this property. Both functions are linearly independent. In general, if

x0σ1, . . . , x0 · · ·xdn
2 e−3σ1, . . . , x0σdn

2 e−2 is annihilator of degree less than
⌈

n
2

⌉
, then also the functions

x0σ
n−1
1 , . . . , x0 · · ·xdn

2 e−3σ
n−dn

2 e+2

1 , . . . , x0σ
n−1

dn
2 e−2

. Also note that the variables of the polynomials P l
k

play the same role in the representation, and that they only depend on the first k variables. This is
possible due to the symmetry of the symmetric function. Since we are only interested in the existence of
at least one annihilator in order to determine the AI of the function, we can restrict us for the search of
annihilators into the set ANS .

Lemma 2. Let r ≥ 3 and n ≥ r − 1. Define Sn
i as the symmetric function on n variables of degree i,

Sn
i =

⊕
0≤k≤i

cS
k σn

k where cS
k ∈ {0, 1} for all 0 ≤ k ≤ i.

Denote the set of weights in the support of Sn
i by VS. Define also S

n−(r−1)
i−(r−1) =

⊕
0≤k≤i cS

k σ
n−(r−1)
k−(r−1) where

σi = 0 for i < 0 and denote its support of the value vector by VS′ . Then

{a + r − 1 : a ∈ VS′} ⊆ {a, a + 2, . . . , a + r − 1 : a ∈ VS} (1)
{a + r : a ∈ VS′} ⊆ {a + 1, a + 3, . . . , a + r : a ∈ VS} (2)

Proof. Note that Equation (2) follows from Equation (1). The theorem is based on the fact that for
k ≥ 1 we have that

{a, a + 2, . . . , a + 2k : a ∈ sup(σ2k+1)} = {a + 2k : a ∈ sup(σ1)}, .

Indeed, both sets contain all odd numbers starting from 2k +1. For the set on the right, this is clear. For
the set on the left, we have to check if there is a gap between two consecutive odd numbers. In general,
we will say that there is a k-gap in between two consecutive elements a, b of the sets defined above if
there are k odd numbers missing between a and b. Let us call a sequence of all zeros, a run. The value
vector of the function σ2k+1 has a run of length 2k + 1. This is the longest run since the period of σ2k+1

is equal to 2dlog2(2k+1)e and 2dlog2(2k+1)e−1 ≤ 2k + 1 together with σ2k+1(2dlog2(2k+1)e) = 1.
More in general, we have that for all l ≥ 1:

L = {a, a + 2, . . . , a + 2l : a ∈ sup(σ2k+1)} ⊇ {a + 2l : a ∈ sup(σ2k+1−2l)} = R.

For l = k, the sets R and L contain all odd elements starting from 2k + 1 as explained above. For
l = k− 1, the set R contains all elements in the support of σ3 shifted over 2k− 2 positions, while the set
L contains all elements on the shifting positions 0, 2, 4, until 2k − 2 of the elements in the support of
σ2k+1. Therefore, the set R has a 1-gap in between two consecutive elements of its set. The set L has at
most a 1-gap in between two consecutive elements. For l = k − 2, the set R contains all elements in the
support of σ5 shifted over 2k−4 positions, while the set L contains all elements on the shifting positions
0, 2, 4, until 2k− 4 of the elements in the support of σ2k+1. Therefore, the sets R and L have at most a
2-gap in between two consecutive elements of its set. This process continues until l = 1. For l = 1, the
set R contains all elements in the support of σ2k−1 shifted over 2 positions, while the set L contains all
elements in the support of σ2k+1 together with the elements on the shifting position 2. Therefore, both
sets have at most a (k − 1)-gap in between two consecutive elements. If there is a gap in between two
consecutive elements of the set L, then it will coincide with a gap in between two consecutive elements
of the set R. This follows from the fact that σ2k+1−2l has degree 2l smaller than σ2k+1 and the function
values of σ2k+1−2l are shifted over 2l positions in the set R.
The same principle can be applied for the support of σ2k versus the support of σ0 and the support of
σ2k−2l versus the support of σ2k for k ≥ 1 and l ≥ 1:

{a, a + 2, . . . , a + 2k : a ∈ sup(σ2k)} = {a + 2k : a ∈ sup(σ0)}
L = {a, a + 2, . . . , a + 2l : a ∈ sup(σ2k)} ⊇ {a + 2l : a ∈ sup(σ2k−2l)} = R.

Finally, we have to show that the theorem also holds for any symmetric function. First note that the
value vector of any symmetric function S of degree d has a run of lenght at most d. Therefore the largest



6

gap in the set L is equal to d − 2l. The value vector of the symmetric function S′ of degree d − 2l has
a run of length at most d − 2l. Since the support of S′ is shifted over 2l positions, the gap of the set
corresponding with S will coincide with the gap of the set corresponding with S′. ut
Example 5. Let n = 10, r = 3. The support of the value vector of the function σ10

0 ⊕σ10
1 ⊕σ10

2 ⊕σ10
5 belongs

to VS = {0, 3, 4, 5, 8}. The support of the value vector of σ8
0 ⊕ σ8

3 belongs to VS′ = {0, 1, 2, 4, 5, 6, 8}.
Following the theorem, it holds that {2, 3, 4, 6, 7, 8, 10} ⊆ {0, 2, 3, 4, 5, 6, 7, 8, 10}.
Directly from Lemma 2, we derive that

Corollary 6. Let r be odd and r ≥ 3, then the support of Sn−r
i (x0 ⊕ · · · ⊕ xr−1) contains the support of

S
n−(2r−1)
i−(r−1) x0(x1 ⊕ x2) · · · (x2r−3 ⊕ x2r−2). The support of Sn−r

i (x0 ⊕ · · · ⊕ xr−1 ⊕ 1) contains the support

of S
n−(2r−1)
i−(r−1) (x0 ⊕ 1)(x1 ⊕ x2) · · · (x2r−3 ⊕ x2r−2). Both have the same degree i + 1.

Let r be even and r ≥ 4, then the support of Sn−r
i (x0⊕· · ·⊕xr−1) contains the support of S

n−(2r−2)
i−(r−2) (x0⊕

x1)(x2⊕x3) · · · (x2r−3⊕x2r−4). Both have the same degree i+1. The support of Sn−r
i (x0⊕· · ·⊕xr−1⊕1)

contains the support of Sn−2r
i−r (x0 ⊕ x1)(x2 ⊕ x3) · · · (x2r−1 ⊕ x2r−2). The latest function has degree i in

comparison with degree i + 1 of the first function. This equation also holds for r = 2.

Consequently, we can conclude that if one or more factors of the polynomial P l
k would consist of the

complement of two terms or more than three terms, then there always exists an annihilator of ANS which
has degree smaller or equal and whose support is contained in the support of that annihilator. Since the
set of homogeneous symmetric functions σi for 0 ≤ i ≤ n represent a basis for generating the whole set
of symmetric functions on Fn

2 , where the weight of the basis elements is the smallest possible, we can
conclude from the structure of the elements in the set ANS that one of the lowest degree annihilators of
a homogeneous symmetric function is again a homogeneous symmetric function.

Corollary 7. Let 2j−1 − 1 ≤ n < 2j and a ∈ Fn
2 . Assume i ∈ {0, . . . , j − 1} be the smallest integer such

that ai 6= 0. The AI of σa is equal to min{2ai , n− (2j−1 − 1) + (aj−1 ⊕ 1)(2j−1 − 1)}.
Let us now compute the number of polynomials in the set ANS .

Theorem 3. The number N of polynomials in ANS is equal to

N = 2
dn

2 e−1∑
i=1

(2i − 1) + 2d
n
2 e − 1 .

Proof. We will compute the number for n even. In a similar way, the result is obtained for n odd. Denote
Rn

k for n even and 0 ≤ k ≤ n
2 −1 as the sum of all elements which have σi

k for i = 2k +2, . . . , n as factor,
i.e., the sum of all elements of the sets P

n
2−k−1

i for i = 0, . . . , n− (2k + 2):

Rn
k =

n−(2k+2)∑
i=0

|P
n
2−k−1

i | .

