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ABSTRACT

A theory of barotropic, nondivergent, zonally propagating waves on an equatorial beta-plane with
topography is presented. The bottom contours are assumed to be parallel to the equator, so that th; depth
profile H is a function only of y, the northward coordinate. Solutions for trapped waves are dex:n'/ed f'or
the following depth profiles: 1) a single-step escarpment, 2) a flat continental shelf, 3) a sen_'u-mﬁmte
sloping beach, and 4) an exponentially varying continental shelf/slope region that monotonically increases
to a constant depth far from the shoreline. For each wave solution presented, numerical examples. of
typical periods and phase speeds are also given. The eigenfrequencies w, for the waves trapped on a sloping
beach with depth profile H = H, + ay take a particularly simple form: w, = —gHy/|e|(@2n + 3), where
n=0,1,2,..., and B8 = 2Q:/R (9 and R are the earth’s angular speed of rotation and radius,
respectively). A number of qualitative results are also derived. For example, a WKB-type argument
is used to show that equatorial trapping will always occur over any monotonic depth profile that straddles
the equator. Also, it is proved that the phase of an equatorial topographic wave propagates westward or
eastward according to whether the equilibrium potential vorticity S8y/H(y) is a monotonic increasing or
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decreasing function of y.

1. Introduction

In the last two decades increasing attention has
been devoted to the study of large-scale tropical
ocean currents. In attempts to understand the dy-
namics of these currents, which are primarily driven
by the trade winds, investigators have developed
essentially two types of models: 1) linear, initial-
value, wave-type models and 2) linear and non-
linear, steady-state circulation models [see Moore
and Philander (1977) for a recent overview]. In the
first group of models it is shown how the currents
can be generated by the sudden application of a pre-
scribed wind-stress field to an initially calm, stably
stratified inviscid ocean. The response in these
models is represented by a superposition of the
equatorial wave modes that can exist in an equatorial
B-plane ocean of uniform depth. In the second group
of models, steady-state, wind-driven circulation pat-
terns are studied on the assumption that these pat-
terns may eventually result from the transient, wave-
like motions found in the first group of models. The
more recent modeling efforts, however, have at-
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tempted to join these two types of responses. For
example, Anderson and Rowlands (1976) and Cox
(1976) have studied the evolution of an initially
generated equatorial wave pattern in the Indian Ocean
into a steady coastal current that models the Somali
Current off the east coast of Africa.

In the theoretical studies described above, it is
assumed that the effects of topography are negli-
gible. However, a glance at a bathymetric chart of
the tropical oceans reveals the presence of trenches,
mountain ridges, escarpments and continental shelf/
slope regions that either cut across or run nearly
parallel to the equator. Thus it is natural to ask what
effects these topographic features have on equatorial
waves and hence how topography affects the
results found in the earlier studies on tropical cur-
rents. Since long-period waves at mid-latitudes can
be strongly affected and even dominated by large-
scale topographic features (Rhines, 1977; LeBlond
and Mysak, 1977, 1978), it is conceivable that
topography may play an important role in equatorial
wave propagation. Moreover, as Moore and Phi-
lander (1977) pointed out, before the actual bathym-
etry of the ocean floor is incorporated into sophis-
ticated numerical models of the tropical oceans, it
is valuable to know, in idealized situations, how
topography influences equatorial waves. Indeed,
in recent numerical experiments designed to study
wave propagation around the North Atlantic basin
it was found that the incorporation of the ba-
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thymetry completely altered the picture. With
topography included, an elementary description in
terms of equatorial and coastal waves was no longer
possible (D. Anderson, 1977, personal communi-
cation).

In this paper we investigate the properties of
zonally propagating, long-period equatorial waves in
a simple tropical ocean model with topography. We
assume that the motions are barotropic and non-
divergent, and that the isobaths are parallel to the
equator. The governing equations for this model are
presented in Section 2, along with the appropriate
boundary and matching conditions. The solutions
for waves trapped along a single-step escarpment
and a flat continental shelf are given in Sections
3 and 4, respectively. These waves are the equatorial
counterparts of the mid-latitude double Kelvin wave
and the continental shelf wave which were first
studied in terms of these topographic models by
Rhines (1967, 1969) and Larsen (1969), respectively.
The solution for a trapped wave on a slopirg beach
is given in Section 5. Its mid-latitude kin is the
trapped quasi-geostrophic wave on a sloping beach
investigated by Reid (1958). In Section 6 the solu-
tion for trapped waves on an exponential depth pro-
file is presented. This profile, first introduced by
Ball (1967) in a study of edge waves at mid-latitudes,
reduces to a uniformly sloping beach region close to
shore and asymptotes smoothly to a constant depth
region far from shore. Finally, in Section 7 some
qualitative results concerning trapped waves over
arbitrary profiles are established.

2. Governing equations

The linearized equations for barotropic, non-
divergent motions on an equatorial B8-plane with
depth profile H(y) are given by

u = Byv +p7ip, =0
v+ Byu + p7ip, =0 ;
Hu, + (Hv), = 0,

2.1
2.2)

where u, v are the velocity components in the x
(eastward), y (northward) directions, p is the pres-
sure, p the density and 8 = 2Q; /R, Qf and R being
the earth’s angular speed of rotation and radius,
respectively. In view of (2.2) we can express the
velocity components in terms of a mass transport
streamfunction ¥(x,y,?:

u=—-v,/H,

v=Y,/H. 2.3)

Substituting (2.3) into (2.1) and then eliminating p,
we obtain the vorticity balance equation

H™ Wy + (HW), + B(HTY), V. = 0. (2.4)
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For zonally propagating waves of the form

¥ = (y)eikr—en k>0, (2.5)
(2.4) reduces to
(H") — [H7'K® + (kBlw)(H™'y)'}p =0, (2.6)

where the prime indicates d/dy. To complement
(2.6) we need to impose certain boundary and match-
ing conditions.

