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ABSTRACT

A numerical finite-difference model using the Laplace tidal equations on an fplane was developed to
predict how tidal motion is disturbed by an elliptic ridge. With the use of an open-ocean matching condi-
tion the model was used to study the effects of several generalized types of elliptic bottom topographies
and to study the particular case of the Hawaiian Ridge.

1. Introduction

Reviews of recent tidal literature by Hendershott
and Munk (1970) and Hendershott (1973) discussed a
great variety of global numerical models of ocean
tides. In these models, one of the most prominent
of the topographical features of the Pacific Ocean,
the Hawaiian Ridge, is so narrow that it was com-
pletely lost in the smoothing operations. However,
both Luther and Wunsch (1975) and Larsen (1977)
have observed considerable phase differences be-
tween tidal stations on opposite sides of the eastern
end of the Hawaiian Ridge.

In response to this problem, an open-ocean
numerical model with a long elliptic ridge was de-
veloped. Assuming that tides can be approximated
locally as independent free waves, this model was
used in an attempt to explain tidal elevations
throughout the Hawaiian Ridge.

2. Differential equation and inner boundary con-
ditions

The problem was formulated in elliptical cylindri-
cal coordinates (u, ¢), defined in terms of Cartesian
coordinates (x, y) as

(1

x = Y%a coshu cos¢]
y = Ya sinhu sing | ’

where a is the distance between the foci of the
coordinate system, 0 < ¢ < 27 and u = 0.

In this coordinate system, the Laplace equations
for a periodic barotropic tide with constant rotation

and without forcing terms were given by Platzman
(1971) as
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Here Z(u,9) is the time-independent sea surface ele-
vation, defined in terms of the time-dependent sea
surface elevation ¢ by {(u,$,t) = Re[Z(u,d)
exp(—iot)], where o is the time harmonic frequency
of the motion and ¢ time. The remaining quantities
are as follows:

L(Z) the differential operator on Z
h(u,¢) the undisturbed water depth
f the Coriolis parameter

g the acceleration of gravity

and
a = Yaa(sinh?u + sin%¢)'2,

In the simple case of constant depth kg, Eq. (2)
reduces to the Helmholtz equation

A VA
LYZ) = + a?K?Z = 0,
(2) =G+ g + @ 3
where
K _ (0.2 _fZ)lIZ
gho

and L% Z) is the operator L when k = h,.

The inner boundary condition was formulated by
requiring no normal flow through a vertical wail
boundary. This condition can be expressed in terms
of Z as

9z  if 8Z _

on o ds

0, Q)

o Js
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where n is directed normally outward from the
boundary and s is directed along the tangent in a
direction counterclockwise from n.

3. Incoming and scattered waves

The solution was determined for an infinite ocean,
which was split into a constant depth h = h,, an
exterior region where u = u,, and an interior region
W < u,o with variable depth and possible islands. The
sea surface elevation Z was also split into a known
incoming wave Z, and a scattered wave Z,, where
Z = Z; + Z,. The incoming wave was assumed to
satisfy (3), i.e.,

LYZ,) = 0,

in both the interior and exterior regions.

The scattered wave is the sea surface elevation
disturbance which results when Z,, in the interior
region, is perturbed by the topography in that
region. The differental and inner boundary equation
for Z, = Z follow from (2), (4) and (5):

)

L(Z}) = —L(Z,), (6)
BZ§+i_faZs=_BZO_Lfc')ZO' )
on o Os on o 0Os

In the exterior region the scattered wave Z, = Z%
satisfies (3), i.e.,

L%Zg) = 0. (®)
The matching condition for Z, at the transition be-
tween the interior and exterior region and the
boundary condition for Z; at infinity are discussed
in the following section.

4. Matching and outer boundary conditions

The solution ZL can be solved numerically in the
interior region if a matching condition can be found
for Zf and Z¥ at u = p,. This can be done by separat-
ing both (8) in the exterior region and (6) in the in-
terior region at u = w, into two equations:

D" + (b — 2g cos2¢p)P = 0,
n" — (b — 2q cosh2u)n = 0,

®)
(10)

where the prime indicates differentiation, b is a
separation constant and

a .,
q T K2,

The solution to the Mathieu equation (9) must be
periodic by definition of ¢. Thus solutions exist only
for a countably infinite set of eigenvalues. The eigen-
solutions Se,, (¢) and So,, (¢) are even and odd about
¢ = 0, respectively. The corresponding eigenvalues
are defined by be, (m=0, 1, 2, ...) and bo,,
(m=1, 2, 3, ...). The eigenvalues differ (be,,
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# bo,) except in the degenerate case a = 0, when
the elliptical coordinates reduce to polar coor-
dinates. The solutions satisfy the orthogonality
relationships

2w
J Sem(¢)Sen(¢)d¢ = Nendnn
0

J21r
0

J " Sou(®)Sen(d)dd = 0

0

Son(@)Son(d)dd = Nowdpy > (11)

where m and n are integers, 8, is the Kronecker
delta, and Ne,, and No, are normalizing constants
(Morse and Feshbach, 1953).

