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Abstract  In this paper, a back propagation artificial neural network (BP-ANN) model is presented for the simulta-
neous estimation of vapour liquid equilibria (VLE) of four binary systems viz chlorodifluoromethan-carbondioxide, 
trifluoromethan-carbondioxide, carbondisulfied-trifluoromethan and carbondisulfied-chlorodifluoromethan. VLE 
data of the systems were taken from the literature for wide ranges of temperature (222.04—343.23K) and pressure 
(0.105 to 7.46MPa). BP-ANN trained by the Levenberg-Marquardt algorithm in the MATLAB neural network 
toolbox was used for building and optimizing the model. It is shown that the established model could estimate the 
VLE with satisfactory precision and accuracy for the four systems with the root mean square error in the range of 
0.054—0.119. Predictions using BP-ANN were compared with the conventional Redlich-Kwang-Soave (RKS) 
equation of state, suggesting that BP-ANN has better ability in estimation as compared with the RKS equation (the 
root mean square error in the range of 0.115—0.1546). 
Keywords  vapour liquid equilibria, artificial neural networks, refrigerant 

1  INTRODUCTION 
In the process modeling, design and simulation, it 

is important to have accurate data on physical proper-
ties such as vapour liquid equilibria (VLE) of the 
compounds involved in the studied system. Several 
conventional thermodynamic models such as equa-
tions of state (EoS) are used for estimating the VLE. 
The modeling with acceptable VLE prediction by EoS 
requires the use of many adjustable parameters or 
mixing rules. Therefore, using EoS for estimating the 
VLE is boring and requires an iterative method that 
may sometimes poses problem for real time control of 
an operating plant. In such cases, other faster alterna-
tive methods would be more interesting. In recent 
years, artificial neural network (ANN) has shown to 
be very successful in modeling complex non-linear 
systems and providing precise data extraction from 
measurement. 

Nowadays, ANN has found extensive application 
in the field of thermodynamics and transport proper-
ties such as estimation of VLE[1—7], viscosity[8,9], 
density[10], vapour pressure[11], compressibility fac-
tor[10] and thermal conductivity[12] etc. This method 
provides non-linear function mapping of a set of input 
variables into the corresponding network output, 
without the requirement of specifying the actual 
mathematical form of the relation between the input 
and output variables. Due to its flexibility and parallel 
structure even in the presence of significant amounts 
of noise in the input data, ANNs can be applied for 
accurate determination VLE of polar and nonpolar 
components. Basic theory and application to chemical 
problems of ANN with the back-propagation algo-
rithm is well discussed in [13—18]. 

A back propagation artificial neural network 
model is presented in this article for accurate predic-
tion of VLE for four binary refrigerant systems: 
chlorodifluoromethan - carbondioxide (R22-CO2), 

trifluoromethan-carbondioxide (R23-CO2), carbondi-
sulfied-chlorodifluoromethan (CS2-R22) and car-
bondisulfied-trifluoromethan (CS2-R23). The per-
formance characteristics of the proposed ANN models 
were compared with the conventional EoS (i.e. 
Redlich-Kwong-Soave equation as a typical represen-
tative of empirical equations of state). Experimental 
data needed for development of the ANN model were 
taken from Ref.[19]. 

2  ARTIFICIAL NEURAL NETWORK THEORY 
Neural networks consist of arrays of simple ac-

tive units linked by weighted connections (Fig.1). 
ANN consists of multiple layers of neurons arranged 
in such a way that each neuron in one layer is con-
nected with each neuron in the next layer. The net-
work used in this paper is a multilayer feed forward 
neural network with a learning scheme of the 
back-propagation (BP) of errors and the Leven-
berg-Marquardt algorithm[14] for the adjustment of 
the connecting weights. Neurons are the fundamental 
processing element of an ANN[20], which are ar-
ranged in layers that make up the global architecture. 
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Figure 1  The feed forward back-propagation network 

used in the study 
[T and P of a system are chosen as input data, x and y 

(mole fraction of a component in liquid and vapour phases)
as output data] 
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BP networks are usually comprised of one input layer, 
at least one hidden layer and an output layer. The 
number of neurons in the input and output layers is 
defined by the problem to be solved. The input layer 
receives the experimental information, experimental 
parameters, structural descriptions etc. The output 
layer delivers the response sought for the property 
value, classification etc. The hidden layer encodes and 
organizes the information received from the input 
layer and delivers it to the output layer. 