If there are no boundaries to the north and to the
south, we shall require that

y—0 as (2.7a)

y — £,

i.e., the waves are trapped near the equator. On
the other hand, if the ocean is of semi-infinite extent,
with y, < y < o, say, we shall require that

y—>0 as y— +x (2.7b)
and
y=0 at

Y = Ve (2.8

The last condition applies when 1) there is a vertical
wall at y = y. or 2) the depth goes to zeroaty = y,
(a shoreline). If there is a discontinuity in the depth
aty = y,, say, we require that the normal transport
Hv be continuous at y = y,. From (2.3) and (2.5) we
thus obtain the jump condition

[Wl=0 at y =y 2.9)

A second jump condition is obtained by integrating
(2.6) over the interval (y, — €, y. + €) and then
taking the limit € — Q. The result is

[H '] ~ (Bkye/o)p(y)LH'] =0

at y =y,
where (2.9) has been used. Physically, (2.10) guaran-
tees that the pressure is continuous at y = y,. We
note that since H W' «<u, Eq. (2.10) implies that

there is a vortex sheet at y = y,, unless, of course,
ye = 0.

(2.10)

3. The equatorial double Kelvin wave

As our first example we discuss the trapping of a
wave along the single-step escarpment

Hl’
Hy,, -»o<y<y,.

Ye<y<=ow

H(y) = 3.1)

Rhines (1967, 1969) was the first to use this form for
H(y) to study the topographic trapping of long-
period waves at mid-latitudes. Substituting (3.1) into
(2.6) we find that on either side of the escarpment,
the amplitude i(y) satisfies the equation

P — (k* + kB/w)p = 0. 3.2)
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The solution of (3.2) which satisfies the trapping con-
dition (2.7a) and thejump condition (2.9) is given by

P = Ae KV (3.3)

where A is an arbitrary constant and K = (k?
+ kBlw)'? > 0. Because (3.3) decays exponentially
for both y > y. and y < y,, Longuet-Higgins (1968)
called a solution of the form (3.3) a “*double Kelvin
wave’’. The dispersion relation is determined by
requiring (3.3) to satisfy the second jump condition
(2.10). The result is

1 -8
1+8°

where & = H,/H,. Eq. (3.4) is the analog of the
dispersion relation obtained by Rhines (1967, 1969)
for a long-period wave trapped on a mid-latitude
escarpment on an f-plane, viz.,
1-38
1+8°

wK = Bky, (3.4)

w=f 3.4

where fis the (constant) Coriolis parameter. Note
that the above relation implies that the group
velocity dw/8k is zero for all k. On the other hand,
(3.4) implies that 8w/8k # 0 for the equatorial
double Kelvin wave.

We first note that (3.4) is invariant under the
transformation

8= 1/8, ye— —ye. (3.5

Therefore, without loss of generality, we need only
consider the case < 1, withy, > Qory, < 0. When
ye > 0 (depth discontinuity in Northern Hemi-
sphere), Eq. (3.4) implies that w > 0 since K > 0,
k > 0 and 8 > 0. This means that the wave phase
propagates eastward with the shallow water to the
right. When y, < 0 (depth discontinuity in Southern
Hemisphere), on the other hand, the phase propa-
gates westward with the shallow water to the left.
Thus we conclude that the usual rule for the direc-
tion of phase propagation of topographic Rossby
waves on an f-plane at mid-latitudes also carries
over to the zonally propagating equatorial double
Kelvin wave. It is interesting to note that if y, = 0,
Eq. (3.4) implies that the only wave solutionis K = 0
(no trapping possible) and hence, from the definition
of K, w = —f/k, the usual dispersion relation for a
one-dimensional, westward-propagating Rossby
wave. H

If we square (3.4) and solve the resulting quadratic
for w, we obtain

®

Byl

where « = k|y,| and A? = (1 — 8)2/(1 + &)%. This
relation is plotted in Fig. 1 for the case 8 = V5. From
this figure we note that while the phase propagation

O =

= (12x)[—1 + sgny(1 + 4AZk?)172],
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Fic. 1. The dispersion relation (3.6) for an equatorial double
Kelvin wave traveling along the discontinuous depth profile
(3.1). Since the dispersion relation is invariant under the
transformation (3.5), the upper (lower) curve also applies to the
case 8=2and y, < 0 (y, > 0).

changes direction according to the location of the
depth discontinuity, the energy always propagates
eastward. A similar result was also obtained by
Rhines (1969) when the B-effect was incorporated
into his mid-latitude double Kelvin wave solution.
In fact our Fig. 1 is analogous to the case « = 0 in
Fig. 10 of Rhines (1969).

A few numerical examples of the period and phase
speed of an equatorial double Kelvin wave are
given in Table 1 for the case in which the depth
discontinuity is located either 500 km north or
500 km south of the equator. Note that the west-
ward propagating waves (y, < 0) travel consider-
ably faster than the corresponding eastward propa-
gating waves (y, > 0). This large numerical asym-
metry in the phase speed is completely absent
for double Kelvin waves on a mid-latitude escarp-
ment: Eq. (3.4)" implies that the phase speed in the
Southern Hemisphere is just the negative of that in
the northern hemisphere.

TaBLE 1. The period and phase speed of an equatorial double
Kelvin for two prescribed wavelengths. In all cases § = Ho/H,
= 0.5 as in Fig. 1.

Period (days) Phase speed (km day~Y)

Wave-

length Ye Ye Ye Ye
(km) =500 km, = —500km = 500km, = —500km
1000 30.3 1.8 33.0 84.8
3000 63.7 6.07 47.1 494
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If the depth profile across the escarpment region
is continuous rather than discontinuous, then the
escarpment behaves like a potential well, with the
amplitude ¢(y) being oscillatory over the escarp-
ment and decaying on either side of it. Further, in
this case there exists an infinity of escarpment
modes, of which the fundamental one reduces to
(3.3) as the escarpment width tends to zero. An
example of such modal solutions for the case of
mid-latitude double Kelvin waves on the f-plane
is given in Rhines (1969). Another possibile exten-
sion of the theory presented here is to include the
free-surface divergence, which will likely be impor-
tant at long wavelengths. For the mid-latitude case
this extension has been carried out by Longuet-
Higgins (1968).