The solution to the modified Mathieu equation
(10) can be expressed in terms of Bessel functions.
For both even and odd solutions, there are two
independent solutions made up of expressions of
Bessel functions of the first kind J,, and the second
kind Y,, (cf. Blanch, 1964). The set of even elliptic
solutions are written as Je,,(w) and Ye,,(w); the odd
set as Jo,(n) and Yo, (n). If ne,(un) and mo,(w)
represent the linear combinations of Je,Ye and
Jo,Yo, respectively, the scattered waves can be
expressed as

Ziptod) = 3 meli(uo) Sen()
+ 3 mohuo)Son(®). (12)
ZHud) = 3 nes(wSen(®).

+ 3 mof(wSon(®). (13)

The separation of variables allowed the definition
of a ¢ independent admittance

The requirement of the continuity of the admittances
at u = u, resulted in a matching condition

We{n(p.o) = We‘rtn(f"'o) ]
Wol(pe) = Wok(u,) |

Before finding WeZ(uw) and WoZ(w), Wel(u,)
and Wol,(u,) were expressed in terms of ZI(u,,d).
One method of doing this is to first apply the
orthogonality expressions of (11) to (12) to yield

We,(n) = 'nlem(ll‘)/nem(/-")

(14)
Won(r) = 1 on()mo.(p)

(15)
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1 (% - o - Wel (o) = WeZ(uwo) = Hep(wo)/ He,y
nel, = J Zi(pu0.B) Sen($)dd mftol T 7 e ko) Hen( s °)} 20)
Ney o .(16) Wou(po) = Worlio) = Hom(pro) Hom( o)
2 .
1= Z! 1y, ) S0, (b) dd With the use of (17), Eq. (20) can now be ex-
"o m Jo (Ko, @) SOn(B) dep pressed in terms of Z(w,,¢) which after rearranging
where ¢ is the dummy integration variable. Upon gave
differentiating (12) with respect to u at w, and 97 )
replacing 7e,!’(to) by meh(iuo) Welu(to) and 10%(uo) 2 Zli0:9)
by nol(u,) Wol,(u,) from the definition (14), ou
neh(me) and mol(ue) can be eliminated by (16) . .
yielding T s ] < Sew(d)Sen(d) [ Henlpo)
. Zlpord)| X Ne Hew(po)
OZipod) _ 5 Weh(po)Senld) ’ = " mifte
o o Ney 3 Sou®Son(®) [Hom(uo) ” Wb =0 @b
o m=1 No, Ho o)
% | ZUa ) Sentd)dd
0 . Eq. (21) is the desired condition for Z% on the outer
2 Wol( o) Son(d) boundary of the interior region. It can be used with
+ 2 T Ne. the differential equation (6) and the inner boundary
m=1 m

equatlon (7) to define Zi{(u,p) within the interior

2w region.
X j Z(pro,0) Som(d)d. (17) It is important to recall that (21) was determined
o ' from a matching condition with the external admit-
Although nothing new has been added, ZX(u,y,¢) and tances given by (19). These admittances are valid
its derivative have now been expressed locally at only for free scattered waves which satisfy the
1 = o in terms of the admittances, We! and Wof. radiation condition in the infinite flat-bottomed
To find WeZ, and WoZ, a Sommerfeld radiation f-plane, exterior region. »
condition was applled to (13). This boundary condi-
-tion excludes any incoming energy at infinity and is
appropriate for a scattered wave on an infinite ocean.
For a two-dimensional problem with an exp(—iot)
time-dependence, the condition (¢f. Chester, 1971) Now that the basic differential and boundary
is equations have been specified, the system of
equations may be solved numerically for the scat-

