VOLUME 8

JOURNAL OF PHYSICAL OCEANOGRAPHY

MaARrcH 1978

An Inertial Model of Steady Coastal Upwelling

JosePH PEDLOSKY

Department of the Geophysical Sciences, The University of Chicago, Chicago, Ill. 60637

(Manuscript received 15 August 1977)

ABSTRACT

A nonlinear inertial model of a steady-state coastal upwelling circulation is presented. The model
describes a longshore equatorward current and countercurrent structure which is independent of any
parameterization of turbulent mixing. Solutions for flat and sloping bottoms are presented.

1. Introduction

Theoretical models of coastal upwelling generally
fall into one of two categories. Numerical models
which describe more fully the nonlinear aspects of
the upwelling circulation are most often limited in
the duration of the upwelling period they describe,
while the vertical structure resolved is restricted by
the number of layers used in the calculation (e.g.,
Hurlburt and Thompson, 1973). On the other hand,
analytical models which attempt to model the long-
term (i.e., seasonal) upwelling structure usually
depend heavily on both a linearization of the mo-
mentum and thermal equations and very crude
parameterization of the turbulent mixing of heat and
momentum (e.g., Allen, 1973; Pedlosky, 1974).
These assumptions lead to conceptually useful de-
scriptions of the circulation; however, the strength
and structure of the flow depend on the least cer-
tain aspects of such models, the parametric repre-
sentations of turbulent mixing. In particular, in these
models fluid elements can rise in the basic strati-
fication field only by adjusting their density by mix-
ing with their environment. By hypothesis the slope
of the density surfaces must remain small. Further-
more, the strength of both the onshore and long-
shore flow depend directly on the forcing, i.e., the
offshore Ekman flux in the upper mixed layer pro-
duced by a longshore wind stress, while observa-
tions indicate that the mean longshore flow, once
set up, is relatively unaltered should the applied
wind stress slacken.

In an attempt to construct a model which does not
depend explicitly on turbulent mixing parameters,
a simple though nonlinear inertial theory of up-
welling is presented below. The model is based on
three central hypotheses.

1) In the region below the mixed layer the motion
is strictly inertial and the fluid conserves its density
and potential vorticity as it rises.
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2) For a basically uniform stress field the upweli-
ing circulation enters the mixed layer in a mixing
region sufficiently narrow in comparison with a
Rossby deformation radius so that this region can
be modelled as a delta function sink of fluid for the
inertial region below.

3) In the steady state the fluid on the upper sur-
face, outside the mixing region maintains the mini-
mum density of the region, i.e., that the mixing zone
insures that fluid flowing seaward of the zone is not
heavier than the inertially controlled fluid below.

This last hypothesis is for the steady-state model
a reasonable one, although no proof is given here
that this condition will in fact be realized in the com-
plete inertial plus dissipation physics that must
obtain to describe the complete problem. As in the
case of inertial theories of the Gulf Stream, the
inertial theory I present here is capable of explicitly
describing only the formation region of the boundary
flow; the complete circulation problem must, for the
steady state, involve dissipation and is beyond the
scope of the present discussion.

2. The model and formulation

I consider a fluid whose density field p(x,y,z) can
be partitioned in a Boussinesq fashion, i.e.,

P =Po + o(xvyvz)' (2'1)

where p, is the mean density (constant), # the density
anomaly and 6 < p,. The coordinates x, y, z measure
distance eastward, northward and vertically in the
usual way. The hypothesis that density is preserved
implies that
dae 06 00 06

= U—+v—+w— =0,
Ox dy 0z
where u, v and w are velocities in the x, y and z direc-
tions.

dt or 22)
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Since 8 is a conservative field all fluid elements
remain on the 6 surface to which they are initially
assigned and glide horizontally and vertically along
that surface. Following Rossby (1938) it is useful to
use 6 instead of z as a vertical coordinate and con-
sider z a dependent function of x, y and 6. This de-
pends implicitly on the third modeling assumption,
i.e., that 86/0z < 0 throughout the region described
by this model.