4. Equatorial shelf waves on a flat shelf

We now investigate the propagation of a con-
tinental shelf wave trapped along a flat shelf. The
depth profile is a slight variant of (3.1):

H,, y, <ysw®
H2a chye—lsy<ye

where H, > H, (deep water to the north) anc /is the
shelf width. The case of a shelf with deep water to
the south will be discussed later. The equation for
the amplitude ¥{(y) in both the shelf (y. =y <y,)
and deep sea regions (y, < y <) regions again
takes the form (3.2). The solution for ¥ which satis-
fies (3.2) in each region, the boundary conditions
(2.7b) and (2.8), and the jump condition (2.9) s given
by

_ [A sinhK(y — y, + ),
A sinh Kle ¥w—ve),

H) = [ @.1)

-lsy<
Ye Yy < Ye 4.2)
Ve <y =@
The substitution of (4.2) into the jump condition
(2.10) gives

wK(d sinhK! + coshKl)
= Bky.(1 — &) sinh Kl (4.3)

for the dispersion relation. As in Section 3, 8§ = H,/
H,, and 8 < 1 for deep water to the north. We also
note that in the wide-shelf limit K/ — o, (4.3) re-
duces to (3.4), the dispersion relation for a single-
step escarpment.

The solution (4.2), (4.3) is the equatorial counter-
part to the ‘‘quasi-geostrophic’” wave solution found
by Larsen (1969) [see also LeBlond and Mysak
(1977) for an elementary account of this solution].
To obtain Larsen’s mid-latitude solution from (4.3),
replace K by k and By, by f, the Coriolis parameter,
which yields an explicit relation for @ as a function
of k. By way of contrast, (4.3) is an implicit relation
between w and k. Therefore, to solve for w as a func-
tion of kK one must use an iterative numerical scheme.
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Nevertheless, certain qualitative results about the
direction of phase propagation can be determined
directly from (4.3), without recourse to numerical
computations. Before discussing these results, how-
ever, we now give the solution for a shelf with
deep water to the south.

For the depth profile

H, y<ysy =y +1
H(y)z[ b Ye <Y SY =Yy (4.4)
H27 —0 = y < ye .
where H, < H,, i takes the form
_[AsinhK(y—ye—l), ye<y<ye+l(45)
—A sinhKlef@—v) -2 <y <y,. '

The dispersion relation corresponding to (4.5) is
given by

w K(8 coshK! + sinhKl)

= Bky(1 — 8) sinhKI, (4.6)

which also reduces to (3.4) in the limit K/ — .

Although (4.6) is not identical to (4.3), the trans-
formation (3.5) takes (4.6) into that form. Therefore,
we again need only focus our attention on (4.3). Since
8§ < 1forthe shelf model(4.1)and K, [, k and Bare all
positive, it again follows from (4.3) that the shallow
water is to the right (left) of the direction of phase
propagation when the depth change is in the Northern
(Southern) Hemisphere. [It is also interesting to note
that if 8§ > 1 (a deep trench against the coast), (4.3)
implies that the same principle holds, although in
this case the shallow water is of semi-infinite
extent.] .

In terms of the nondimensional frequency ()
= w/B|ye] and wavenumber k = k|ye|, the disper-
sion relation (4.3) can be written as

_ sgny.x(l — ) sinhxr

= d R 4.7
x(8 sinhxr + coshxr)

where x = (k* + k/Q)2and r = l/]ye]. The curves
Q vs « for various values of r and & are shown in
Figs. 2 and 3.

From Fig. 2, the case y, > 0, we note that the
phase and group velocities are always directed east-
ward. For fixed r (shelf width), the phase speed
increases inversely with 8, that is, as H,/H,
decreases. Also, we note that for fixed 8 the phase
speed increases with r (shelf width), although for
r > 1 the changes in the phase speed are very small.
Indeed, the 8 = 0.5 curve in Fig. 2¢ is almost identi-
cal to the upper curve in Fig. 1 (the case r = «). The
qualitative properties of the dispersion relations
shown in Fig. 2 are very similar to those for a
mid-latitude flat shelf. Finally, we remark that in
view of the relationship between (4.3) and (4.6), any
curve labeled 8, in Fig. 2 also applies to the case



306

FREQUENCY, 8 = /g ly,|
1O T

T T I T T T !

o8} (a) r=02
3 =01
0.6 |- — 0.2
04l 4
— 0.5—
02 g 5 ~
0 1 1 1 I 1 I B |
0 2 4 6 8 10
1.0 T T T T T T
osF (b)r=10 S0 4
0.6
0.4
0.2
0 !
o] 2 4 [<] 8 10
1.0 T T T T T T T
L (e) r=100
08 §=01—
0.6 0.2 —
0.4} -~
0.5 |
0.2 4
o I SR T WO TR SN N R
[o] 2 [ 8 0

q
WAVENUMBER, x = k [y,

F1G. 2. The dispersion relation (4.7) for y, > 0. The parameter
r=1 [ ye| is a measure of the shelf width. The parameter 8 = H,/
H, is the ratio of the shelf depth to deep-sea depth.

¥Ye < 0and 8, = 1/8, (shelf break in Southern Hemi-
sphere and deep water to the south).

From Fig. 3, the case y, < 0, we see that there
is a long-wave cutoff for the existence of a trapped
wave, a result-which is unique to the equatorial
flat shelf. To the left of each curve, K2 + K/ <0
and hence the exponential term in (4.2) becomes
oscillatory, the result being that energy radiates
away from the shelf in the form of a Rossby wave.
This behavior can be explained physically if we re-
call that the Fig. 3 curves correspond to the case
where the shelf is in the Southern Hemisphere
whereas the bulk of the deep sea region is in the
Northern Hemisphere. Thus there is a delicate bal-
ance between the restoring force due to topography
(which tends to send the wave directly westward)
and that due to planetary vorticity (which tends to
send the wave northwestward). For large-scale mo-
tions (small k), the B-effect dominates and the waves
cannot be trapped against the shell. Another in-
teresting feature evident from Fig. 3 is the existence
of a zero group velocity at intermediate wavenum-
bers for the cases r = 0.5, 1. That is, the direction
of energy propagation changes sign, being along the
phase velocity at long wavelengths and opposite to
the phase velocity at short wavelengths. The same
phenomenon occurs for shelf waves at mid-latitudes
over a certain type of exponential shelf profile on the
fplane (see LeBlond and Mysak, 1977, Fig. 14).
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For small (large) r, however, the group velocity is
always westward (eastward) and hence is in (against)
the direction of the phase velocity. Finally, we re-
mark any curve labeled 3, in Fig. 3 also applies to
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F1c. 3. The dispersion relation (4.7) for y, < 0. The parameters
r and & are the same as in Fig. 2.
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the case y, >0 and 8, = 1/8, (shelf break in
Northern Hemisphere and deep water to the south).