5. The numerical solution

. 0Z, . ' tered wave in the interior region. To begin, a
1/2 — = )
11_{2 r ( or IKZS) 0, a3 regular elliptic grid was constructed such that
where r = (x? + y?)2. Reynolds (1975) substituted pw=kApu, wherek=0,1,...,M,
(13) into (18) and showed that ne%(u) and no%(u)
must be proportional to He,(u) and Ho,(u), re- ¢ =1Ap, wherel=0,1,...,N —1,
spectively, where He and Ho are the elliptic Hankel
functions defined as and where Ad = 360°/N.
He, () = Je, () + iYe(u) Using this grid, the inner boundary equation (7) and
How(p) = Jon() + iYon(i) ] : the differential equation (6) were changed by replac-

ing the derivatives of Z; (where the superscript
Thus the admittances (14) must take the form I can henceforth be dropped) by a finite-difference
approximation. Either the finite version of (7) or the
Wei(w) = Hep(u)/ Hen(p) ] finite version of (6) was used, as physically

Wos(w) = Hou() Hop( )

appropriate, at all points except when k = M

To complete the solution, Eq. (21) must be dis-

in the exterior region. [In Reynolds (1975) these cretized. This was accomplished as follows: the

admittances were also found independently by for- u derivative of Z, was replaced by a finite-difference

mal application of the transport method of Preisen- approximation; the integral was approximated by a

dorfer (1972).] sum; and the infinite sums of index m were

Eq. (19) allows the matching condition (15) to be truncated to avoid aliasing. For u, = MAu, and
expressed as for N even, the result was

(19)
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TABLE 1. Verification of numerical results by comparison of
K, scattered sea surface elevation with analytic scattered solution
for an elliptic island with incoming unit Sverdrup wave with
0 = 90°.

Z: Analytic Z 2. Numerical

Modulus of

[ Imagi- Imagi- difference

(deg) Real nary Real nary |Z,,1 - Zfl
0 -0.853 —0.190 -0.846 —0.187 0.007
30 —0.843 0.335 —0.835 0.335 0.008
60 —0.611 0.785  —0.604 0.781 0.008
90 —0.202 1.028  —0.198 1.021 0.008
120 0.265 0.982 0.264 0.974 0.008
150 0.647 0.668 0.642 0.662 0.008
180 0.852 0.188 0.845 0.185 0.007
210 0.841 -0.340 0.833 -0.339 0.008
240 0.606  —0.790 0.599 -0.785 0.008
270 0.196 -1.031 0.192 -1.023 0.008
300 -0.270 -0.982 —-0.269 —0.975 0.008
330 —-0.649 —-0.668 —0.645 —0.663 0.007

BZ(po,lAP) — 4Z(1e0 — Ap,lAD)
+ Zo — 28p,I1AH)]) 200

N-1

S {Zs(MoJAqb){ i Sem(lA¢ESem(lA¢)
1~=0 m=0 Nem
y Hepn (o) n "l S0,(18¢)S0,,(1AP)
He,(po)  mmi No,,
HOL,L(Mo)} }
X e— 04— |A =0, (22
Hop(po) ¢ 22
where n = N/2and [ =0,1,2,..., N — 1. [The

bars over Ne and No indicate that the discrete ap-
proximation of the normalization constants of (11)
are to be used. The numerical values of the Mathieu
functions were calculated by an algorithm given by
Clemm (1969).]

This set of finite-difference equations resulted
in a system of algebraic linear equations. The un-
known Z, was then numerically determined by
Gaussian elimination.

6. Verification of the numerical model

The numerical results of Section 5 were compared
with an analytic solution to independently verify the
numerical solution. The incoming wave was defined
as a unit-amplitude plane wave, the Sverdrup wave,
which satisfies (5) and is written as

Z, = exp[iK(x cosf + y sinb)], (23)

where 6 is the angle of incidence measured counter-
clockwise from the x axis. The incoming wave inter-
acted with a cylindrical elliptic island on a flat-bot-
tomed f-plane ocean. The analytic solution (cf. Rey-
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nolds, 1975) followed the method of McLachlen
(1947), who solved the problem for f = 0.

Since one of the eventual goals was to model the
Hawaiian Ridge, an elliptic island was used to
approximately represent the ridge. For the entire
ridge from Kure Island (west of Midway) to the is-
land of Hawaii, the following parameters were
assigned:

major elliptic axis:. 2700 km
minor elliptic axis: 60 km
average depth: 4.5 km

[ 5.93 x 107% s7! (at average
latitude of 24° N).

The radial grid increment, Ap = 0.22 rad, was set
equal to the p coordinate of the ellipse represent-
ing the island; the azimuthal increment was chosen
as A¢ = 6°. The grid size was taken as 6 (u incre-
ments) X 60 (¢ increments).