In this system of coordinates the horizontal
momentum equations become

o

— — tv—=fv=—-—, (23a
ot u(’)x oy ! ox ¢ )
0 0 0 a
P w0 p =2, 23b)
ot ox ay dy

where x and y derivatives are taken along sur-
faces of constant density and where

0
T = LA gz. (2.3¢)
Po  Po

The hydrostatic relation [used to derive (2.3c)] takes
the simple form
o gz

, 2.3d
30 o, (2.3d)

while the condition of incompressibility is written

3 i} 4 ;] 0
_3_(_1)_+ ___(,, _2_) + ——(u —Z) =0. (2.3¢)
ot\ a0 Ox a0 dy\ 00
Nondimensional variables are introduced ac-
cording to the following scheme:

-

(u,0) = U’ ,v")

(x,y) = L(x',y"), t= 7 t
0 = A0’ - 2.4)
z = Dz’ .
7w = UfLw’ J

In (2.4), D is the characteristic depth of the up-
welling zone, A@ the overall density difference
between the surface and bottom, while L is chosen
to be the Rossby deformation radius, viz.,

L = (gA6/6,D)"?/f, (2.5)

so that all horizontal lengths are measured in
deformation radii.

The velocity scale U will be chosen to char-
acterize the magnitude of the onshore flow velocity.
For the purposes of this study f is considered
constant, although this is not essential.
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The equation set (2.3) then becomes (dropping
primes on dimensionless quantities)

du om
NPT v (2.62)
dt dy ’ )
. Om
= € —(—'j—b— » (2.60)

6(62)+ a(u 6z)+ 9 0z ~0, .6d)
ar\ o0, " ax\ o8 ay<v_63)" '

where

didt = 8/0t + ud/dx + vd/dy, (2.7a)
€= v. u (2.7b)
fL ( AB )1/2 '
g—D.
6o

The absence of the ¢ derivative in (2.7a) is due, -
of course, to the conservation of density, that is, to
the fact that the ‘“‘vertical’’ velocity w in the x,
y, 0 system is identically zero by (2.2).

It follows from (2.6a), (2.6b) and (2.6d) that the

-conservation of potential vorticity is described by

d
d (1 + €)) o, 2.8)
dt 0z/06
where
[ = v _ ou . 2.9)
Ix dy ’

3. The inertial upwelling flow

We consider fluid in the regionx < 0,1 <8 < 0.
At distances far offshore, i.e., as x — —, the
flow is specified. That is, noncoastal dynamics will
prescribe the starting conditions for the upwelling
circulation. At an eastern boundary, for example,
the B-effect, important on general oceanic scales,
will determine the distribution of the onshore flow
between the geostrophic interior and a lower Ekman
layer. For the present calculation I assume that all
the onshore geostrophic flow locally balances the
offshore flux in the upper Ekman flow so that there
is no significant flow in the lower Ekman layer,
and that this onshore flow is y independent. It
follows from this that (2.8) implies

1 + €(x,6) _ 1
92/06 82,100 °

where 0z;/00 is the inverse of the static stability
distribution far offshore. In deriving (3.1), I have
also assumed that { is negligibly small far offshore.
The relation (3.1) may be written

@a.n
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ov _ 0z/06 — 0z,/60
dax az,/08

which is the form derived by Rossby (1938) in his
study of the problem of geostrophic adjustment.

It is convenient to take the @ derivative of (3.2)
and use the fact that to O(e), which is a small
parameter in all oceanographically relevant upwell-
ing situations, the longshore velocity satisfies

(3.2)

] ]
e =22 3.3)
86  ax
This leads to a simple equation for z, viz.,
9%z i) 9
—————( /Zﬂ=o (3.4)
ox? 00

The independence of the longshore coordinate is
not a necessary feature of the analysis but leads to
a considerable simplification of the analysis. The re-
sults of linear calculations (Pedlosky, 1974) imply
that this should be a good model for that part of
the wind forcing with longshore scales larger than
some critical value whlch in the linear theory was
0O(500 km).