A few numerical examples of the period and phase
speed of an equatorial shelf wave are given in Table
2 for the case in which the shelf break is located
either 500 km north or 500 km south of the equator.
We note that the wavelength 1300 km essentially
corresponds to the long-wave cutoff at K=2.4
shown in Fig. 3a. In contrast to the escarpment
results shown in Table 1, we see that the westward
propagating shelf waves (y, < 0) travel only mar-
ginally faster than the eastward traveling waves
(ye > 0).

5. Trapped waves on a sloping beach

One of the main shortcomings of the discontinu-
ous depth profile used in the previous two sections
is that it permits only one mode of oscillation. The
simplest smooth, continuous profile which will admit
an infinity of modes is the uniformly sloping beach

H(y) = Hy + ay, (5.1

where o > 0 (<0) corresponds to deep water to the
north (south). The profile (5.1) has had a long his-
tory in the theory of coastally trapped waves at
mid-latitudes (see LeBlond and Mysak, 1977).
Therefore it is of considerable interest to determine
the properties of the long-period waves that are
trapped over a sloping beach that is located near the
equator. The substitution of (5.1) into the amplitude
equation (2.6) gives

(Ho + oyl — ay’ — [(K* + kBlw)H,
+ak®ylp=0. (5.2)

For the sake of definiteness we first consider the
case o > 0 (deep water to the north), for which the
domain of (5.2) is —Hy/a <y < o, The transforma-
tion ;

y* =y + Hla (5.3)

takes the above domain into 0 <y* < . Next we
introduce the dimensionless coordinate

n = ky*, (5.4)

TABLE 2. The period and phase speed of an equatorial shelf
wave on a flat shelf for three prescribed wavelengths. In all cases
8 = HyH, = 0.1 and r = I/]y.| = 0.2, which are values of § and
r also used in Figs. 2 and 3. For |y,| = 500 km, the value r = 0.2
corresponds to a shelf width of 100 km.

Period (days) Phase speed (km day™!)

Wave-

length Ve Ve Ve Ye
(km) =500 km, = -500km = 500km, = -S500km
500 9.8 8.2 51.0 60.0
1000 14.2 11.8 70.4 84.8
1300 17.7 14.2 73.5 91.6
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which is positive since £ > 0. In terms of the new
independent variable n, Eq. (5.2) takes the form

M — Yy — M+ AP =0,0<n=<x, (55)
where the eigenvalue A is given by
A =B Hjawn. (5.6)
The boundary conditions (2.8) and (2.7b) become
gp=0 at n=90 (5.7)
and
g—0 as n— x, (5.8)

The system (5.5), (5.7) and (5.8) constitutes a
two-point boundary value problem on the positive
half-line with A as the eigenvalue. Once the
eigenvalues A, are known, the eigenfrequencies
w, of the different modes are determined from (5.6).
Since A is independent of %, the eigenfrequencies
will also be independent of k!

Eq. (5.5) can be transformed into a confluent
hypergeometric equation, which then has to be
solved subject to a modified form of the conditions
(5.7), (5.8). However, a more direct approach in- .
volves solving the original system by means of the
Laplace transform. If we apply the Laplace trans-
form defined by

P(s) = J

0

o0

e Y(n)dn (5.9

to (5.5) and invoke (5.7), we find that §i(s) satisfies
the first-order differential equation

dy 35 + A -
_l{l_:— s + i

. 5.10
ds 52 —1 ( )
The general solution of (5.10) is
- A
i(s) = . ,  (5.1D)

(S — 1)(34—}0!2(5 + 1)(3-;\)!2

where A, is an arbitrary constant. Hence yi(7) is
given by

ioo+y

wm = — [ serds, y>1, (5.12)

2w | imy
where ¥(s) is the function defined in (5.11). For
arbitrary values of A, {¥i(s) has branch points at
s = =1 and hence (5.12) will have a dominant be-
havior like ¢" as n — «, which violates the condi-
tion (5.8). However, this difficulty can be avoided if

weset(3+AN)/2=-nn=0,1,2, ..., that is,
take A to have the discrete values
Np=-2n-3, n=0,1,2,.... (5.13)

Thus, as there is now no singularity at s = 1 we
can set y = 0 and obtain the eigenfunctions by
evaluating the contour integral
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A, r’ (s -
2mi |y (s + 1)*3
n=0,1,2,...
= __An_ dm [8"3(3 _ l)n]
(n + 2)! | ds™*?

Js=-1
On carrying out the differentiations in (5.14), we
find that

ns

() =

b

(5.14)

n!
Ae™*LP(2m),

(M) = T

n=0,2,..., (515

where L ?(z) is the generalized Laguerre polynomial
of degree n; it is a solution of the special
confluent hypergeometric equation (Abramowitz
and Stegun, 19635, p. 509)

w+ Q@ —-zw +aw=0,n=0,1,.... (5.16)
The polynomials take the form
LE(z) = 1 R
LP2Z)=3 -2
LP(z) =6 — 4z + 22
: - (.17
n
L@ = § ("2 )z
m=0 m! - m J

Thus we see that the nth mode has »n nodal lines
parallel to the shoreline located n = 0. The poly-
nomials (5.17) form a complete set on the interval
(0,) and are orthogonal with respect to the weight
function z2e~2. To obtain the eigenfunctions in terms
of y, we simply put w = k(y + Hy/a) [see (5.3) and
(5.4)] into the right side of (5.15).