The analytic and numerical results were compared
at the main diurnal K, and semidiurnal M, tidal
frequencies for a number of different values of §. The
worst results were obtained for the K, tidal fre-
quency with 8 = 90°. The comparison of the scat-
tered waves along the island ellipse, u = Au, at ¢
intervals of 30°, is shown in Table 1. The results

FiG. 1. Scattered sea surface elevation resulting from the
interaction of an incoming K, tidal Sverdrup wave with an ellip-
tic island on a flat bottom with rotation. (The grid points are
indicated by dots.)
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show that the worst relative tidal error is always
less than 1% of the incoming wave amplitude.

[A numerical polar coordinate version of this pro-
gram agreed to within 5% when compared with the
analytic solutions for two circular islands: the flat-
bottomed, f-plane solution of Proudman (1914)
and the f = 0, radially parabolic solution of Homa
(1950).]

7. Results for elliptic topographies

To demonstrate the effects of rotation and
topography on the scattered wave, computations
were made for the following four cases:

Figure Model Topography Rotation
1 Island Flat-bottom f>0
2 Island Flat-bottom f=0
3 Island Depth dependson o+ f>0
4 Submerged ridge  Depth depends on u >0

The left portion of each figure shows the real part of
the scattered wave, i.e., the scattered wave eleva-
tion at ot = 0, the right portion shows the imaginary
part, i.e., the elevation at ot = #/2. The incoming
wave was obtained from (23) at the K, tidal fre-
quency with 68 = 90°. Thirty-one new grid points

F1G. 2. Scattered sea surface elevation resulting from the inter-
action of an incoming K, tidal Sverdrup wave with an elliptic
island on a flat bottom without rotation. (The grid points are indi-
cated by dots.)
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F1G6. 3. Scattered sea surface elevation resulting from the
interaction of an incoming K, tidal Sverdrup wave with an
elliptic island with a radial, depth-dependent topography with
rotation. (The grid points are indicated by dots.)

(at a depth of 50 m) were added to the submerged
ridge model to permit flow across the island. The
depth profiles for each case are shown in Fig. 5
along the y axis.

The effect of rotation can be observed by com-
paring the results of Figs. 1 and 2. In both cases
the incoming waves and the islands were symmetric
about the y axis. When the rotation was zero, the
scattered wave must also be symmetric about the
y axis as shown in Fig. 2. However, when f > 0,
the flow was always deflected to the right produc-
ing the lack of symmetry which is clearly indicated
in Fig. 1.

When the exp (—iof) time-dependence is restored,
the scattered wave fields can be obtained for a full
period of oscillation. The scattered wave with f > 0
can be shown to be progressive wave that moves
clockwise (counterclockwise for f < 0) around the
island. However, when f = 0, the scattered wave
must be symmetric about the y axis and thus is
reduced to a standing wave.

The effects of topography on the scattered waves
are shown in Figs. 3 and 4. In the example of Fig. 3
the volume of the ridge was more than doubled (cf.
Fig. 5) compared to the flat-topography case. How-
ever, there was only slight increase in the scattered
wave compared to the flat-topography case of Fig. 1.
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Fig. 4. Scattered sea surface elevation resulting from the inter-
action of an incoming K, tidal Sverdrup wave with a sub-
merged elliptic ridge on a flat bottom with rotation. (The grid
points are indicated by dots.)

If, however, the island was allowed to submerge to
only 50 m below the sea surface (Fig. 4), the eleva-
tion of the scattered wave was considerably smaller
than that shown in Fig. 1. Once water was allowed
to flow across the ridge, the differences in wave
elevation were quickly equalized. Thus the projec-
tion of a submarine ridge through the sea surface
(to form an island) is more significant than the ba-
thymetry adjacent to the ridge.

8. Effect of Hawaiian Ridge on the tides

To study the effect of the Hawaiian Ridge on the
tides with this numerical scheme, it was necessary to
determine what possible types of models could be
practically treated. The first limitation was com-
puter size. The submerged ridge model, from the
preceding section, required almost all the available
high-speed computer storage on the University of
Hawaii IBM-360. Thus the grid scheme had to be
restricted to this resolution. Unfortunately, this
grid was too coarse to adequately resolve channels
through the ridge and to resolve some of the major
islands.

The remaining two limitations came from (22)
where the sea surface elevations were computed
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using a truncated series expansion. If the ampli-
tudes of the neglected higher order admittances
were significant their aliasing would occur and (22)
would not be a good discrete approximation for (21).
Numerical tests with the present grid system have
shown that these higher order admittances could
be neglected if depth contours and island boundaries
were along simple ellipses of constant w.

