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ABSTRACT

The quasi-geostrophic, small-amplitude free modes of oscillation are examined for a midlatitude ocean
basin with mean currents. Attention is restricted to a particular class of mean currents which are
solutions of nonlinear, inviscid and unforced equations and whose free modes are all stable ones. Among
the free modes are ones confined to the narrow regions where the mean jets are strongest. These modes,
dubbed *jet modes™, have the following properties: 1) their phase speed is in the direction of and of the
order of magnitude of the mean jet maximum velocity; 2) they are vertically in phase and upper-layer
intensified when the mean jet is upper-layer intensified in phase and the thermocline is shallow; 3) they
have a broader horizontal scale in the deep water than in the thermocline; 4) they have horizontal
critical layers whose local balance is a nonlinear rather than a frictional one; 5) their Doppler-shifted
frequencies are proportional to a mean potential vorticity gradient dominated by the horizontal curvature
of the mean jet; 6) and their mean energy and potential vorticity flux divergences are small or-——in the
particular geometry of a channel—zero. It is argued that many of these features should characterize the
transience of narrow jets in general, especially those features relating to the spatial structure of the modes.
(The stability and dispersion relation characteristics should be more peculiar to the type of jet present.)
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1. Introduction

There are many aspects to the interrelation be-
tween mean flows (or at least flows with very long
time scales) and more rapidly varying fluctuations
about them, i.e., eddies. A frequent concern in
studies of this interrelation has been with systematic
transfers of energy between the two types of cur-
rents. If the transfer is from mean to eddy, the
process is referred to as an instability; in the reverse
direction, the divergences of eddy momentum and
buoyancy fluxes can generate mean currents. There
is another aspect of this interrelation, however,
which less obviously involves transfer: the presence
of a strong mean flow can impose important struc-
tural constraints upon the eddies, even in the ab-
sence of an instability. An archetype for this
process, consistent with the restrictions of quasi-
geostrophic dynamics, is described below and will
be referred to as a jet mode. It will be argued
that the jet mode can serve as an idealization for
ocean transience which might be useful, as the
familiar barotropic and baroclinic modes [ap-
propriate to a resting, flat-bottom ocean (see
Veronis and Stommel, 1956)] and topographic
modes [appropriate to a resting ocean over a linear
bottom slope (see Rhines, 1970)] have proved to
be, even in the complicated circumstances which
actually occur. ‘
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Unfortunately, the jet modes are not simply
solved for. However, this should not impair their
value as archetypes, if their characteristics prove
to be ones which occur for general narrow-jet
structures.

2. Mean flow and linearized waves

In this section we shall derive nondimensional
equations for mean currents and linearized perturba-
tions about them within an enclosed ocean basin.
For two immiscibie fluid layers of slightly different
densities, in a rotating reference frame, in hydro-
static balance and without forcing or dissipation,
the dimensional momentum and mass balances in
each layer are

@8t + u{*Vu] +f' X uj + gVn;{ =0
8/8t + w{*V)h{ + hiV-ul =0
for i =1, 2. The vector f’ is the local vertical
projection of the earth’s rotation vector, u/ the
horizontal velocity in layer i, % the corresponding
pressure head, A the thickness of that layer, and g

the gravitational acceleration constant. The layer
thicknesses may be written as

m=m+r%m+m—mw
hy =Hy + A3 = m)) - B' |’

where h, and H, are the average layer thick-
nesses, A the positive relative density difference

],m
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between the layers, and B'(x,y) the elevation of the
bottom above its average level. An upper free sur-
face condition has been assumed in writing (2); this
yields the additional O(A) term in /! relative to what
would result from a rigid lid condition (for currents
on the scale of the internal radius of deformation).

Egs. (1) and (2) are made nondimensional by the
following scales:

x,y ~ L f' ~fo
hy ~ H, u ~V, 3)
mi ~ Vofollg B’ ~ B,
t~ LIV, h{ ~ hy
From these we obtain
R(0/0t +u; V)u; +f X u; + Vo, = 0} i=1.2
(0/0t + uy'Vyh; + hV-u; = 0
hy =1 + RT[n,(1 + A) — n,] > (4)
h, =1+ 8RT(my, — m,) — oB

f=2&[l + By~ y)l

where the deletion of primes denotes nondimen-
sional dependent variables, and the several non-
dimensional parameters are

R = Vy/foL r = fo®L*/Agh,
8 = hO/HO o = BQ/H()
B = (8f'10y")oLlfo

Respectively, these are an advective Rossby num-
ber, a Froude number, a ratio of layer thick-
nesses, a topographic Rossby number and a
planetary Rossby number.