For i = n−(2k+2), there is exactly one element in P
n
2−k−1

n−(2k+2), namely the polynomial (x1⊕x2) · · · (xn−2k−2⊕
xn−2k−3). Every decrease of i until i = n

2 − k − 1 with 1 gives one more degree of freedom, which leads
to a factor of two more for the possible polynomials in P

n
2−k−1

i . For instance, suppose the polynomial
P

n
2

i − k − 1 has the form (x1 ⊕ x2)(x3 ⊕ x4) · · · at step i. After removing one variable at step i− 1, we
have two more possible elements in P

n
2−k−1

i−1 namely x1(x2⊕x3) · · · and (x1⊕ 1)(x2⊕x3) · · · . Removing
another variable leads again to two more possible polynomials: (x1 ⊕ x2) · · · , x1x2 · · · , (x1 ⊕ 1)x2 · · · ,
(x1 ⊕ 1)(x2 ⊕ 1) · · · . For i < n

2 − k − 1, due to the smaller number of variables, the total number of
polynomials decreases again with a factor of 2. Therefore, we have that for 0 ≤ k ≤ n

2 − 1:

Rn
k = 2

n
2−k−2∑

i=0

2i + 2
n
2−k−1 .

Consequently, the total number of terms belonging to class 2 is equal to

N =

n
2−1∑
k=0

Rn
k = 2

dn
2 e−1∑
i=1

(2i − 1) + 2d
n
2 e − 1 .

ut
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Example 6. For n = 14, we have that

σ0 → (|P 6
12|, . . . , |P 6

0 |) = (1, 2, 4, 8, 16, 32, 64, 32, 16, 8, 4, 2, 1)
σ1 → (|P 5

10|, . . . , |P 5
0 |) = (1, 2, 4, 8, 16, 32, 16, 8, 4, 2, 1)

σ2 → (|P 4
8 |, . . . , |P 5

0 |) = (1, 2, 4, 8, 16, 8, 4, 2, 1)
σ3 → (|P 3

6 |, . . . , |P 3
0 |) = (1, 2, 4, 8, 4, 2, 1)

σ4 → (|P 2
4 |, . . . , |P 2

0 |) = (1, 2, 4, 2, 1)
σ5 → (|P 1

2 |, . . . , |P 1
0 |) = (1, 2, 1)

σ6 → |P 0
0 | = 1

4.1 Algorithm for Computing AI

As shown in the previous section, one of the lowest degree annihilators of degree less than
⌈

n
2

⌉
consists of

a linear combination of N polynomials where N is equal to the number of elements of ANS as determined
in Theorem 3. This number is much smaller than the number of all polynomials of degree less than

⌈
n
2

⌉
which is equal to

∑dn
2 e−1

i=0

(
n
i

)
. Table 1 shows the comparison between both numbers for dimensions

n = 2k with 5 ≤ k ≤ 10. We can conclude that the difference increases with the dimension.

Table 1. Comparison of the size of annihilator-set

n 10 12 14 16 18 20∑dn
2 e−1

i=0

(
n
i

)
386 1 586 6 476 26 333 106 762 431 910

|ANS | 83 177 376 1 005 2 539 3 824

The main goal of the algorithm that computes the AI of a function consists in finding suitable linear
combinations within these terms. Consequently, roughly speaking the complexity for computing the AI
of a symmetric function can be upper bounded by N2.81, where 2.81 corresponds with the exponent for
Gaussian elimination. Moreover, the additional tricks presented in [10] can be used to accelerate the
algorithm even further. Due to the fact that we have much less functions to combine in the algorithm for
computing the AI of a symmetric function, the AI of any arbitrary symmetric function can be computed
for much larger dimensions.
Instead of checking the whole set of 2n+1 symmetric functions for functions with maximum AI, we first
present some properties on the value vector of a symmetric function with maximum AI. These properties
can be immediately derived from the existence of the annihilators ANS .

4.2 Properties

Theorem 4. Let f be a symmetric Boolean function on Fn
2 with value vector vf . If vf (

⌈
n
2

⌉
− 1) =

vf (
⌈

n
2

⌉
+ 1) for all n, or in addition for n odd vf (

⌈
n
2

⌉
− 2) = vf (

⌈
n
2

⌉
), then f can not have maximum

AI.

Proof. One can easily check that the function

(x0 ⊕ x1)(x2 ⊕ x3) · · · (xn−6 ⊕ xn−5)σ4
1 if n is even

(x0 ⊕ x1)(x2 ⊕ x3) · · · (xn−5 ⊕ xn−4)(σ3
1 ⊕ cσ3

0), c ∈ F2, if n is odd

is 1 only in a subset of vectors with weight
⌈

n
2

⌉
− 1 and

⌈
n
2

⌉
+ 1 for n even and n odd with c = 0.

Similar for n odd and c = 1, the function is 1 only in a subset of vectors with weight
⌈

n
2

⌉
− 2 and

⌈
n
2

⌉
.

Consequently, this function represents an annihilator of f or f ⊕ 1. ut

Example 7. For n = 7, consider the functions (x0 ⊕ x1)(x2 ⊕ x3)(x4 ⊕ x5 ⊕ x6) and (x0 ⊕ x1)(x2 ⊕
x3)(x4 ⊕ x5 ⊕ x6 ⊕ 1). The first one has value 1 only in a subset of vectors with weight 3 and 5. The
second function has value 1 only in a subset of vectors with weight 2 and 4. Therefore, all symmetric
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functions or their complements on F7
2 with value vector vf (3) = vf (5) or vf (2) = vf (4) can be annihilated

by these functions. For n = 8, the function (x0 ⊕ x1)(x2 ⊕ x3)(x4 ⊕ x5 ⊕ x6 ⊕ x7) has value 1 only in
vectors of weight 3 and 5.

Theorem 5. Let 2j ≤ n < 2j+1 − 1 where j ≥ 1 and f be a symmetric Boolean function on Fn
2 with

value vector vf . Define for all 0 ≤ i < 2j−1 the set Vi = {l : l ≡ i mod 2j−1 for 0 ≤ l < n}. If there
exists i ∈ {0, . . . , 2j−1 − 1} such that vf (k) = 0 (resp. 1) for all k ∈ Vi, then the AI of f is smaller or
equal than 2j−1 − 1. For n = 2j+1 − 1 where j ≥ 1, the value vector of f should be of the form (a|ac)
where a ∈ Fj

2 in order to reach the maximum AI.

Proof. Let 2j ≤ n < 2j+1−1. If the condition of the theorem is not satisfied, then there exist coefficients
c0, . . . , c2j−1−1 ∈ F2 such that c0σ0 ∨ c1σ1 ∨ c2σ2 · · · ∨ c2j−1−1σ2j−1−1 represents an annihilator of degree
strictly less than 2j−1 of the function f (if value vector is equal to 0 in Vi) or an annihilator of the
function f ⊕ 1 (if value vector is equal to 1 in Vi). Similar for n = 2j+1 − 1. ut

Example 8. For n = 7, the symmetric function σ3 satisfies vσ3(3) = 1, vσ3(7) = 1 and 0 elsewhere.
Consequently, σ3 is annihilator of the symmetric functions f (or their complements) on F7

2 which satisfy
vf (3) = vf (7). Also if for the symmetric function on F7

2 one of the equalities vf (2) = vf (6), vf (1) =
vf (5), vf (0) = vf (4), is satisfied, then no maximum AI can be obtained because σ2 ⊕ σ3, σ1 ⊕ σ3, and
σ0⊕σ1⊕σ2⊕σ3 respectively represent the corresponding annihilators. Therefore, vf = (a0, a1, a2, a3, a0⊕
1, a1⊕1, a2⊕1, a3⊕1) with a0, a1, a2, a3 ∈ {0, 1} for symmetric functions with maximum AI in 7 variables.

Finally, we want to mention that also the condition on the weight of a Boolean function is very strong
for symmetric functions in odd number of variables.