Substituting (5.13) into (5.6), we find that the
eigenfrequencies are given by

wn=——£0-/3—— n=0,1,2,...,

an +3)’

where, we recall, « > 0. The analogous result for
trapped quasi-geostrophic nondivergent waves on a
mid-latitude sloping beach is given by (Reid, 1958)
f

w, = —2——, n=0,1,2,...,
2n + 3

where fis the (constant) Coriolis parameter.* The

(5.18)

(5.19)

4 The formula given in (5.19) is obtained in the process of
solving the mid-latitude amplitude equation (7.1) in which S,
=0, f= constant and H = ay. If we take the formal non-
divergent limit g — % (or k — =) in Reid’s (1958) dispersion
relation [Eq. (33) in LeBlond and Mysak, 1977], which is
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difference between these two formulas can be ac-
counted for heuristically as follows. We first note
that the equatorial and mid-latitude Rossby numbers
are defined as U/BL? (Moore and Philander, 1977)
and U/fL, respectively, where L is a horizontal
length scale. Therefore to go from the latter to the
former Rossby number we replace f by BL. Simi-
larly, (5.18) can be obtained from (5.19) by replacing
fin the latter by BL, where L is identified as —H,/e,
the distance between the shoreline and the equator.
If Hy, < 0 (>0), the shoreline is in the Northern
(Southern) Hemisphere and, accordingly, Eq. (5.18)
implies that the wave phase propagates with the
shallow water to the right (left). Thus again the
rule found in Sections 3 and 4 applies to the equa-
torial sloping beach. Eq. (5.19) also conforms to this
rule if we recall that f> 0 (<0) in the Northern
(Southern) Hemisphere. It is interesting to note that
both (5.18) and (5.19) are independent of k& and
hence the group velocity in each case is zero: the
waves propagate no energy. Another example of
such an inert, long-period wave is the nondivergent,
double Kelvin wave on the f-plane, whose disper-
sion relation is given in Eq. (3.4)’ (Rhines, 1967,
1969). Lastly, we observe that w, = 0 for the equa-
torial wave if H, = 0 (shoreline on the equator).
This result can be interpreted as follows: In this case,
the phase velocity is the average of the velocities for
the cases Hy, > 0 and H, < 0 and hence is zero.

When o < 0 (deep water to the south), we can
again introduce the mapping (5.3). However, in
place of n defined in (5.4), we use the variable 7’
= —ky*. Proceeding as before, we now find that,
for a < 0,

__HB
" a@n+3)]

but that the eigenfunctions ¥,(n’) are also given
by (5.15) with 7 replaced by n'. However, to get
the eigenfunctions in terms of y, ' has to be replaced
by —k(y + Hy/a). We note that (5.20) also concurs
with the phase propagation rule. Consequently,
(5.18) and (5.20) can be combined into the one
relation valid for all a: .

__ HB
la]@n +3)°

n=0,1,2,..., (5.20)

=0,1,2,.... (58.21)

W, =

obtained by solving an eigenvalue equation for the surface
elevation, we obtain v, =f/2n + 1),n =0,1,2,. . . . Thus by
starting the analysis from the nondivergent equations we auto-
matically have eliminated one of the modes (the inertial mode
o =f in the case of Reid’s quasi-geostrophic wave, and the
mode @ = —HyB/a in the case of the long-period equatorial
sloping beach wave discussed here). Finally, we note that while
the eigenfrequencies for the long-period equatorial and mid-
latitude sloping beach waves are quite different, the eigen-
functions ¢, in both cases take the form (5.15).
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The period 7, of the gravest mode trapped on a
sloping beach whose coastline is either 500 km north
or 500 km south of the equatoris 19.1 days (sce Table
3). The higher modes have longer periods since T,
x2n + 3, where T, = 2n/|w,|.

6. Trapped waves on an exponential depth profile

As our final example, we seek trapped wave solu-
tions for the Ball (1967) depth profile given by

H = H|[1 — emaw-3)], (6.1)

where a > 0 (deep water to the north). Close to the
shoreline [a(y — y.) < 1], the profile (6.1) reduces to
the sloping beach profile (5.1), i.e.,

H=~—-Hay. + Hiay=H, + ay.

ycsysw!

(6.2)

However, as y — » the depth increases mono-
tonically to a constant (H,). If (6.1) is written in the
form (for y, > 0)

H = H(l — e 1], (6.3)

where y = ay. and Y = y/y., we notice that the
magnitude of the parameter y determines how
quickly the depth increases away from the shore-
line. For small (large) vy, (6.3) implies that the depth
increases very slowly (quickly) as Y increases away
from unity. We shall call y the growth rate of
the depth profile. Finally, we observe that if a < 0,
then (6.1) can also be used to describe the situation
with deep water to the south provided we redefine
the domain of H(y) as —c<sy=<y,.
The substitution of (6.1) into (2.6) yields

[1 —_ e—a(y—yc)]w" — ae—a(u—yc)lp' — {[1 _ e—a(y—yc)]k2
+ (kBlw)[1 — (1 + ay)e @ vy =0. (6.4

The appropriate boundary conditions are

I=sY=w,

=0 at y=y,, (6.5)
and
$—>0 as y— o= (a>0), (6.6a)
or
P—>0 as y— —o (a <0). (6.6b)

It is now convenient to introduce the new inde-
pendent variable z defined by

TABLE 3. The period and phase speed of the gravest mode
(n = 0) trapped wave on a sloping beach for two prescribed
wavelengths. According to (5.21), the period of this mode, for
either westward or eastward propagation, is Ty = 6m/8L, where
L = |H,|/|L| is the distance between the coastline and the
equator. In computing T, below we have set L = 500 km.

Wave-

length Period Phase speed
(km) (days) (km day™)
1000 19.1 52.4
3000 19.1 157
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z = e——u(y~yc) - 1.

(6.7)

Under the transformation (6.7), the domains y. <y
oo (gq>0) and —xsy=<y, (a <0) are both
mapped into the finite interval —1 <z <0. In terms
of z, Eqs. (6.4)—(6.6) become, for both a > 0 and
a <90,

a? . .
z(z + 1)y —l—p —(z+ 1 ﬂ + [—(k* + kid)z
dz? dz

= (kyld)(z + 1) + (kld)(z + 1) log(z + D}y = 0,

—-1<z=<0, (6.8)
=0 at z =0, (6.9a)
=0 at z= -1, (6.9b)

where y=ay,, k=k/|a| >0 and &=w|a|/B.
Because of the presence of both algebraic and
transcendental coefficients in (6.8), there are no
solutions of this equation in terms of known special
functions. By way of contrast, the corresponding
equation for waves on a mid-latitude exponential
profile on an f~plane does not contain the logarithmic
term and consequently has solutions in terms of
hypergeometric functions (Ball, 1967).