The remaining outer boundary limitation came
from the fact that (22) is valid only over a flat
bottom. Since the finite difference form of the u
derivative spans the outer three u points, the depth
of the outer three ellipses must be set to the deep
water constant depth A,.

With these restrictions, three crude Hawaiian
Ridge models were investigated: 1) Large Island, 2)
Submerged Ridge and 3) Small Island. The Large
Island model represented the ridge as an elliptic
island whose major axis was equivalent to the
distance between Kure Island and the island of

‘Hawaii. The Submerged Ridge model represents the

ridge as a submerged elliptic ridge whose major
axis was the same as that of the foregoing Large
Island. Finally, the Small Island represented the
ridge as an elliptic island whose major axis was
equivalent to the distance from Kauai to Hawaii.
To complete the description of these models the
minor elliptic axes and the remaining depths had
to be determined. To fix these parameters, 49
equally spaced cross sections of the actual ridge
were used. These cross sections were then sepa-
rated into those profiles which reached the surface

0 —
€ -
- Flat -Topography
r2f Island
-
fric] o
o
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o —
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- .
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w 3
4
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-
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4

L 1 1 1 1 1

1
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F1G. 5. Cross-sectional distance (along the y axis) for each of
the topographies used in Fig. 1-4.
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TABLE 2. NOAA tidal constants for the Hawaiian Ridge.

K, Tide M, Tide

Argument Argument

Modulus (Greenwich Modulus (Greenwich
Station (cm) deg) (cm) deg)
Midway 7.3 -85.8 11.2 91.6
Nawiliwili 14.8 —130.7 14.8 50.0
Honolulu 14.8 —132.3 16.2 61.2
Mokuole 17.6 —123.5 15.7 16.2
Kahului 17.2 —126.3 18.1 10.8
Kawaihae 14.8 —134.0 20.8 55.1
Hilo 16.1 —126.8 21.2 31.3

and those that did not. For each class an average u
bottom depth profile was obtained; the minor ellip-
tic axis was then adjusted so that the depth topogra-
phy could be adequately resolved by the grid system.
The following values were used:

Sub-
Large merged Small

Model Island Ridge Island
Major axis 2700 km 2700 km 750 km
Minor axis 60 km 15 km 60 km
Ap 0.022 rad 0.05 rad 0.802 rad
h (0) 0m 50 m 0m
(1) 50 m 50 m 50 m
h(2) 600 m 800 m 600 m
h(3) 2300 m 2300 m 2300 m
ho 4500 m 4500 m 4500 m

In addition to the above models, a no-topography
model was included. This model had neither depth-
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dependence nor islands. Thus, there can be no
scattered wave, and the solutions were simply the
incoming wave. This model was included as a
check on the reasonability of the final results.

The incoming wave was constructed by a super-
position of different unit amplitude discrete Sver-
drup waves [Eq. (23)] at incident angles from 0°
to 345° in 15° intervals. The complex amplitudes
were least-squares fit to observations at seven sta-
tions for both the K, and M, tidal frequencies
(cf. Table 2). If the observed amplitude at the jth
station is Z; and p is the total number of waves,
then the complex amplitude, E;, for the [th wave was
obtained by minimizing ', where I is defined by

7 P .
=% |z - Y EZ;
=1 =1

Here Z; is the numerically calculated total wave
amplitude and was determined for each incoming
wave, topography and frequency at the location of
the jth station.

To select a best set of waves for each topography

-and frequency a residual rms error R was used

which is defined as
1" 1/2

R =|-—
> |z
Jj=1

For each number of waves all combinations of the
24 incident directions were investigated and the
result with the lowest residual was chosen as the
best combination.

TaBLE 3. Fitted results for each topography for incoming K, and M, Sverdrup waves.

First wave Second wave
Tidal Number Incident . Incident
con- Topographical of Residual rms angle Modulus  Argument angle Modulus Argument
stituent model waves error (%) (deg) (cm) (deg) (deg) (cm) (deg)
K, Large Island . 1 47.8 —150 8.3 —108
2 14.0 105 55.8 145 120 58.0 —48
K, Submerged Ridge I 24.0 —135 13.8 —-118
2 12.3 105 70.3 134 120 74.7 —55
K, Small Island 1 36.2 120 13.6 —-127
2 12.9 120 67.2 150 135 67.1 —44
K, No-topography 1 23.6 180 14.6 —116
M, Large Island 1 26.7 -150 12.9 59
2 21.3 135 5.7 57 -120 8.9 55
M, Submerged Ridge 1 24.0 -120 15.3 54
2 15.6 -75 62.9 65 —60 52.6 -112
M, Small Island 1 20.0 -120 16.1 41
2 11.5 -120 15.0 52 -30 43 —20
M, No-topography 1 354 —135 16.1 62
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FiG. 6. Corange and cotidal chart for total fitted K, tide for Small
Island topography with two Sverdrup waves.