The boundary conditions for (3.4) are

z = z,(0), xX—> —w, (3.5a3)
Egz-ae_n,x=m (3.5b)
zZ = 0, 0 = 0, (3.50)
z = zp(x), 0=1. (3.3d)

The first condition merely states that far from
the coast the distribution of density with depth ap-
proaches its ‘‘interior’’ value. The second condition
forces each density surface to enter the sink in the
upwelling corner at the coast. That is, each density
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lamina participates in the upwelling or else by con-
tinuity the onshore velocity on that density surface
would vanish from the condition for two dimen-
sional steady flow:

i) ( 62)
——— u pu——— =
ax a0
The last two conditions [(3.5¢) and (3.5d)] specify
that the least dense fluid remain on the upper
surface and the most dense remain on the lower
surface z = zz(x), although in the § coordinate frame

it is the lower surface which ‘‘stays’ at = 1.
As an example, consider the case where

0z,
— = -1, 3.7
3 3.7

i.e., a case of linear stratification and where z; = 1,
i.e., a flat bottom. The solution of (3.4) subject to
(3.5a)-(3.5d) is

(3.6)

2
z = —tan

- ( sinhmr x
T 1

tanw6/2> . (3.8
+ coshmx

Surfaces of constant 8 are plotted in the x-z plane in
Fig. 1. The longshore velocity v is determmed up to
a constant, by (3.2) and (3.3) and is

v = —e [x + 7! log(coshmx + cosw®)]. (3.9)

The profile of the longshore velocity at three
offshore positions is plotted in Fig. 2. Where v is
positive the flow is poleward, where it is negative
(i.e., near the surface) it is equatorward. Note that
the poleward flow occupies a larger fraction of the
total depth in the inshore profiles. To obtain the
dimensional value v. of the longshore current, it is
necessary to multiply by U. Tt follows from (3.9),
therefore, that

= ﬂu(x’z) (3.10)

FiG. 1. Equilibrium density surfaces for a flat bottom.
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F16. 2. The longshore velocity at three offshore stations. Note
that at x = —1 the scale of v has been multiplied by 10. Positive
velocities are northward. Dimensional velocity is obtained by
multiplication by fR, where f is the Coriolis parameter and R
the Rossby deformation radius. The range of z/d is from 0 to 1.0.

and is independent of the strength of the onshore
flow. With f= 10"* s7! and L = O(10 km), this
yields a v, = O(10-20 cm s™!) at x = 0.5 (i.e., about
half a deformation radius offshore). The longshore
velocity is logarithmically singular at x = 0, z = 0,
an unavoidable consequence of the delta function
representation of the sink flow. The independence
of the longshore speed, in the steady-state inertial
theory, of the upwelling circulation is due to the
following simple fact. Once the density surface has
deformed upward, following the initial transient
phase of upwelling, the resulting longshore flow
is a steady equilibrium solution of the full inviscid
equations. It will decay only on the long dissipative
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time scale by processes ignored in the present
theory.

The density surfaces, once set up, act as fixed
guides for the onshore flow. Fluid elements
glide along the density surfaces into the upper layer
sink with velocity [from (3.6)]

Y= U,0z/06 -y, (coshmx + cosm6) . G.1a)
0z,/00 sinhm x
w= - 1%:111—%, (3.11b)
the relation for w following from
w = udz/ox. (3.12)

Fig. 3 shows the profiles with depth of the onshore
flow at three offshore positions. The flow at infinity
is uniform with depth, but as the coast is ap-
proached the effect of the boundary decelerates the
flow at depth and in compensation for this, ac-
celerates the onshore flow near the surface. This
effect becomes more marked closer to the coast.
This in turn, in the transient problem, produces
the longshore structure shown in Fig. 2. Concur-
rently, the variations of # with x produce a vertical
velocity in the x-z frame. This velocity at mid-depth,
z = —0.5, is shown in Fig. 4. The vertical velocity
falls to one-tenth its maximum value at x = —0.9,
i.e., very nearly one deformation radius offshore.
The onshore and vertical velocities do depend
linearly on the upwelling circulation strength which
determines the rate at which fluid elements pass
through the density structure which itself is inde-
pendent of U,.