The number of neurons in the hidden layer, 
which to some extent play the role of intermediate 
variables, may be considered as an adjustable pa-
rameter. Each neuron thus has a series of weighted 
inputs, wij which might be either output from other 
neurons or input from external sources. Each neuron 
calculates a sum of the weighted inputs and trans-
forms it by a Sigmoid transfer function: 
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where aj the output from the jth neuron is connected  
to ith neuron in the previous layer, and n is in turn  
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where wij represents the weights applied to the con-
nections from ith to jth neurons. pi is the output from 
the ith neuron in the previous layer and bj is a bias 
term. BP networks operate in the supervised learning 

mode. In the first step (training), known data are given 
to the networks and using the BP algorithm, the net-
work iteratively adjusts the connection weights wij and 
biases bj (starting from initial random values) until the 
predicted output satisfactorily match the actual data. 
In the BP training algorithm this adjustment is carried 
out by comparing the experimental data tij and the 
current output aij of the network in terms of the total 
sum of the square error (SSE) for the k patterns of the 
learning set: 
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The weights adjusted in the training stage for all 
the interconnections can then be used for the predic-
tion of output values from any input in the test set. 

3  METHODOLOGY 
3.1  Experimental data 

The first step in modelling is compiling the data-
base to train the network and to evaluate its ability for 
generalization. Many researchers measured VLE data 
by various techniques. Comprehensive review on the 
VLE data has also been published[21]. In the present 
work, experimental VLE data in the temperature range 
of 222.04—343.23K and the pressure range from 
0.105 to 7.46MPa for four binary systems were taken 
from Roth et al.[19] and were used for training and 
validating the ANN model. The temperature, pressure 
and mole fraction of the vapour liquid phases reported 
by these authors are summarized in Table 1. 

Table 1  Data and range used for development of the ANN model 

System Temperature, K Pressure, MPa Mole fraction CO2 
in vapour 

Mole fraction CO2 in 
liquid No. of data points[19]

R22-CO2 273.15 0.789—3.176 0.1236—09175 0.4072—0.976 52 
 298.15 1.571—5.749 0.1361—0.9153 0.3656—0.9587  
 313.15 1.978—6.556 0.0919—0.7876 0.2387—0.8649  
 328.15 2.762—7.015 0.0964—0.6538 0.216—0.728  
 348.15 4.135—6.550 0.1071—0.3876 0.1853—0.4388  
 358.15 4.190—5.740 0.0205—0.2008 0.0344—0.2465  

R23-CO2 254.15 1.499—1.990 0.0753—0.9227 0.1025—0.9328 41 
 263.15 1.953—2.628 0.0469—0.9279 0.0621—0.9377  
 273.15 2.594—3.425 0.0526—0.8458 0.0668—0.8655  

System Temperature, K Pressure, MPa Mole fraction R23 
in vapour 

Mole fraction R23 in 
liquid No. of data points[19]