Theorem 6. [4] Let f be a Boolean function on Fn
2 . If wt(f) <

∑d
i=0

(
n
i

)
or 2n − wt(f) <

∑d
i=0

(
n
i

)
,

then the AI of f is less or equal than d.

Consequently, maximum AI can only be obtained for balanced functions if n is odd. A large set of
balanced functions in n odd are the trivially balanced functions, i.e., the functions with value vector
vf (i) = vf (n − i) for all 0 ≤ i ≤

⌊
n
2

⌋
. In fact, the trivially balanced functions form the whole set of

balanced functions for n odd and n ≤ 128, except in dimensions n ∈ {13, 29, 31, 33, 35,41, 47, 61, 63, 73,
97, 103} as shown in [14].

4.3 Experiments

For the computation of the AI, we can use a more efficient algorithm than the algorithm of [10] as
explained above and thus reach higher dimensions.
If n is odd, the condition of trivially balancedness is very powerful. We checked until n ≤ 17 and can
conclude that the only trivially balanced functions with maximum AI have value vector vf such that

vf (i) =
{

0 for i <
⌈

n
2

⌉
1 for i ≥

⌈
n
2

⌉
. (3)

In [12], the complete set of non-trivially balanced functions for n = 13 is described. From this description,
we derive that the AI of the non-trivial balanced functions in 13 variables is less or equal than 3 due to
Theorem 5. Therefore, we conclude that all symmetric functions in n odd and n ≤ 17 with maximum
AI have value vector defined by (3). We will prove in the next section that a symmetric function with
such value vector always has maximal AI for every n odd. Moreover, it can be easily proven that for
n = 2i − 1, 2i + 1, with i ≥ 2, only the trivially balanced functions with value vector determined by (3)
have maximum AI. In these dimensions, the property of Theorem 5 is very powerful.
For n even, we found more symmetric functions with maximum AI. In the next section, we will the-
oretically prove the maximum AI for some of these functions. The theorems will cover all symmetric
functions with maximum AI in dimensions less or equal than 12 and all but one in dimensions 14 and
16. We refer to Appendix for the complete set of symmetric Boolean functions with maximum AI in
dimensions n = 6, 8, 10, 12, 14, 16.
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5 Symmetric Functions with Maximum AI

In this section, we prove the existence of several symmetric functions with maximum AI for all dimensions
n.
Let us first recall that the property of AI is invariant under affine transformation in the input variables,
i.e., f(x) and f(xA⊕ b), where A is an n×n nonsingular matrix and b ∈ Fn

2 will have the same AI. This
follows from the fact that if g is annihilator of f , then g(xA⊕ b) is annihilator of f(xA⊕ b).
However, the AI of two functions f(x) and f(x)⊕ c ·x with c ∈ Fn

2 can differ at most with 1. This can be
easily seen as follows. Let g be annihilator of f such that f(x) ·g(x) = 0, then g(x)(c ·x⊕1) is annihilator
of (f(x)⊕ c · x) because (f(x)⊕ c · x)g(x)(c · x⊕ 1) = f(x)g(x)(c · x⊕ 1)⊕ (c · x)g(x)(c · x⊕ 1) = 0. The
last equality follows from the fact that c · x⊕ 1 is annihilator of c · x.
We now investigate the affine transformations on the input variables which will transform a symmetric
function into a new symmetric function.

Theorem 7. In n even, the only binary linear transformation on the input variables of a symmetric
function that will compute a new symmetric function on Fn

2 is the transformation T = x 7→ xA, where
A is a nonsingular n× n matrix over F2 with the property that the sum of the elements in each row and
column of A is equal to n− 1. In n odd, no such transformations exist.
The transformation (x0, . . . , xn−1) 7→ (x0⊕1, . . . , xn−1⊕1) for all n will map a symmetric function with
value vector vf to a symmetric function with value vector equal to the reverse of this value vector, i.e.,
vr

f .

Proof. A minimal requirement for a binary linear transformation x 7→ xA which maps a symmetric
function onto a symmetric function is that the weight W of the columns and rows of A is equal, since
all variables play the same role in a symmetric function. If W is greater than 1 and smaller than n− 1,
the transformation is not bijective or does not lead to a symmetric function.
Consider n even and W = n − 1. If wt(x) is odd and equal to i, then we show that wt(xA) is equal to
n − i. Denote by V = {i : xi 6= 0}. The coordinates j with j ∈ {0, . . . , n − 1} in the vector xA are 1 if
and only if the elements on the corresponding column j of A are 1 exactly on the i positions of the set
V . (Note that it is not possible that there are i− 2k with k ≥ 1 elements in the columns of A which are
1 and 2k elements which are 0 due to the fact that W = n − 1.) The number of such columns in A is
equal to

(
n−i

n−i−1

)
= n− i for i odd and 1 ≤ i ≤ n− 1.

Now we show that if wt(x) is even and equal to i, then wt(xA) = i. Denote by V = {i : xi 6= 0}. The
coordinates j with j ∈ {0, . . . , n−1} in the vector xA are 1 if and only if the elements on the corresponding
column j of A are 1 on exactly i− 1 positions of the set V . There are

(
i

i−1

)
= i possibilities for this to

occur.
For n odd, the transformation T is not bijective which follows immediately from the fact that vectors of
weight 0 and n are both mapped onto vectors of weight 0.
Finally, since the transformation (x0, . . . , xn−1) 7→ (x0 ⊕ 1, . . . , xn−1 ⊕ 1) maps a vector of weight i onto
a vector of weight n− i, this transformation corresponds to the mapping of vf (i) onto vf (n− i) for every
i with 0 ≤ i ≤ n. ut

We now present three basic classses of symmetric functions with maximum AI.

Class 1

Theorem 8. The symmetric function f in Fn
2 with value vector

vf (i) =
{

0 for i <
⌈

n
2

⌉
1 else (4)

has maximum AI. Let us denote this function f by Fk where k is equal to the threshold
⌈

n
2

⌉
.

Proof. First we show that the function Fdn
2 e ⊕ 1 only has annihilators of degree greater or equal than⌈

n
2

⌉
. The annihilators of Fdn

2 e ⊕ 1 are 0 in all vectors of weight less than
⌈

n
2

⌉
. Consequently, the terms

which appear in the ANF of the function correspond with vectors of weight greater or equal than
⌈

n
2

⌉
by definition of the ANF. Thus, no linear combination can be found in order to decrease the degree of
the resulting function.
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As explained above, Fdn
2 e and Fdn

2 e ⊕ 1 are affine equivalent under affine transformation (complementa-

tion) in the input variables for n odd. For n even, the function Fdn
2 e is affine equivalent with Fdn

2 e+1⊕1.

The proof explained above can also be applied on the annihilators of the function Fdn
2 e+1 ⊕ 1 for n

even since vFdn
2 e⊕1 � vFdn

2 e+1
⊕1. The theorem follows then from the fact that functions which are affine

equivalent in the input variables have the same number of annihilators of fixed degree. ut

Remark 2. The maximum AI of this class of symmetric functions was independently proven in [5] using
a different proof method.

For n even, we prove that also the function which only differs from the threshold function Fdn
2 e in the

function value of the vector (1, . . . , 1) has maximum AI. Denote the zero vector on Fn+1
2 with 1 on

position i by ei for 0 ≤ i ≤ n.

Theorem 9. The symmetric function f with value vector vFdn
2 e

⊕ en in Fn
2 for n even has maximum

AI. The degree of f is equal to n if n 6= 2i for i ≥ 1 and equal to 2i−1 else.

Proof. First in a similar way as Theorem 8, we can prove that f ⊕ 1 can not have annihilators of degree
strictly less than

⌈
n
2

⌉
, since vFdn

2 e⊕1 ⊆ vf⊕1.