The total number of waves p had to be restricted to
avoid using all the available degrees of freedom. If
this was not done, the resultant wave field between
stations became unreasonably large. Here p was
limited so that none of the individual fitted ampli-
tudes were ever more than an order of magnitude
greater than the observed station amplitude. This
condition limited p to one for the no-topography
model and two for the other models.

Table 3 shows the results for the different cases.
The smallest residuals for the K, tide occurred for
the two-wave Submerged Ridge model and the two-
wave Small Island model. The best result for the M,
tide was obtained from the Small Island model with
two waves. Since the Small Island model was best
for the M, tide and a close second for the K, tide,
it might be chosen as the best of the crude approxi-
mations to the actual ridge. This would indicate that
the ridge west of Kauai is unimportant in explaining
the tidal distortion which has been observed in the
eastern end of the Hawaiian Ridge. The best results
from the Small Island model are shown in Figs. 6
and 7, which give corange and cotidal lines for the
K, and M, tides. The residual error for the K, tide
was 12.9%, and for the M, tide, 11.5%.

Although the residuals for the no-topography
model were physically unreasonable for two waves,
a comparison between the topographical models
and the no-topography model can be considered if
only one wave is allowed. In this particular case the
smallest one-wave residuals for the M, tide occurred
for the Smali Island model. However, the smallest
one-wave residual for the K, tide occurred for the
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no-topography model. The failure of the K, one-
wave topography models to improve on the no-
topography result could indicate that the topographi-
cal features which have not been included may
be important.

These results should now be compared with
the results of Larsen (1977). In that paper Proud-
man’s (1914) approximate solution for a cylindrical
elliptic island on an infinite flat-bottomed f-plane was
used to study the tides of the Hawaiian Ridge. Al-
though Larsen used an island similar to the Small
Island model, his least square-fitting procedure
was different since he included a forced tide wave
and did not include the Hawaiian station at Midway.
When his results were compared with the results of
Figs. 6 and 7, the cotidal and corange lines were
found to be of similar magnitudes but of considerably
different directions. However, if the Midway tidal
station were eliminated from the Small Island
model’s fitting procedure, and if an extra free
Sverdrup wave were included to approximate the
Larsen’s forced wave (with direction given by the
equilibrium tide as described in Larsen, 1977), the
Small Island fitted results would approach Larsen’s
result near the island. (The remaining differences,
~10%, would be due to topographical effects, dif-
ferent island dimensions, etc.) The solutions in the
far-field would not agree because Proudman’s
f-plane solution is valid only near the island. Thus
the Midway tidal result could not be accurately in-
cluded in Larsen’s fit since Midway is located in the
far-field. It is the opinion of this author that the
entire ridge should be included in a tidal model of

the Hawaiian Ridge since the wavelengths of the

CORANGE COTIDAL
2(Z] (cm) Arg [Z] (hr)
30
/ 2.5
e Midway V
- 22
20
R Y 175

Nawiliwili

Kahului

Fi1G. 7. Corange and cotidal chart for total fitted M, tide for
Small Island topography with two Sverdrup waves.
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tides are so large. In this case, the Small Island
results are clearly preferable to Larsen’s results.
It is important to recall that the f-plane ridge model
presented here was very crude and that the choice of
two Sverdrup waves was probably not sufficient to
represent the actual incoming tidal wave field. It is
also necessary to remember that most (six out of
seven) of the tidal records were from stations in the
eastern part of the ridge. Thus the final results
can be only approximate indications of the actual
tides of the Hawaiian Ridge and may have over-
emphasized the importance of the eastern end.

9. Summary

An open-ocean matching condition for an infinite
ocean was used in a numerical model of an elliptic
ridge. In this study it was found that tidal wave
height was greatly modified whena submerged ellip-
tic ridge was raised to become an island but was not
greatly affected by topographical changes at depths
below about 100 m. In an approximate model of
the entire Hawaiian Ridge, residual rms errors of
less than 15% for both K, and M, tides were pre-
sented.
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