CS2-R23 273.2 0.355—2.409 0.006—0.963 0.9443—0.988 103 
 298.2 0.410—4.514 0.006—0.97 0.8756—0.9814  
 303.2 0.507—20.540 0.009—0.06 0.8743—0.9681  
 323.2 0.820—19.780 0.010—0.0868 0.8458—0.9496  
 348.2 1.010—29.740 0.011—0.143 0.7401—0.9149  
 373.2 0.970—22.590 0.007—0.207 0.5056—0.8701  
 398.2 1.520—22.370 0.009—0.404 0.4510—0.8215  
 423.2 2.040—18.060 0.01—0.386 0.3320—0.7314  
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3.2  ANN modeling 
A multi-layer feed forward network structure was 

used in this study as shown in Fig.1. ANN modeling 
was carried out by employing the custom neural net-
work toolbox developed in MATLAB ver.7. The input 
layer has two neurons for T and P of the system and 
two neurons are in the output layer corresponding to 
the vapour and liquid composition of interested com-
ponents in the binary mixture. The input and output 
layer nodes had a linear transfer function (purline) 
while only the hidden layer nodes had sigmoid trans-
fer function for the ANN model. The raw input data 
need to be preprocessed to convert them to a suitable 
form. Thus, all input and target data were scaled to a 
similar magnitude in the range [－1, 1] by the func-
tion “premnmx” was developed in MATLAB toolbox. 
ANNs were trained according to the Leven-
berg-Marquardt algorithm available in the neural net-
work toolbox of MATLAB. 

3.3  RKS correlation 
The Redlich-Kwong-Soave equation was consid-

ered as a typical representative of empirical equations 
of state. In order to apply this equation of state to 
mixtures the Redlich-Kwong-Soave (RKS) equation 
in Ref.[22] was used. The adjustable parameters of 
equation (i.e. pure-fluid and binary interaction pa-
rameters) were taken from Roth et al.[19]. 

3.4  Evaluation of models 
All trained ANNs with different configurations 

and the RKS correlation were evaluated for there 
modeling capability by validating data. Root mean 
square error (RMSE) and mean absolute error defined 
by Eqs.(4) and (5) respectively were evaluated for 
vapor liquid composition of CO2 corresponding to 
R22-CO2 and R23-CO2 mixtures and R22 corresponds 
to CS2-R22 and CS2-R23 systems. The correlation 
coefficient, R2, of the linear regression between the 
predicted values from the ANN models and the   

experimental data evaluated by Eq.(6) was also used 
as a measure of the prediction performance. 
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In Eq.(4), m is the number of test data, actv  is the 
experimental value, calv  is the calculated value using 
ANN. In Eq.(5) r is the overall input variables of the 
test data and m is the overall output variables. 

4  RESULTS AND DISCUSSION 
4.1  ANN models 

Using the random selection method, 80% of all 
data were assigned to the training set, while the rest of 
data were used as the validation set. In training phase, 
the number of neurons in hidden layer was important 
to the network optimization. However, decision on the 
number of hidden layer neurons is difficult because it 
depends on the specific problem being solved using 
ANN. With too few neurons, the network may not be 
powerful enough for a given learning task. With a 

Table 1 (Continued) 

System Temperature, K Pressure, MPa Mole fraction R23 
in vapour 

Mole fraction R23 in 
liquid No. of data points[19]

CS2-R23 448.2 2.270—16.310 0.006—0.359 0.1403—0.6400 103 
 473.2 3.550—14.660 0.011—0.304 0.1779—0.5128  

System Temperature, K Pressure, MPa Mole fraction R22 
in vapour 

Mole fraction R22 in 
liquid No. of data points[19]

CS2-R22 273 0.106—0.451  0.0332—0.8886 0.6309—0.9724 85 
 298 0.226—0.895 0.0358—0.7834 0.7811—0.9579  
 323 0.462—1.843 0.0505—0.9386 0.7445—0.9782  
 348 0.394—3.139 0.0165—0.9438 0.3884—0.9740  
 373 0.601—4.965 0.0137—0.9389 0.2565—0.9550  
 398 1.499—5.890 0.0476—0.7492 0.4656—0.8084  
 423 1.680—6.745 0.0249—0.5764 0.2485—0.7012  
 448 2.070—7.600 0.0116—0.4668 0.0919—0.5921  
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large number of neurons, the ANN may memorize the 
input training data very well so that the network tends 
to perform poorly on new test data and is called 
“over-fitting”. Therefore, the optimization of ANN 
started with 2 neurons in the hidden layer and gradu-
ally increasing the number till no significant im-
provement in performance of the network was further 

achieved. The performance criterion was the mean 
square error (MSE) when the test data set fed to the 
trained network. The characteristics of the optimized 
networks used to modeling for various binary systems 
are summarized in the Table 2. For the R22-CO2, 
CS2-R22, R23-CO2 and CS2-R23 systems, the num-
bers of neurons in the hidden layer were 5, 6, 8, and 