4. The effect of topography

If the bottom of the upwelling zone is no longer
flat, certain changes occur in the upwelling circula-

0
-5
X=-0
_Lol:lllllnlllllllll_
! 2 3 4 5 6 7 8

9 u/Uy

F1G. 3. Velocity profiles for the onshore flow. At x = —», u = U,.
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tion predicted by potential vorticity conservation.
Consider the circulation in the region —L < x < 0,
zp(x) <z <0, where L > 1, i.e., where the domain of
the problem in x is considerably greater than a de-
formation radius. Furthermore, let

ZB(O) = _d

zg(—L) = —1
Although the geometry of the region in the x-z
frame is a complicated wedge-shaped region, the
x-0 coordinate frame remains rectangular and the

only change in the problem posed by (3.4) and (3.5)
is that (3.5a) and (3.5b) become

4.2)
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z[(60) = -0, x=~L, (4.3a3) FIG. 4. The vertical velocity at mid-depth as a function of
s offshore distance.
z

—=—ds0 -1, x=0. (4.3b) . . .
00 while reasonable, is not necessary. In the case witha
As an example, consider the case where sloping bottom, the sloping isopycnal surf.ac_:es at
x = —L require nonzero longshore velocities at
_ X x = —L, and there seems no ‘‘natural’’ choice for
z5(x) = (1 = d) N2 d @.4) V,. In Fig. 2, however, I have shown the derived

in the region —L < x < 0. The solution to (3.4)
subject to (4.3a,b) and (3.5¢), (3.5d) is
z2(x,0) = (1 — d)(x/L) + (2d/m) tan™!

( sinhmr x

tamr0/2) . (4.5
1 + coshmx

Fig. 5 shows the equilibrium density surfaces
in the case L = 2.5, d = 0.25. Again, the onshore
flow glides along the density surfaces into the up-
welling sink. The longshore velocity, determined by
(3.2) and (3.3), is

ev = —[x — (d/m) log2(coshmrx + cosw6)]
A -d) (> -6
L 2

where V, is an undetermined constant. In the flat-
bottom case the constant V, was chosen such that as
x — —oo, the longshore velocity vanished, which

+ Vy, (4.6)

profile (4.6) at x = —0.1 with the arbitrary choice for
V, that the surface velocity at this inshore station
remains unaffected by topography. In general, how-
ever, the effect of topographic slope is to reduce the
the longshore velocity induced by upwelling [as can
be seen from the alteration of the coefficient of the
logarithmic term in (4.6)}, as a consequence of the
reduced slope of the isopycnal surfaces required to
bring them to the surface.

The general solution for the isopycnal surfaces in
the case of arbitrary zz(x), such that

zg(x) = —1, asx — —oo,

can be found in the form

z=¥ r dé[1 + zp(€)] sinmé

1
X
(coshw(x + &) + cosmwé

§
§-.25
- s
I g-15
-5 .
-
_Lob_ Toao b v b e b by gy e
-25 20 1.5 10 5 0 x

F1G. 5. Equilibrium density surfaces for a sloping bottom.
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1
coshm(x — &) + cosw

“|
where again zz(0) = —d. This solution is sufficiently

complex, however, that I prefer the simple example
(4.5) for illustrative purposes.

) + (2d/w) tan™!

——STET——tame/z) ~ A -d)s, &7
1 + coshmx

5. Conclusions

The simple model presented in this paper demon-
strates the equilibrium structure for the dynamic
variables in an upwelling zone determined solely by
potential vorticity and density conservation. The
basic assumption is that after upwelling has been
initiated each density surface rises to allow fluid to
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enter the upper mixed layer in a narrow surface re-
gion near the coast. The reasonableness of this
assumption is subjectively strengthened by compari-
son with observation. Fig. 6 shows the observed
isopycnal surfaces off the Oregon coast in late sum-
mer (29 August 1973), late in the upwelling season.
The qualitative similarity to Figs. 1 and S is apparent.
Nevertheless, as is the case for all recirculating fluid
systems dissipation must be important over a por-
tion of the fluid path not governed by the inertial
theory. This is implicitly part of the present model
which does not describe the offshore flux in the
thin upper Ekman layer, nor does the theory de-
scribe the viscous boundary layer in which the long-
shore velocity is brought to rest at the coast. The
most important deficiency of the inertial model,
though, is its inability to describe the mixing
process, implicitly assumed in the theory, whereby
dense fluid flows into the corner region where in-
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Fic. 6. Observed isopycnal surfaces off the coast of Oregon, August 1973
(courtesy of Holbrook and Halpern, 1974).
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tense mixing with the surface waters allows the
water to flow seaward with the surface density.
Nevertheless, the advantage of the inertial theory
is obvious. It yields predictions for the upwelling
scale, the velocity field and the density field inde-
pendent of any turbulent mixing coefficient and
independent of any linearization hypothesis.
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