Second, the proof that also f has no annihilators of degree less than
⌈

n
2

⌉
, is reduced to the proof on

the affine equivalent function f ′, which is obtained from f after the transformation (x0, . . . , xn−1) 7→
(x0 ⊕ 1, . . . , xn−1 ⊕ 1). The function values of annihilators of f ′ should be 0 for all vectors with weight
1, . . . ,

⌊
n
2

⌋
and can be 0 or 1 for vectors of weight 0 and weight

⌊
n
2

⌋
+ 1, . . . , n. The terms in the ANF

corresponding with vectors of weight
⌊

n
2

⌋
+ 1, . . . , n have degree greater or equal than

⌊
n
2

⌋
+ 1, while

the terms corresponding with the zero vector have degrees from 0 until n. Consequently for n even,
any linear combination of the term corresponding with the zero vector and terms corresponding with
vectors of weight greater or equal than n

2 + 1 will still contain terms of weight n
2 . Therefore, there are

no annihilators of degree strictly less than n
2 for n even. This statement does not hold for n odd, since⌊

n
2

⌋
<

⌈
n
2

⌉
. Moreover, for n odd, the existence of annihilators of degree less than

⌈
n
2

⌉
can also be easily

understood from the fact that the requirement of balancedness is not satisfied. ut

Class 2
For n ≥ 8 and even, we can distinguish another class of symmetric functions with maximum AI. These
symmetric functions differ from Fn

2
in two symmetric positions such that they possess the same weight

as Fn
2
. Denote by si the all zero vector on Fn+1

2 with 1 on positions i, n− i for 0 ≤ i < n
2 .

Theorem 10. Let n = 2k and k ≥ 4. The symmetric function f with value vector vF n
2
⊕ sk−4 on Fn

2

has maximum AI.

Proof. We first show that f ⊕ 1 has no annihilators of degree less than
⌈

n
2

⌉
. Suppose that there exists

an annihilator g of degree less than
⌈

n
2

⌉
of this function:

g(x) = a0 ⊕
⊕

0≤i1≤n−1

ai1xi1 ⊕ · · · ⊕
⊕

0≤i1<···<ik−1≤n−1

ai1,...,ik−1xi1 · · ·xik−1 .

Then, the annihilator g should satisfy that g(a) = 0 for all a ∈ Fn
2 such that wt(a) ∈ {0, 1, 2, . . . , k −

1, k + 4} \ {k − 4}. This property for the weights {0, 1, 2, . . . , k − 1} \ {k − 4} translates in the following
equations for the coefficients of the ANF of g:

a0 = 0
ai1 = 0 for all 0 ≤ i1 ≤ n− 1;

... (5)
ai1,...,ik−5 = 0 for all 1 ≤ i1 < · · · < ik−5 ≤ n;
ai1,...,ik−3 = ai1,...,ik−4 ⊕ · · · ⊕ ai2,...,ik−3 for all 0 ≤ i1 < · · · < ik−3 ≤ n− 1;
ai1,...,ik−2 = ai1,...,ik−4 ⊕ · · · ⊕ ai3,...,ik−2 for all 0 ≤ i1 < · · · < ik−2 ≤ n− 1;
ai1,...,ik−1 = ai1,...,ik−4 ⊕ · · · ⊕ ai4,...,ik−1 for all 0 ≤ i1 < · · · < ik−1 ≤ n− 1.
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For all vectors of weight k + 4 with 1 on positions i1, . . . , ik+4, where 0 ≤ i1 < · · · < ik+4 ≤ n − 1 we
derive the equation

ai1,...,ik−4 ⊕ · · · ⊕ ai9,...,ik+4 = 0 . (6)

This equation is found as follows. The annihilator consists of a linear combination of terms of degree
less than k − 1. By the system of equations (5), these terms are either zero or linear combinations
of terms of degree k − 4. Therefore, we count the number of times a fixed term of degree k − 4 will
appear in the resulting equation. For instance the term ai1,...,ik−4 will appear due to terms of the form
ai1,...,ik−4,x,y,z, ai1,...,ik−4,x,y, ai1,...,ik−4,x, ai1,...,ik−4 , where x, y, z ∈ {k − 3, . . . , k + 4}. The total number
of such terms is equal to

(
8
3

)
+

(
8
2

)
+

(
8
1

)
+

(
8
0

)
≡ 1 mod 2, which explains Equation (6). Consequently,

we obtain a homogeneous system of
(

2k
k+4

)
equations corresponding to all vectors with weight k + 4 and(

2k
k−4

)
unknowns corresponding with the coefficients of the terms of weight k− 4. Since the equations are

linearly independent, the number of equations is equal to the number of unknowns:
(

2k
k−4

)
=

(
2k

k+4

)
.

The property
(
j+4
j−4

)
≡ 1 mod 2 for 5 ≤ j ≤ k for all k ≥ 5 holds by Lucas’ Theorem [7]. For j = k, this

implies that the number of terms in the equation is odd. For j ∈ {5, . . . , k − 1}, this implies that the
number of terms with k − j variables fixed in the equation is odd. Therefore, we conclude that the only
solution for the coefficients of the terms of degree k− 4 is zero. Following the system of equations (5), g
reduces to the zero function.
In a similar way, one can show that the affine equivalent function f ′, obtained after complementing all
input variables, also has no non-zero annihilators of degree less than n

2 due to vf⊕1 � vf ′ . ut

Again, the symmetric functions f which differ from the functions presented in Theorem 10 only in the
all-one vector have maximum AI for n ≥ 10. This can be obtained by using the proof technique of
Theorem 9 for showing the non-existence of annihilators with degree less than n

2 for f and the proof
technique of Theorem 10 for f ⊕ 1.

Theorem 11. Let n = 2k and k ≥ 5. The symmetric function f with value vector vF n
2
⊕ sk−4 ⊕ en on

Fn
2 has maximum AI. The degree of f is equal to n if n 6= 2i with i ≥ 1 and equal to 2i−1 else.

We also present another class of functions which differs from Fn
2

in two symmetric positions. These
functions coincide with the function defined in Theorem 9 for n = 8.

Theorem 12. Let f be a symmetric function on Fn
2 with n even. If

(
n
n
2

)
≡ 1 mod 4, then the function

with value vector vF n
2
⊕ s0 has maximum AI.

Proof. In a similar way as the proof of Theorem 10, we derive that the coefficients with degree between
1 and n

2 − 1 of an annihilator g of f ⊕ 1 and f ′ (f ′ is function obtained from f after complementing the
input variables) are all equal to a0. From the vector of weight n, we derive that a0 = 0 if and only if the
number of terms in the equation is odd, and thus

∑n
2−1
i=0

(
n
i

)
= 2n−1 − 1

2

(
n
n
2

)
is odd. ut

Example 9. The numbers n = 2i for i ≥ 3 satisfy the property that
(

n
n
2

)
≡ 1 mod 4.

Class 3
For n even, the third class of functions with maximum AI differs from Fn

2
in only one position. Therefore

these functions have weight different from the weight of the functions of class 1 or 2.

Theorem 13. Let f be a symmetric function on Fn
2 with n even. For 1 ≤ i <

⌊
n
4

⌋
, if

(n
2 +t−i

t

)
≡ 1

mod 2 for all t ∈ {1, . . . , i}, then the function f with value vector vF n
2
⊕ en−i has maximium AI.

Proof. Since vF n
2
⊕1 � vf⊕1, we refer to Theorem 8 for the proof that the function f⊕1 has no annihilators

of degree less than n
2 . To prove the same for f , we consider the affine equivalent function f ′ which has

value vector equal to the reverse. In the same way as the proof of theorem 10, the coefficients of degree
less than i are equal to 0 and the coefficients of degrees between i + 1 and n

2 can be expressed as the
sum of terms of degree i (see Equation (5)). Now the contradiction follows from the equations derived
from the vectors of weight n

2 . The equations are homogeneous and consist of the sum of all terms in n
2

variables of degree i. Therefore, if the condition
(n

2 +t−i
t

)
≡ 1 mod 2 for 1 ≤ t ≤ i is satisfied, no subset

of coefficients can be equal to 1. As a consequence, the zero function is the only annihilator of degree
less than n

2 . ut
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Example 10. For n = 14, since
(
7
1

)
≡ 1 mod 2, the function value vector vF7 ⊕ e13 has maximum AI.