We observe that the Eq. (6.8) has a regular
singular point at z = 0 and an irregular singular
point at z = —1. Therefore we can use the method
of Frobenius to find a series solution of (6.8) in
powers of z. First, however, it is necessary to ex-
pand the term (z + 1) log(z + 1) in (6.8) in a Taylor
series about z = 0. The resulting equation we thus
wish to solve is

2,
aikd —(z+ 1 ﬂ ’
dz? dz

z(z22+ 2z 4+ 1)

+[—v0 + (2 + y9)z + 0 S bzl =0,
n=t

~-1=sz=<0,

(6.10)

subject to the boundary conditions (6.9). In (6.10)
0 is the inverse of the nondimensional phase speed,
viz.,

6 = kie, 6.11)
and the coefficient b, is defined by
—1g - 2)!
b= T =D L5 62

q!

We now seek a solution of (6.10) of the form

¥ = ZO anz™?, ay # 0. (6.13)
e

Substitution of (6.13) into (6.10) yields the indicial
equation

pp —2) =0, (6.14)
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with solutions p, = 2 and p, = 0. It is clear that
(6.13) will satisfy (6.9a) only if we choose p, = 2.
(The second root p, = 0 leads to a second linearly
independent solution which is logarithmically
singular at'z = 0.) For the root p, = 2, the recur-
rence relation reduces to

(r + 3)(r+ S)as + [(r + H2r + 5) — v6la,,,
+ [(r + 2)(r + 3) — k2 - ybla,.,
+ 0d,4s = 0, -2,-1,0,1,2,...,

where

Yy =

(6.15)
a,,‘EO for n< -1

n—2
dn = E bn—jaj’

i=o
=0 for n=<1
The dispersion relation for each mode is deter-

mined by applying the condmon (6.9b) to the solu-
tion (6.13), viz.,

n=273,

o©

2 an(—D™
m=0

Since the series (6.16) converges rapidly, we can
truncate it after N terms and hence determine good
approximations to the dispersion relations &,(k)
of the first few modes (n = 1,2, . ny <€ N). The
larger N is, of course, the better the approximations
become. Using (6.15) repeatedly we can express
each coefficient in the truncated series obtained from
(6.16) in the form

A = aoFm(o,&,'}’), m = 1>2y o 7N7

where F,, is a polynomial in 8 of degree m. Thus
after some rearrangement, the truncated form of
(6.16) can be written

0=A, + A0 + A,0% + . ..+ Ay8”, (6.17)

where A, = Am(IA(,'y). We now set y =1v,, a fixed
growth rate for a given topography [see (6.3)], and
solve (6.17) for the roots 6,, n = 1, ,N, as a
function of wavenumber & for 0 < & < 12 Then from
(6.11) we can determine the approximations to
&a(k; o), the dispersion relation of the nth mode
corresponding to the preassigned decay rate y,. The
results for the first three modes (n = 1,2,3), ordered
according to decreasing values of &, for a fixed k,
are shown in Fig. 4 (y > 0) and Fig. 5 (y < 0). To
compute these curves we used N = 20.
Examination of Fig. 4 reveals that for each mode
&, tends to a constant as k increases, i.e., at large
wavenumbers @, is independent of wavenumber.
This is in qualitative agreement with the formula for
w, for the sloping beach, which is strictly independ-
ent of wavenumber, since for large k£ we expect the
waves on profile (6.1) to be trapped near the shore-
line where the exponential profile is approximately

0= (6.16)
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FREQUENCY, &= w |a|/8
0.3 T T T T T T T T

(a) y =

WAVENUMBER, K = k/|q|

FREQUENCY, &=w|a|/B :
o7 T T T T T T T

(c} y=20 ]

0.6

0.5

0.4

0.3

0.2

o

o 1 1 | 1 i | 1 | ]
o 2 4 6, 8 10
WAVE NUMBER, K=k/|a|

Fic. 4. The dispersion curves of the first three modes (n
= 1,2,3)for the depth profile (6.1) for different values of the growth
rate y = ay. > 0. Note that y > 0 when a, y. > 0 (deep water to
the north, shoreline in Northern Hemisphere) or a, y. <0
(deep water to the south, shoreline in Southern Hemisphere).

linear. Note that this ‘‘agreement’’ is especially good
for y=0.5 (Fig. 4a), where &, =~ constant for
k=7. A second fact to note from Fig. 4 is that for
a fixed mode at a given wavenumber, &, increases
with ¥, or equivalently, with the bottom slope, since
dH/dy « vy [see (6.3)]. This property is also true for
topographic planetary waves at mid-latitudes.
Finally we note that the phase and energy always
propagate in the same direction (eastward), and that
the direction of phase propagation is in accordance
with our general rule [shallow water to the right (left)
in the Northern (Southern) Hemisphere]. These
general results are qualitatively similar to those for
long-period waves trapped on this profile at mid-
latitudes (Ball, 1967).
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We first note from Fig. 5 that for a fixed vy, @,
again tends to a constant as k — «, as in Fig. 4,
with the constant being the negative of the corre-
sponding constant in Fig. 4. This is to say, for a
fixed |'y| the dispersion curves are nearly sym-
metrical about the k axis for large k, which is in
agreement with the symmetry of (5.21) with respect
to a > 0 and a < 0. Second, we observe that the
phase now propagates westward (in accordance
with our general rule), but that the group velocity
¢, changes direction with increasing § For ‘‘small”’
v (Fig. 5a), ¢, and ¢ (the phase velocity) are in the
same direction for small k, and in opposite directions
at large k. (This also occurred for two values
of r in the flat shelf model—see Figs. 3b and 3c.)
However, it is interesting to note that for ‘‘large” y
(Fig. 5¢), ¢, = 0 at two values of k, so that ¢, and ¢
are in the same direction at small and large &, but
in opposite directions at intermediate k! This result
appears to be unique to the equator; the author is un-
aware of any topographies for which mid-latitude
shelf waves have two zero group velocities. Finally,
we note that, unlike the flat shelf case, there is no
long-wave cutoff for trapped waves. This is because
for v < 0 the bottom slope occurs on both sides of
the equator and is always able to provide a restoring
force to counteract that due to B.