&)

a. Mean flow

For steady motions (8/8¢ = ), the mass con-
servation relations imply the existence of transport
streamfunctions in each layer, i.e.,

hu; = €, X Vi, (6)

Furthermore, the equations in (4) may be manip-
ulated to demonstrate the conservation of poten-
tial vorticity P; and the Bernoulli function Q; in each

layer,
JWi, P) = J(Y:,0:) = 0, )
where
Py = h7{f+ RV'(VlPi/hi)}] (8)
Qi = m; + RV V202 |~

General integrals of (7), therefore, are P; and Q;
being functions only of y;; in this case, one may
also derive from (4) the restriction that

d
Py = @ Qi(Wy). ®)
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The mean flows which we shall consider will be
obtained as solutions of (8) and (9). They represent
baroclinic generalizations of those of Fofonoff
(1954). It has been shown elsewhere (McWilliams,
1977a) that sufficient conditions for the stability of
these mean solutions to infinitesimal perturbations
(within enclosed domains on whose walls normal
velocities must vanish) are the inequalities

h{oP()/oy;] > 0

1 =1) (10)
15 = (R¥Y K3V Vifs; x[ or
(i =2)

everywhere in the domain. For values of i cor-
responding to layers where ¢; = 0, we may disregard
these conditions. The second of the relations in (10)
is not a serious restriction on flows which have the
parameters of midlatitude ocean gyres, and the first
relation limits the class of P(ys) functionals for which
stability is assured.

-A particularly simple example of a stable solution
to (8)-(9) is a linear potential vorticity function for
flow confined to the upper layer only. In this case,
we write

Py(y) = ap, + b

O = Yaay® + by, + ¢
hy =1+ RT( + A)n,
hy=1—0B —[8/(1 + A)](h, — 1)

» (1D

and must solve the following coupled pair of equa-
tions for ¢, and 7,:

f+ RV-(V{/h) = hy(ay, + b)
(R2h 2V, Vi, + 1y = Vaay,® + by, + ¢

For a > 0 the first condition in (10) is assured. An
analytic solution of (12) may be obtained by an ex-
pansion in R for certain simple geometries. Solutions
are discussed below for a zonal channel (Section 2)
and a square basin (Section 6).

} . (12)

b. Linearized waves

We seek solutions to (4) which are small-ampli-
tude perturbations about the mean flow solutions
described in Section 2a. We further assume that
R < 1 (though we initially leave the magnitudes of
B and RI unspecified) so as to eliminate high-
frequency fluctuations. In such a case, it is con-
venient to examine the potential vorticity equation
[obtained by eliminating the divergence between the
mass equation and the curl of the momentum equa-
tion in (4)]. If for the fluctuation fields we neglect
the fluid accelerations compared to the Coriolis and
pressure terms (consistent with R < 1), then the re-
sult in each layer is



D

- P,
Dt

(Bi/hy) + hil fI(&, Pi/R) = 0, (13)
where the overbars refer to mean flow quantities,
the {; are the perturbation pressure heads and the
b; are the perturbation thickness changes

bl = F[gl(l + A) — Cz]’ E)2 = 61‘(@ - Cl) (14)

We shall restrict our attention to perturbation solu-
tions which are oscillatory in time; that is, we seek
eigenfrequencies w and eigenmodes {,(x,y)e~*t for
the pressure heads. In this case, the advective
operator in (13) is

D -

Dt [—iw + Uh,J(;, )]
If we make the further restrictions that 8 and RT" are
< 1, then in (13) h; and f can be commuted with the
advective operators and the functions f, 4;and P; can
be set to their constant, average values where they
appear undifferentiated. Consistent with this, we
could also set A =0 in (14). Eq. (13) applies
whether there is a mean flow in layer i or not; when
there is upper layer mean flow only, then; in addition
to (11) and (12), we have

(15)

Pz :f/}_lz
D . . (16)
— = —iw

To complete the statement of the eigenvalue
problem associated with (13) and (14), we require
boundary conditions on the {;. No normal flow
through the side boundary implies, by geostrophy,
that on the wall

Li = C(t) = cie™™ 1n

for each layer, where the c¢; are numerical constants.
As can be demonstrated by arguments analogous to
those presented in McWilliams (1977b), a correct
specification of the boundary constants is given by

A J j dxdyl, = 0,2 J J dxdy(ly ~ L) = 0. (18)

c. Eddy fluxes

In this section we record the eddy flux divergences
and forcing of the mean flow for linearized eigen-
modes. If we were to partition the flow into mean
and eddy components, then on the right-hand side