Also
(
7
3

)
≡ 1 mod 2,

(
6
2

)
≡ 1 mod 2,

(
5
1

)
≡ 1 mod 2, and thus the function with value vector vF7 ⊕ e11

represents a function with maximum AI.

Functions Derived From Classes 1, 2, and 3
For n even, the symmetric functions from classes 1, 2, and 3 can be used to derive other symmetric
functions by means of the affine transformation (x0, . . . , xn−1) 7→ (x0 ⊕ x1 ⊕ · · · ⊕ xn−2, x1 ⊕ x2 ⊕ · · · ⊕
xn−1, . . . , xn−1⊕x0⊕· · ·⊕xn−3). As already explained, this transformation maps vectors of odd weight
i to vectors with weight n− i. If the weight is even, then nothing is changed.

Corollary 8. Let f be a symmetric functions on Fn
2 which belongs to class 1 or 2. If n = 4k, then f⊕σ1

has maximum AI. If n = 4k+2, then the symmetric function with value vector vf⊕σ1⊕en
2

has maximum
AI.
Let f be a symmetric functions on Fn

2 which belongs to class 3. If n = 4k, then the function with value
vector vf⊕σ1 ⊕ cen−i, where c = 1 if i is odd and c = 0 otherwise, has maximum AI. If n = 4k + 2,
then the function with value vector vf⊕σ1 ⊕ en

2
⊕ cen−i, where c = 1 if i is odd and c = 0 otherwise has

maximum AI.

Remark 3. We want to note that the symmetric Boolean functions f derived from the function Fdn
2 e

and also Fdn
2 e ⊕σn if n is even have very simple annihilators. For instance, it can be easily seen that the

functions xi1 · · ·xidn
2 e

with 0 ≤ i1 < i2 < · · · < idn
2 e ≤ n−1 are annihilators of Fdn

2 e⊕1. Moreover, they

form exactly the basis of the set of annihilators for Fdn
2 e⊕1. The basis of the annihilators of Fdn

2 e⊕σn⊕1
consists of the elements {x0 · · ·xdn

2 e−1⊕xi1 · · ·xidn
2 e

: 0 ≤ i1 < i2 < · · · < idn
2 e ≤ n−1, (i1, . . . , idn

2 e) 6=

(0, . . . ,
⌈

n
2

⌉
− 1)}.

A high number of terms in the equations is another important criteria for the algebraic attacks. Therefore,
one should be very careful in choosing the taps of the filter function and the taps of the LFSR when
using these symmetric functions in a filter generator. The annihilators of the affine equivalent functions
are more complicated. However, this does not change the situation, since one can always replace the
filter generator by an equivalent generator with different initial state and connection polynomial of the
LFSR and with filter function equal to the affine equivalent one (see [6]).
Annihilators of degree n

2 of symmetric functions which belong to classes 2 or 3 are more complicated
and consist of more terms.

Properties
Properties such as degree, weight and maximum value in the Walsh spectrum of the functions from
classes 1, 2, and 3 for n even are summerized in Table 2. The property of degree can be easily derived
by using Proposition 2 and Proposition 4 of [1]. The nonlinearity of the functions is immediately derived
from the weight since one can show that maxw∈Fn

2
|Wf (w)| = |Wf (0)|. This is proven in detail by Dalai

et. al in [5].

Table 2. Properties of Symmetric function on Fn
2 with Maximum AI for n even

Function Degree weight max |Wf |
F n

2
2blog2 nc 2n−1 + 1

2

(
n
n
2

) (
n
n
2

)
F n

2
⊕ s n

2 −4 2blog2 nc 2n−1 + 1
2

(
n
n
2

) (
n
n
2

)
F n

2
⊕ en−i ≥ n − i 2n−1 + 1

2

(
n
n
2

)
−

(
n

n−i

) (
n
n
2

)
− 2

(
n

n−i

)

The functions from class 1 for n odd are trivially balanced. The nonlinearity of these functions is equal
to 2n−1 −

(n−1
n−1

2

)
. This follows from the fact that the restriction to the subspace xn = 0 (resp. xn = 1)

is equal to the symmetric function (resp. complement of symmetric function) of class 1 in Fn−1
2 . As

mentioned in [1], trivially balanced functions satisfy the property that the derivative with respect to the
all one vector is constant, i.e., D1f = 1. Also Wf (v) = 0 for all vectors v of even weight.
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6 AI and Nonlinearity of Symmetric Functions

Since the nonlinearity of functions with maximum AI is rather small, we also investigated the existence
of symmetric functions with suboptimal AI and better nonlinearity.
Let us first investigate if there exists symmetric functions with the highest or suboptimal nonlinearity
that satisfy a reasonable order of AI. It has been pointed out in [9] that the only symmetric functions
with maximum nonlinearity (2n−1−2

n
2−1 for n even and 2n−1−2

n−1
2 for n odd) are quadratic functions.

Therefore, their AI is upperbounded by 2. In [1], symmetric functions with suboptimal nonlinearity are
determined. Based on Theorem 1 and Theorem 2, we derive that symmetric functions with suboptimal
nonlinearity as determined in [1] have AI upper bounded by 3.

Theorem 14. The symmetric Boolean functions on Fn
2 with SANF equal to c0σ0 ⊕ c1σ1 ⊕ σ3 ⊕ · · · ⊕

σn−2⊕σn−1, where c0, c1 ∈ F2 have nonlinearity equal to 2n−1− 1
2 (2b

n+1
2 c+4). The AI of these functions

is upper bounded by 3.

Proof. The coefficient c0 can be 0 or 1, since the AI of a function f is defined as the lowest degree
annihilator of f or f ⊕ 1. For c1 = 0, if n = 4k, 4k + 3, σ1 ⊕ σ2 represents an annihilator of the function.
If n = 4k + 1, 4k + 2, the function can be annihilated by (σ1 ⊕ σ2)(x0 ⊕ 1).
If c1 = 1, for n = 4k, 4k + 1, the function σ2 represents an annihilator, while for n = 4k + 2, 4k + 3, the
function σ2(x0 ⊕ 1) can annihilate the function.
This follows from the equalities, σ1σ3 = σ2σ3, σ1σ4k+i = σ4k+i+1, with i ∈ {0, 2}, σ2σ4k+i = σ4k+i+2,
for i ∈ {0, 1}, and σn(x0 ⊕ 1) = 0. ut

In a similar way, we also derive an uppperbound on the AI of another class of functions with suboptimal
nonlinearity.

Theorem 15. The symmetric Boolean functions on Fn
2 with SANF equal to c0σ0 ⊕ c1σ1 ⊕ σ2 ⊕ σn or

c0σ0 ⊕ c1σ1 ⊕ σ3 ⊕ · · · ⊕ σn−1 ⊕ σn, where c0, c1 ∈ F2 have nonlinearity equal to 2n−1 − 1
2 (2b

n+1
2 c + 2).

The AI of these functions is upper bounded by 3.

Therefore, we need to work from the other direction, i.e., to search in the set of functions with suboptimal
AI the class of functions with the best nonlinearity. From computer experiments, we derive that for
dimensions 10,12, and 14, no symmetric function exists which has AI equal to n

2−1 and better nonlinearity
as the functions with maximum nonlinearity. For n = 8 and 16, several functions could be found with
AI equal to n

2 − 1 and slightly better nonlinearity. For instance, the best nonlinearity of a function with
maximum AI equal to 7 in n = 16 is 27804 in comparison with 26333 for a function with maximum AI.
If n is odd and equal to 9, 11, 13, 15, and 17, we could distinguish one class of functions which have
the best possible nonlinearity for a symmetric function with AI one less than the maximum. They have
value vector equal to vFdn

2 e
⊕ sdn

2 e−5 for n = 2k + 1 with 4 ≤ k ≤ 8. The proof on the AI is basically

the same as in Theorem 10. Note that for dimensions greater or equal than 19, this function does not
satisfy anymore that the AI is equal to

⌈
n
2

⌉
− 1. These functions are all trivially balanced but the gain

in nonlinearity in comparison with the functions that have maximum AI is marginally. The maximum
of the Walsh value differs only a factor of 4

(( n−1

dn
2 e−5

)
−

( n−1

dn
2 e−6

))
.