A few numerical examples of the period and
phase speed of the gravest mode (n = 1) trapped
wave on the exponential profile (6.1) are given in
Table 4. We again note the same numerical asym-
metry in the phase speeds as found earlier for the
escarpment and flat shelf phase speeds: the west-
ward traveling waves (y. < 0) travel faster than the
eastward traveling waves (y. > 0).

7. Qualitative results

In the last four sections we presented solutions
for trapped equatorial waves over a variety of depth
profiles. In this section we first give a WKB-type
argument® which shows that trapped waves will
always exist near the equator over a monotonic,
slowly varying depth profile. We then derive a
simple criterion which can be used to determine
the sign of the phase speed for any prescribed depth
profile. Finally, we prove that any two distinct
amplitude eigenfunctions corresponding to two dis-
tinct eigenfrequencies are orthogonal with respect to
the weight function [y/H(y)]'.

The linearized vorticity equation analogous to the
amplitude equation (2.6) for the case of mid-latitude
zonally propagating waves takes the form

H’ , K fH’

"y — . —J =0 1

W= = |k =gy~ L ey =0, .1

31 am indebted to Dr. F. P. Bretherton for suggesting
this argument.
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WAVENUMBER, k=k/|q|

6 8 10
T T T

r (b) y=-10 1
-0. i i L N S ) I { A
FREQUENCY, &:=w|d| /8
WAVENUMBER, k=k/|q|
o 2 4 6 8 10
o T T 7 T T T T T

n
L (c¢) y=-20 3
-o. 1 i 1 L 1 1 1 t L
FREQUENCY, G=w|a|/B

FiG. 5. The dispersion curves of modes n = 1,2,3 for the depth
profile (6.1) for y = ay, < 0, which occurs whena >0, y. <0
(deep water to the north, shoreline in Southern Hemisphere)
ora < 0,y, > 0 (deep water to the south, shoreline in Northern
Hemisphere).

where f = 2Q; sing, + 2Qg cosde/R)y = fu + Boy,
¢, being the mean latitude. Provided ¢’ ~ ki,
it follows that the first topographic term in (7.1) is
much smaller than the second topographic term for
long-period waves (f/w > 1). Therefore, the term
—H'{y'/H can be neglected; this is Rhines’ (1969)
so-called ‘‘first approximation’’. Second, since the
term proportional to B, accounts for the latitudinal
variation in f, we can replace f by its mean value f;
in the second topographic term [Rhines’ (1969)
‘‘second approximation’’]. Finally, we suppose that
H is sufficiently slowly varying so that the slope
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TABLE 4. The period and phase speed of the gravest mode
(n = 1) trapped wave on the exponential profile (6.1) in which
a”' =500 km and y, = =500 km. For these values, y =1
(ye = 500 km)ory = —1 (y, = —500 km).

Period (days) Phase speed (km day™)

Wave-

length Ye Ye Ve Ye
(km) =500km, = -500km = 500km, = —500km
1000 25.5 20.2 39.2 49.5
3000 45.5 15.4 65.9 195

H' = a can be treated as constant. Under these
approximations, we can thus replace (7.1) by

k af,
no__ k2+___ 0 —
v [ w(B H(y)

in which « and f; are constants and H(y) is é slowly
varying function of y. Under the latter hypothesis,
(7.2) will have a solution of the form

l[l o eil(y)y’

)]d, -0, (1.2)

(7.3)

where [(y) is a slowly varying north-south wave-
number, provided

o= k(;(f;) - Bo) / [k + EO)].

The dispersion relation (7.4), which is valid near
a fixed latitude ¢,, can now be used to show that
over a monotonic depth profile which straddles the
equator and for which [afo/H(y)] — Bo > 0 when
afy > 0, the solution far from the equator on one side
must be of a decaying nature and, far on the other
side, oscillatory. For definiteness, let us suppose
that H(y) increases (1) as y increases'(]) and hence
a > 0 (deepening water to the north). Then starting
from a fixed latitude ¢, in the Northern Hemisphere,
where f, > 0, the numerator in (7.4) decreases ()
as y!. Thus for the wave frequency o to remain
constant, k% + [%(y) must decrease as y. But for
sufficiently large y (and hence H), we eventually
reach a latitude where [%(y) must become negative
so that the denominator can continue decreasing as
y1. This is to say, the north-south wavenumber
eventually becomes pure imaginary and (7.3) there-
fore implies a decaying behavior sufficiently far to
the north of the equator. Starting from a fixed lati-
tude — ¢, in the Southern Hemisphere, where f, < 0,
the numerator in (7.4) becomes more negative as
yl (the shoreline is approached). Therefore the
. frequency in (7.4) remains constant only if /2(y)].
This is to say, the amplitude is oscillatory far to
the south of the equator.

In a similar manner it is easy to show that if H(y)?
as y| (deepening water to the south), there must
now be a decaying behavior far to the south of the
equator and an oscillatory behavior far to the north.
We must emphasize that these results are strictly

(7.4)
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qualitative in nature. The argument we have pre-
sented only establishes the existence of a trapped
wave near the equator; it provides no details about
the precise structure of the solution near the equator
and it does not predict the direction of propagation

.near the equator.

We note here that the WKB argument given above
for the existence of trapped waves near the equator
is critically dependent on treating f as locally con-
stant and on having the depth varying monotonically
across the eguator. For the usual equatorially
trapped waves in an ocean of constant depth, it is
the rapidly varying f near the equator that is im-
portant, a feature which gives rise to two ‘‘turning
latitudes’’ symmetrically located on either side of
the equator. Outside the band formed by these two
turning latitudes, the amplitude equation for equa-
torially trapped waves has decaying solutions, and
inside this band, oscillatory solutions.