Table 2  The characteristics of the optimized networks used to modeling for various binary systems 

ANN Parameters R2 
Transfer function System No. of neurons 

in hidden layer Hidden layer Output layer 
Vapor Liquid 

R22-CO2 5 sigmoid purline① 0.999 0.998 
R23-CO2 6 sigmoid purline 0.997 0.996 
CS2-R22 8 sigmoid purline 0.997 0.996 
CS2-R23 10 sigmoid purline 0.998 0.990 

① A linear transfer functions calculate a layer’s output from its net input n [purline(n)＝n]. 

Table 3  ANN weight connectivity for the hidden and output layers of four systems 

Hidden layer connectivity 
R22-CO2 CS2-R22 R23-CO2 CS2-R23 

wji bj wji bj wji bj wji bj 
0.27719 －0.76258 －2.2875 －0.29002 0.49384 1.7008 0.087545 0.63494 －0.66586－0.40733 0.34064 0.54584
－0.10944 －0.11325 0.17392 －2.0203 0.72564 －2.651 9.206 －10.295 1.3515 0.62724 －0.0987 0.007808
－10.728 3.9217 －7.3499 1.9647 －0.35245 2.856 0.84901 －0.52627 0.070318 －0.48499 0.59563 0.21494
0.37947 －0.11756 －0.29769 0.27356 0.21652 －0.51822 0.031072 0.27454 0.09015 －2.8109 3.8605 －3.7779

－0.11157 0.23064 －0.12803 －1.6811 1.8474 －1.0426 －6.5249 －2.6639 －4.9048 0.4972 1.0513 －2.9433
   1.6831 －1.9077 1.1235 1.4314 3.4049 0.31072 －43.482 10.42 －37.08
      0.20623 －1.5536 －2.4445 －39.323 9.523 －34.206
      －35.088 32.452 －15.214 0.61004 －3.4796 －4.7914
         42.561 －11.044 38.24 
         0.19124 1.4534 -3.8228

Output layer connectivity 
  R22-CO2        
  wji   bj      

－5.7885 28.391 －0.13273 12.187 23.251 －4.1755      
－10.678 －5.2105 0.017877 －6.5214 －3.9751 －11.634      

   CS2-R22        
  wji   bj     

3.114 52.069 45.212 －0.04138 15.461 14.595 3.9251     
24.432 4.5932 4.1904 －3.619 －5.0208 －5.0291 －23.497     

    R23-CO2       
   wji    bj   

－8.2446 －0.16674 －4.2298 22.966 0.6366 －0.41232 1.3719 5.8997 2.0173   
－2.5281 －0.1161 －4.8269 8.8695 0.062802 0.084998 －3.9454 5.0405 －0.14661   

CS2-R23 
    wji     bj 

0.75864 0.81053 0.45521 －0.20205 6.2024 －14.511 45.138 －0.2325 30.629 －4.3643 0.72852
7.4642 0.45646 －3.6492 0.090791 －6.8833 －0.26738 0.84208 －3.6354 0.5619 4.6376 －8.1605
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10 neurons respectively. All the weights for models are 
shown in Table 3. The predicted VL mole fractions of 
interested component in the all-binary mixtures versus 
their actual VL mole fractions were showed in Figs.2—
5. All figures show the modelling ability of the opti-
mized ANN. The R2 values listed in Table 2 suggest 
that the accuracy of the ANN prediction is quite satis-
factory. 