However, the difference in nonlinearity between functions with maximum AI and functions with lower
AI increases much more if one considers functions with smaller AI equal to n

2 −2. We can distinguish one
class of symmetric functions which have the best possible nonlinearity when the AI is equal to

⌈
n
2

⌉
− 2.

We checked until dimension 18 and only in dimension 10, we could find one function which has slightly
better nonlinearity (468 compared to 476). The value vector of this class of symmetric functions is build
up as follows. We start in dimension 1 with the value vector (1, 0). If the dimension is even, we obtain
the value vector depending on the dimension n:

– If 4(22i − 1) < n < 4(22i+1 − 1) for i ≥ 0: We add the bit 1 on the left.
– If 4(22i−1 − 1) < n < 4(22i − 1) for i ≥ 1: We add the bit 0 on the left.
– If n = 4(22i − 1) for i ≥ 1: We add the bit 1 on the left.
– If n = 4(22i−1 − 1) for i ≥ 1: We add the bit 0 on the left.

In odd dimensions, we complete the value vector such that a trivially balanced function is obtained.
Consequently, the value vector consists of k different subvectors si for 1 ≤ i ≤ k, i.e., vf = (s1, . . . , sk).
The two middle subvectors sd k

2 e, sd k
2 e+1 have size equal to 2. The following two subvectors going from
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the middle to the second vector s2 and second last vector sk−2 have size 4, 8,... Every subvector is
either the all-zero or the all-one vector and two consecutive subvectors are different. The construction is
illustrated in Table 3 with some examples for dimensions n with 9 ≤ n ≤ 17. From the construction, we
immediately derive a formula for the weight in function of the dimension:

wt(f) = 2n−1 − 1
2

(
n
n
2

)
+ (−1)i+1

∑
i≥2

(
n

n
2 − (2i − 2)

)
,

where
(
n
l

)
= 0 if l < 0. The proof for the AI can be performed with the same method as before. Basically

the inner part of the value vector (1, 1, 0, 0) will be responsable for the AI. Also the maximum value in
the Walsh spectrum is given in the table. Note that the maximum value is reached in the zero vector for
symmetric functions of dimesions 2k for k ≥ 7, which means that the nonlinearity can be derived from
the weight of these functions.

Table 3. Symmetric functions with suboptimal AI equal to n − 2

n vf AI weight max|Wf |
8 (0,0,0,1,1,0,0,1,1) 2 121 18
9 (0,0,0,1,1,0,0,1,1,1) 3 256 36
10 (0,0,0,1,1,0,0,1,1,1,1) 3 506 44
11 (0,0,0,0,1,1,0,0,1,1,1,1) 4 1024 88
12 (1,0,0,0,0,1,1,0,0,1,1,1,1) 4 2 080 112
13 (1,0,0,0,0,1,1,0,0,1,1,1,1,0) 5 4 096 224
14 (1,1,0,0,0,0,1,1,0,0,1,1,1,1,0) 5 8 464 544
15 (1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0) 6 16 384 1088
16 (1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0) 6 34 221 2 906
17 (1,1,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0) 7 65 536 4 192

We want to note that this class is not satisfying in order to obtain symmetric functions with good non-
linearity and reasonable AI. Computing the measure for normalized nonlinearity for a Boolean function
in n variables, ε = max |Wf |

2n shows that this value reaches its maximum ε = 2−5,19 for dimensions 12 and
13. For dimensions greater or equal than 14, this value slightly decreases. These functions in dimension
12 and 13 have a too small AI, namely equal to 4 and 5 respectively. It seems that it is not possible
to obtain a sufficient order of AI (in the order of 7) together with a reasonable nonlinearity (in the
order of ε = 2−9) for symmetric functions which depend on less than 32 variables. Therefore, we need to
search for another way to increase the nonlinearity of the symmetric functions. One method for this, is
explained in the next section.

7 Open Questions and Remarks

7.1 Good Properties

The symmetric functions presented in the previous section have a high AI, which is important for the
resistance against algebraic attacks. On the other hand, the functions suffer from the problems of non-
balancedness and low nonlinearity. Therefore, we propose to make use of the construction of the direct
sum. Let us first recall the properties of the direct sum of two functions.

Direct Sum (See e.g. [11] for the derivation of the properties.) Let f1 : Fn1
2 → F2 and f2 : Fn2

2 → F2 be
Boolean functions. Consider the Boolean function f : Fn1

2 × Fn2
2 : (x, y) 7→ f(x, y) = f1(x)⊕ f2(y). Then

– wt(f) = 2n2 wt(f1) + 2n1 wt(f2)− 2 wt(f1) wt(f2)
– deg(f) = max(deg(f1),deg(f2))
– Wf (x, y) = Wf1(x)Wf2(y)
– If f1 is t1-resilient and f2 is t2-resilient, then f is (t1 + t2 + 1)-resilient.
– Nf ≥ 2n2Nf1 + 2n1Nf2 − 2Nf1Nf2



15

Moreover, for the AI of the direct sum, we have the following theorem.

Theorem 16. Let f be equal to f(x, y) = f1(x)⊕ f2(y) : Fn1+n2
2 → F2. Then the AI of f is determined

by

max{AI(f1),AI(f2)} ≤ AI(f) ≤ min{max{deg(f1),deg(f2)},AI(f1) + AI(f2)} .

Proof. The annihilators of f are of the form f ′ = g(f1 ⊕ f2 ⊕ 1), where g is an arbitrary function on
Fn1+n2

2 . We now look at the different possibilities of g and determine the degree of f ′, in order to obtain
the upper bound on the AI.

– The function g is the identity function. Since f1 and f2 depend on different variables, deg(f ′) =
max{deg(f1),deg(f2)}.

– The function g = f ′1 (or g = f ′2) is annihilator of f1 (or f2). Then, f ′ = f ′1f2⊕ f ′1 (or f ′ = f ′2f1⊕ f ′2),
and thus deg(f ′) = deg(f ′1) + deg(f2) (or deg(f ′) = deg(f1) + deg(f ′2)).

– The function g = f ′1f
′
2 is the product of the annihilators of f1 and f2. Then, f ′ = f ′1f

′
2, and thus

deg(f ′) = deg(f ′1) + deg(f ′2).

The lower bound is easily explained by the fact that f1 and f2 depend on different sets of variables. ut

Corollary 9. If f is a Boolean function on Fn
2 which has maximum AI, than f⊕xn+1 has also maximum

AI if n is odd.

In order to overcome the problem of non-balancedness for the class of symmetric functions in n even, we
propose to add by the direct sum a linear function which depends on one or more variables. In this way,
also the resiliency of the function increases, which may play a favorable role in the resynchronization of
the cipher.
The nonlinearity of the symmetric functions is too small to provide reasonable security against distin-
guishing and correlation attacks. Although by taking the direct sum with a function of high nonlinearity,
a lower bound can be obtained. Examples of functions with high nonlinearity and which have still rea-
sonable hardware complexity are the power functions. Since the AI of the power functions is not optimal
as shown in [2], the combination with a symmetric function would be a cheap solution to overcome that
problem.