We now derive a simple criterion which can be
used to determine the direction of phase propagation
over any prescribed depth profile. If (2.6) is multi-
plied by ¢ and the resulting equation integrated over
the domain D (e <y < ® or y, <y < ® say),
we obtain

w
H

w'Z w2
| Xyl L4
» JDde kJDHy
_B (2 weay =
oo 03

c

where ¢ = w/k and ¢ < 0 (>0) corresponds to west-
ward (eastward) phase propagation. Since ¢'/H
« u and ¢ = 0 at the boundaries, the first term
vanishes provided u is bounded, which will be true
for all continuous depth profiles. Thus (7.5) gives
the following formula for c:

B J V(IH)'dy

(7.6)

Cc =

j (VH)W"™ + )y
D

Since 8 > 0 and the denominator of (7.6) is positive,
it follows from (7.6) that ¢ < 0 (>0) according to
whether y/H, which is proportional to the equilibrium
potential vorticity 8y/H(y), is a monotone increas-
ing (decreasing) function of y.

The above theorem succinctly summarizes the
results concerning the direction of phase propaga-
tion we found for specific depth profiles. For
example, in the sloping beach solution we found
that ¢ < 0 for the case Hy, >0 and a« >0 (see
Section 5). The result ¢ < 0 now directly follows
from the theorem since for this profile

y 1
H(y) a + Hyly

T as
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Finally, let us suppose that ¥,, w,(k) and ¢,
w(k) are two distinct amplitude eigenfunctions and
eigenfrequencies that are solutions of (2.6) and the
homogeneous boundary conditions [(2.7a) or (2.7b),
(2.8)]. In the usual manner, it readily follows from
the two equations for ¢, and ¢, that

kB(wm - wn)

WyWy

L (%) Yy = 0. (1.7)

Thus provided y/H is either strictly monotone in-
creasing or monotone decreasing (in which case the
phase speeds have a fixed sign!), Eq. (7.7) implies
that the eigenfunctions are orthogonal on D with
respect to the weight function (y/H)'.

8. Summary and discussion

The propagation of long-period, barotropic non-
divergent waves parallel to the equator over a
variety of depth profiles H(y) has been investi-
gated theoretically. It was found that the waves are
always trapped near the equator, a result which was
also established heuristically for any monotonic
profile H(y). The solutions obtained were par-
ticularly simple for H(y) corresponding to 1) a
single-step escarpment, 2) a flat shelf and 3) a uni-
formly sloping beach. In case 3 for example, the fre-
quency of the nth mode (n = 0,1,2, . . .) is given
by w, = —BHy/ |a|(2n + 3) for all zonal wavenum-
bers k > 0, where a is the bottom slope and y
= —H,/a is the position of the shoreline (where
H = 0). Finally, it was proved that the wave phase
propagates westward or eastward according to
whether the equilibrium potential vorticity Sy/H(y)
is a monotone increasing or decreasing function
and that the amplitude eigenfunctions are ortho-
gonal with respect to the weight function (y/H)'.

In the light of the above elementary theory of
equatorial topographic waves, it is now natural to
ask where these waves may be observed in the
ocean. First, it is conceivable that the equatorial
double Kelvin wave could propagate along the
Colon-Ecuador Ridge (which extends eastward of
the Galapagos Islands) or along the equatorial
part of the mid-Atlantic Ridge. Second, east-west
oriented equatorial continental shelf/slope regions
occur in the Gulf of Guinea, West Africa, off the
north coast of New Guinea and off the north and
south coasts of northeast Celebes, and therefore
equatorial shelf waves may exist in these regions.
Indeed, Houghton and Beer (1976) found that in 1974
the sea surface temperature along the coast of
Ghana (which runs approximately east-west on the
north side of the Gulf of Guinea) exhibited periodic
variations at a frequency of 0.07 cycles per day
(cpd) which propagated westward along the coast.
The average speed of this signal was computed to be
55 km day™!. A similar westward propagating
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wave of this frequency was also observed by J.
Picaut and J. M. Verstraete (personal communi-
cation) along the more extensive Ghana-Ivory
coast. They estimated the average speed to be
47 km day~'. Houghton and Beer (1976) suggested
that this wave is most likely an internal Kelvin
wave, whereas Picaut and Verstraete suggested
that the observed oscillation may be tidal in origin,
arising out of a nonlinear interaction between the
M, and S, tides in the northeast corner of the
Gulf of Guinea. It is suggested here that this wave
may also be interpreted as an equatorial shelf wave.
From the dispersion relation (4.6) for a flat shelf
with deep water to the south, we obtain a phase
velocity directed westward of 91.6 km day—!, which
corresponds to a period and wavelength of 14.2
days (0.07 cpd) and 1300 km, respectively, and to
the topographic values [ = 100 km, y, = 500 km and
H,/H, = 10. These topographic values approxi-
mately describe the situation off the Ghana coast.
Although this theoretical speed is about 65% higher
than the observed speed, it is sufficiently close to
warrant further observations and development of the
theory to see whether equatorial shelf waves do in
fact exist in this region.

With regard to further development of the theory,
we again emphasize that the most idealized model
for equatorial topographic waves has been used
in this paper. Natural extensions of the theory,
analogous to those that have been carried out for
mid-latitude double Kelvin and shelf waves, include
studying the effects of a finite-width sloping shelf
(Mysak, 1968),% free-surface divergence (Reid, 1958;
Longuet-Higgins, 1968), a laterally sheared mean
flow (Niiler and Mysak, 1971; Tareyev, 1971;
Brooks and Mooers, 1977), and deep sea (Mysak,
1967) or nearshore (Kajiura, 1974; Wang and
Mooers, 1976) stratification. A number of these ex-
tensions of the theory are now being investigated,
and the results will be reported in a future paper.

In closing, we now raise the following interest-
ing questions, mentioned briefly in the Introduction:
will equatorial topographic waves play an important
role in the time-dependent response of the tropical
ocean? It is conjectured that they will since the
length and time scales of such phenomena as the
Somali Current formation and El Nifio (which occur
in regions of variable topography) are of the same
order as the typical wavelength and period of the
waves discussed here, namely, O(1000 km) and
O(weeks). However, in connection with the Somali
current, it is noted that off the east coast of Africa
the shelf/slope contours are inclined at approxi-
mately 45° to the equator. The modification of the
theory discussed here to handle such nonzonal con-
tours is likely to be a challenging problem.

¢ The references quoted hereafter treat these various effects
for the case of mid-latitude waves.
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