 
Figure 2  Comparison of the experimental and predicted 
mole fraction of CO2 for R22-CO2 system for the test data 
mole fraction of CO2: ○ in vapor, R2＝0.999, MAE＝0.62%; 

▲ in liquid, R2＝0.998, MAE＝1.36% 

 
Figure 3  Comparison of the experimental and predicted 
mole fraction of R22 for CS2-R22 system for the test data 
mole fraction of R22: ○ in vapor, R2＝0.997, MAE＝1.78%; 

▲ in liquid, R2＝0.996, MAE＝3.26% 

 
Figure 4  Comparison of the experimental and predicted 
mole fraction of CO2 for R23-CO2 system for the test data 
mole fraction of CO2: ○ in vapor, R2＝0.997, MAE＝2.21%; 

▲ in liquid, R2＝0.996, MAE＝1.93% 

 
Figure 5  Comparison of the experimental and predicted 
mole fraction of R23 for CS2-R23 system for the test data 
mole fraction of R23: ○ in vapor, R2＝0.998, MAE＝1.53%; 

▲ in liquid, R2＝0.990, MAE＝5.15% 

4.2  Comparison with RKS correlation 
Comparison of ANN and RKS analyses is given 

in Table 4, where the vapour and liquid mole fractions 
for all binary systems calculated by means of the re-
spective models and experimental values are tabulated. 
These results show the predictive ability of models 
when applied to the validation set. It is immediately 

Table 4  Results obtained for validation set modeled with ANN and RKS correlation for four binary system, 
at wide rang of temperature and pressure with respective errors 

Mole fraction CO2 in vapour Mole fraction CO2 in liquid  RMSE 
System Temperature, 

K 
Pressure, 

MPa Exp. ANN 
predicted

RKS 
predicted Exp. ANN 

predicted
RKS 

predicted  ANN RKS

R22-CO2 273 1.440 0.7340 0.7221 0.7440 0.3730 0.3820 0.3760  0.059 0.115
  2.550 0.9217 0.9284 0.9250 0.7435 0.7395 0.7480    

 328 4.190 0.5027 0.5004 0.5060 0.3069 0.3132 0.3200    
  6.210 0.6894 0.6850 0.6950 0.5610 0.5655 0.5730    

 358 4.650 0.1155 0.1152 0.1130 0.0605 0.0728 0.0829    

  5.640 0.2433 0.2393 0.2340 0.1865 0.1867 0.2120    
R23-CO2 273 2.898 0.3088 0.3076 0.3390 0.3610 0.3597 0.3890  0.150 0.436

  3.295 0.6815 0.6896 0.6310 0.7208 0.7337 0.7110    

  2.594 0.0526 0.0538 0.0638 0.0668 0.0693 0.1480    

  4.345 0.0709 0.0930 0.0638 0.0822 0.1116 0.1310    

 293 5.190 0.5523 0.5538 0.5340 0.5877 0.5824 0.5740    
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obvious that the ANN models possess higher ability to 
predict the mole fraction of both vapor and liquid 
phases with lower error levels. The model developed 
via ANN exhibits very good ability in determination 
of the both vapour and liquid compositions in the 
validation set, as witnessed by relatively low RMSE 
(in the range of 0.054—0.119) and high correlation 
coefficients (R2＝0.997 or greater). On the other hand, 
the RKS correlation, although it provided a quite sat-
isfactory correlation in prediction, was less accurate 
than the ANN model (R2 in the range of 0.980—0.990 
and relatively higher RMSE of 0.115—0.546). 

Since, once trained, the ANN can estimate VLE 
in a single step and is very useful where real-time es-
timation is required, particularly in real-time control. 
In contrast, EoS estimates the VLE iteratively. How-
ever, the ANN models require a large quantity of data 
of good quality, especially for complex polar systems 
(i.e. R23-CS2), for training, otherwise the reliability of 
the model deteriorates. 
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