7.2 Problems

It is clear that a symmetric function has lots of structure. Therefore, it is an interesting research question
whether this structure can be exploited in an attack. Also, the use of the direct sum of two functions
has been pointed out as a possible weakness in the design. But again, no attack is known for this.
There are two straightforward ways to destroy the symmetry and to still maintain a large set of the
properties such as nonlinearity, AI and degree. The first way is by affine transformation on the input
variables which keeps the AI, nonlinearity and degree invariant. However, this method is not a good
solution, since one can construct an equivalent cipher, with different initial state and different connection
polynomial for the LFSR(s) where the function is again symmetric (see [6]). The second way is to add
an affine function, which keeps the nonlinearity and degree invariant, but will decrease the AI with 1 in
general. For this transformation, it is not immediately clear how to rewrite it to an equivalent scheme
where the symmetric function is again obtained.
Finally, as further work, we propose to apply similar techniques for the study of the AI of rotation
symmetric functions.
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Functions with Maximum AI for Dimensions 6,10,12,14,16

We present the complete set of symmetric functions with maximum AI in dimensions 6,10,12,14,16.
The functions are ordered in groups of size 4. The first function f1 of the group can be seen as the
representative of that group, since the three other functions are obtained from this function. The second
function f2 is derived from f1 by complementing all input variables and thus has value vector which is
the reverse of the value vector of f1. The third function f3 is obtained from f1 by applying the affine
transformation presented in Theorem 7 and the fourth function f4 has value vector equal to the reverse
of the value vector of f3. All symmetric functions in the table are normalised in order to satisfy the
property vf (0) = 0. For every function, we computed the SANF-vector, weight, and maximum value of
the Walsh spectrum.
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Table 4. Symmetric function in Dimension 6 with Maximum AI

vf weight SANF vector max |Wf |
(0,0,0,1,1,1,1) 42 (0,0,0,1,1,0,0) 20
(0,0,0,0,1,1,1) 22 (0,0,0,0,1,0,0) 20
(0,1,0,1,1,0,1) 42 (0,1,0,0,1,0,0) 20
(0,1,0,0,1,0,1) 22 (0,1,0,1,1,0,0) 20

(0,0,0,1,1,1,0) 41 (0,0,0,1,1,0,1) 18
(0,1,1,1,0,0,0) 41 (0,1,1,1,0,1,1) 18
(0,1,0,1,1,0,0) 41 (0,1,0,0,1,0,1) 18
(0,0,1,1,0,1,0) 41 (0,0,1,0,0,1,1) 18

(0,0,0,1,1,0,1) 36 (0,0,0,1,1,1,0) 12
(0,1,0,0,1,1,1) 28 (0,1,0,1,1,1,0) 12

Table 5. Symmetric function in Dimension 8 with Maximum AI

vf weight SANF vector max |Wf |
(0,0,0,0,1,1,1,1,1) 163 (0,0,0,0,1,0,0,0,1) 70
(0,0,0,0,0,1,1,1,1) 93 (0,0,0,0,0,1,1,1,1) 70
(0,1,0,1,1,0,1,0,1) 163 (0,1,0,0,1,0,0,0,1) 70
(0,1,0,1,0,0,1,0,1) 93 (0,1,0,0,0,1,1,1,1) 70

(0,0,0,0,1,1,1,1,0) 162 (0,0,0,0,1,0,0,0,0) 68
(0,1,1,1,1,0,0,0,0) 162 (0,1,1,1,1,0,0,0,0) 68
(0,1,0,1,1,0,1,0,0) 162 (0,1,0,0,1,0,0,0,0) 68
(0,0,1,0,1,1,0,1,0) 162 (0,0,1,1,1,0,0,0,0) 68

(0,1,1,1,1,0,0,0,1) 163 (0,1,1,1,1,0,0,0,1) 70
(0,1,1,1,0,0,0,0,1) 93 (0,1,1,1,0,1,1,1,1) 70
(0,0,1,0,1,1,0,1,1) 163 (0,0,1,1,1,0,0,0,1) 70
(0,0,1,0,0,1,0,1,1) 93 (0,0,1,1,0,1,1,1,1) 70

Table 6. Symmetric function in Dimension 10 with Maximum AI

vf weight SANF vector max |Wf |
(0,0,0,0,0,1,1,1,1,1,1) 638 (0,0,0,0,0,1,1,1,1,0,0) 252
(0,0,0,0,0,0,1,1,1,1,1) 386 (0,0,0,0,0,0,1,0,1,0,0) 252
(0,1,0,1,0,1,1,0,1,0,1) 638 (0,1,0,0,0,0,1,0,1,0,0) 252
(0,1,0,1,0,0,1,0,1,0,1) 386 (0,1,0,0,0,1,1,1,1,0,0) 252

(0,0,0,0,0,1,1,1,1,1,0) 637 (0,0,0,0,0,1,1,1,1,0,1) 250
(0,1,1,1,1,1,0,0,0,0,0) 637 (0,1,1,1,1,1,0,1,0,1,1) 250
(0,1,0,1,0,1,1,0,1,0,0) 637 (0,1,0,0,0,0,1,0,1,0,1) 250
(0,0,1,0,1,1,0,1,0,1,0) 637 (0,0,1,1,1,0,0,0,0,1,1) 250

(0,1,0,0,0,1,1,1,1,0,0) 637 (0,1,0,1,0,0,1,0,1,0,1) 250
(0,0,1,1,1,1,0,0,0,1,0) 637 (0,0,1,0,1,0,0,0,0,1,1) 250
(0,0,0,1,0,1,1,0,1,1,0) 637 (0,0,0,1,0,1,1,1,1,0,1) 250
(0,1,1,0,1,1,0,1,0,0,0) 637 (0,1,1,0,1,1,0,1,0,1,1) 250

(0,1,0,0,0,1,1,1,1,0,1) 638 (0,1,0,1,0,0,1,0,1,0,0) 252
(0,1,0,0,0,0,1,1,1,0,1) 386 (0,1,0,1,0,1,1,1,1,0,0) 252
(0,0,0,1,0,1,1,0,1,1,1) 638 (0,0,0,1,0,1,1,1,1,0,0) 252
(0,0,0,1,0,0,1,0,1,1,1) 386 (0,0,0,1,0,0,1,0,1,0,0) 252

(0,0,0,0,0,1,1,1,1,0,1) 628 (0,0,0,0,0,1,1,1,1,1,0) 232
(0,1,0,0,0,0,1,1,1,1,1) 396 (0,1,0,1,0,1,1,1,1,1,0) 232
(0,0,0,1,0,1,1,0,1,0,1) 628 (0,0,0,1,0,1,1,1,1,1,0) 232
(0,1,0,1,0,0,1,0,1,1,1) 396 (0,1,0,0,0,1,1,1,1,1,0) 232
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Table 7. Symmetric function in Dimension 12 with Maximum AI

vf weight SANF vector max |Wf |
(0,0,0,0,0,0,1,1,1,1,1,1,1) 2510 (0,0,0,0,0,0,1,0,1,0,0,0,0) 924
(0,0,0,0,0,0,0,1,1,1,1,1,1) 1586 (0,0,0,0,0,0,0,1,1,0,0,0,0) 924
(0,1,0,1,0,1,1,0,1,0,1,0,1) 2510 (0,1,0,0,0,0,1,0,1,0,0,0,0) 924
(0,1,01,0,1,0,0,1,0,1,0,1) 1586 (0,1,0,0,0,0,0,1,1,0,0,0,0) 924

(0,0,0,0,0,0,1,1,1,1,1,1,0) 2509 (0,0,0,0,0,0,1,0,1,0,0,0,1) 922
(0,1,1,1,1,1,1,0,0,0,0,0,0) 2509 (0,1,1,1,1,1,1,0,0,0,1,1,1) 922
(0,1,0,1,0,1,1,0,1,0,1,0,0) 2509 (0,1,0,0,0,0,1,0,1,0,0,0,1) 922
(0,0,1,0,1,0,1,1,0,1,0,1,0) 2509 (0,0,1,1,1,1,1,0,0,0,1,1,1) 922

(0,0,1,0,0,0,1,1,1,1,0,1,0) 2509 (0,0,1,1,0,0,0,1,1,0,0,0,1) 922
(0,1,0,1,1,1,1,0,0,0,1,0,0) 2509 (0,1,0,0,1,1,0,1,0,1,1,1,1) 922
(0,1,1,1,0,1,1,0,1,0,0,0,0) 2509 (0,1,1,1,0,0,0,1,1,0,0,0,1) 922
(0,0,0,0,1,0,1,1,0,1,1,1,0) 2509 (0,0,0,0,1,1,0,1,0,1,1,1,1) 922

(0,0,1,0,0,0,1,1,1,1,0,1,1) 2510 (0,0,1,1,0,0,0,1,1,0,0,0,0) 924
(0,0,1,0,0,0,0,1,1,1,0,1,1) 1586 (0,0,1,1,0,0,1,0,1,0,0,0,0) 924
(0,1,1,1,0,1,1,0,1,0,0,0,1) 2510 (0,1,1,1,0,0,0,1,1,0,0,0,0) 924
(0,1,1,1,0,1,0,0,1,0,0,0,1) 1586 (0,1,1,1,0,0,1,0,1,0,0,0,0) 924

(0,0,0,0,0,0,1,1,1,1,0,1,1) 2444 (0,0,0,0,0,0,1,0,1,0,1,1,0) 792
(0,0,1,0,0,0,0,1,1,1,1,1,1) 1652 (0,0,1,1,0,0,1,0,1,0,1,1,0) 792
(0,1,0,1,0,1,1,0,1,0,0,0,1) 2444 (0,1,0,0,0,0,1,0,1,0,1,1,0) 792
(0,1,1,1,0,1,0,0,1,0,1,0,1) 1652 (0,1,1,1,0,0,1,0,1,0,1,1,0) 792

Table 8. Symmetric function in Dimension 14 with Maximum AI

vf weight SANF vector max |Wf |
(0,0,0,0,0,0,0,1,1,1,1,1,1,1,1) 9908 (0,0,0,0,0,0,0,1,1,0,0,0,0,0,0) 3432
(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1) 6476 (0,0,0,0,0,0,0,0,1,0,0,0,0,0,0) 3432
(0,1,0,1,0,1,0,1,1,0,1,0,1,0,1) 9908 (0,1,0,0,0,0,0,0,1,0,0,0,0,0,0) 3432
(0,1,0,1,0,1,0,0,1,0,1,0,1,0,1) 6476 (0,1,0,0,0,0,0,1,1,0,0,0,0,0,0) 3432

(0,0,0,0,0,0,0,1,1,1,1,1,1,1,0) 9907 (0,0,0,0,0,0,0,1,1,0,0,0,0,0,1) 3434
(0,1,1,1,1,1,1,1,0,0,0,0,0,0,0) 9907 (0,1,1,1,1,1,1,1,0,1,1,1,1,1,1) 3434
(0,1,0,1,0,1,0,1,1,0,1,0,1,0,0) 9907 (0,1,0,0,0,0,0,0,1,0,0,0,0,0,1) 3434
(0,0,1,0,1,0,1,1,0,1,0,1,0,1,0) 9907 (0,0,1,1,1,1,1,0,0,1,1,1,1,1,1) 3434

(0,0,0,1,0,0,0,1,1,1,1,0,1,1,0) 9907 (0,0,0,1,0,0,0,0,1,0,0,0,0,0,1) 3434
(0,1,1,0,1,1,1,1,0,0,0,1,0,0,0) 9907 (0,1,1,0,1,1,1,0,0,1,1,1,1,1,1) 3434
(0,1,0,0,0,1,0,1,1,0,1,1,1,0,0) 9907 (0,1,0,1,0,0,0,1,1,0,0,0,0,0,1) 3434
(0,0,1,1,1,0,1,1,0,1,0,0,0,1,0) 9907 (0,0,1,0,1,1,1,1,0,1,1,1,1,1,1) 3434

(0,0,0,1,0,0,0,1,1,1,1,0,1,1,1) 9908 (0,0,0,1,0,0,0,0,1,0,0,0,0,0,0) 3432
(0,0,0,1,0,0,0,0,1,1,1,0,1,1,1) 6476 (0,0,0,1,0,0,0,1,1,0,0,0,0,0,0) 3432
(0,1,0,0,0,1,0,1,1,0,1,1,1,0,1) 6476 (0,1,0,1,0,0,0,1,1,0,0,0,0,0,0) 3432
(0,1,0,0,0,1,0,0,1,0,1,1,1,0,1) 9907 (0,1,0,1,0,0,0,0,1,0,0,0,0,0,0) 3432

(0,0,0,0,0,0,0,1,1,1,1,0,1,1,1) 9544 (0,0,0,0,0,0,0,1,1,0,0,1,0,0,0) 2704
(0,0,0,1,0,0,0,0,1,1,1,1,1,1,1) 6840 (0,0,0,1,0,0,0,1,1,0,0,1,0,0,0) 2704
(0,1,0,0,0,1,0,1,1,0,1,0,1,0,1) 9544 (0,1,0,0,0,0,0,0,1,0,0,1,0,0,0) 2704
(0,1,0,1,0,1,0,0,1,0,1,1,1,0,1) 6840 (0,1,0,1,0,0,0,0,1,0,0,1,0,0,0) 2704

(0,0,0,0,0,0,0,1,1,1,1,1,1,0,1) 9894 (0,0,0,0,0,0,0,1,1,0,0,0,0,1,0) 3404
(0,1,0,0,0,0,0,0,1,1,1,1,1,1,1) 6490 (0,1,0,1,0,1,0,1,1,0,0,1,0,1,0) 3404
(0,1,0,1,0,1,0,0,1,0,1,0,1,1,1) 9894 (0,1,0,0,0,0,0,0,1,0,0,0,0,1,0) 3404
(0,0,0,1,0,1,0,1,1,0,1,0,1,0,1) 6490 (0,0,0,1,0,1,0,0,1,0,0,1,0,1,0) 3404

(0,0,0,1,0,0,0,1,1,1,1,0,1,0,1) 9894 (0,0,0,1,0,0,0,0,1,0,0,0,0,1,0) 3404
(0,1,0,1,0,0,0,0,1,1,1,0,1,1,1) 6490 (0,1,0,0,0,1,0,0,1,1,0,1,0,1,0) 3404
(0,1,0,0,0,1,0,0,1,0,1,1,1,1,1) 9894 (0,1,0,1,0,0,0,1,1,0,0,0,0,1,0) 3404
(0,0,0,0,0,1,0,1,1,0,1,1,1,0,1) 6490 (0,0,0,0,0,1,0,1,1,1,0,1,0,1,0) 3404
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Table 9. Symmetric function in Dimension 16 with Maximum AI

vf weight SANF vector max |Wf |
(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1) 39203 (0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1) 12870
(0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1) 26333 (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1) 12870
(0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1) 39203 (0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1) 12870
(0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1) 26333 (0,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1) 12870

(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0) 39202 (0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0) 12868
(0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0) 39202 (0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0) 12868
(0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0) 39202 (0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0) 12868
(0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0) 39202 (0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0) 12868

(0,0,0,0,1,0,0,0,1,1,1,1,0,1,1,1,0) 39202 (0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0) 12868
(0,1,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0) 39202 (0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0) 12868
(0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0) 39202 (0,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0) 12868
(0,0,1,0,0,0,1,0,1,1,0,1,1,1,0,1,0) 39202 (0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0) 12868

(0,0,0,0,1,0,0,0,1,1,1,1,0,1,1,1,1) 39203 (0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1) 12870
(0,0,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1) 26333 (0,0,0,0,1,1,1,1,0,1,1,1,1,1,1,1,1) 12870
(0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,1) 39203 (0,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1) 12870
(0,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0,1) 26333 (0,1,0,0,1,1,1,1,0,1,1,1,1,1,1,1,1) 12870

(0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1) 26333 (0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1) 12870
(0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1) 39203 (0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1) 12870
(0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1) 26333 (0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1) 12870
(0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1) 39203 (0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1) 12870

(0,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0,1) 26333 (0,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,1) 12870
(0,1,1,1,0,1,1,1,1,0,0,0,1,0,0,0,1) 39203 (0,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,1) 12870
(0,0,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1) 26333 (0,0,1,1,0,0,0,0,0,1,1,1,1,1,1,1,1) 12870
(0,0,1,0,0,0,1,0,1,1,0,1,1,1,0,1,0) 39203 (0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,1) 12870