2 When A = 0, the first condition loses force and there exists a
dynamically irrelevant arbitrariness, which, for example, can be
removed by eliminating the barotropic mode on the walls (i.e.,
8¢, + ¢, = 0). This specification is the one used in Section 6.
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of a momentum equation as in (4) would appear the
term )
—RM = —R(q; V)i, 19)

where the caret refers to an eddy quantity and the
overbar will be identified with a temporal average
over an oscillation. For an expansion in R and
small-amplitude eigenmode perturbations,

M; = &, X 2 Re[f"V (& fT'V{D], (20)

where the asterisk denotes complex conjugation. On
the right-hand sides of mass conservation equations
[as in (4)] would appear an eddy mass-flux di-
vergence

~R¥: = -V (ha,)

--aar s 4]

—2 R3I' Re [J({;", gz’—;—c—l—ﬂ ’

i=1,2. 2

These quantities must, of course, also appear as
forcing terms in the mean depth-integrated energy .
equation or the mean potential vorticity equations
for each layer. The manners in which they do so are
as follows:

Y5(8/01){8hyii 2 + hoiig? + A8TH,® + 8T (M, — 12)%}
+ o = =8hji,-M, — ha,-M, — 8(, + V2Ra,?)
X %, — (Ry + VaR1H) ¥,
h(08/80) P; + -+ = —R[curlM; — P;%;], (22)

where the dots appear in place of mean flow flux
divergences.

3. Channel flow

A particularly simple example of the system dis-
cussed in Section 1 arises in a zonally oriented
channel, where the mean flow is independent of the
zonal coordinate and the eddies are zonally periodic.

If we restrict our attention to the mean flow
defined by Egs. (11) and (12), then we seek solu-
tions ¥,(y) and h,(y).If R, RT, A and g are all small
parameters, then a leading order solution will be

Py (y) = Bla(y — sinth/sinhQ)}
h(y) = 1 + RT[c + ¢,(»] ’

where Q = (a/R)'? and the domain in y is between
0 and 1 [with y, = 0.5 in the Coriolis function in
{4)]. Because Q is a large number, the solution has
a boundary layer; the constant b from (11) has been
chosen equal to 1 — B/2 so that the only boundary
layer is on the northern wall, y = 1. This layer has
an eastward jet (for a > 0), and the interior region

(23)
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is one of slow westward return flow. There is no
net transport across any meridian because of the
boundary conditions ¢y, = 0 at y = 0 and 1.2

The eigenvalue problem (13)-(18) also reduces to
one spatial dimension. If we assume that the eigen-
modes have a zonal dependence as ¢*%, then the
- differential equations (13) become

[i(y) = iy — (K + D)y + TE]

+ 26 =0 ,(24)
Loy — (K + 8D)s, + 8T8, ] — Po(0)2 = 0
where ¢ = w/k and
L B/  coshQ, )
= — R —— —_— — 1 .
“ Yy a (Q sinhQ
1 . a
@1 = — Pl,y = - - 121
R R (25)
[ _
.@2E;P2,y=ﬁ/R~8ru1

For analytical convenience we have made the addi-
tional assumption that the channel has a flat bottom
li.e., o = 0 in Eq. (11)]. Because of the oscillatory
zonal variations in a channel, the boundary condi-
tions (18) here reduceto {, = ¢, = Oony = 0and 1.

The middle formula in (25) has been evaluated
using the first relation in (11). If we wished to
examine the eigenmodes in a quiescent channel,
then this relation would not be available to us (rather
we should use P, = f); in this case, we would set
i, to zero and insert #;, = P, = B/R in (24). The
solutions then would be the familiar Rossby wave
modes

{1 = pg, = sinmawry,

with

_ [[=BIR( + m*a*), 1]
[~BIR(KE + m*m? + T(1 + 8)), —1/8]

for the barotropic and baroclinic solutions,
respectively. Heuristically, we might expect that,
as Q — o, there would be eigenmodes of (24) and
(25) which have no important variation on the
boundary layer scale Ay = 1/Q even when &, # 0.
If we were to solve (24), arbitrarily neglecting those
coefficients in the differential equation with this
“‘fast’” scale, then we would recover (26) since
a ® R. Clearly, it would only be those Rossby
modes with small m and k values which might also

(c,w) (26)

3 The quantities a and Q are perhaps unfamiliar in a mean gyre
solution. @, the inverse ratio of the boundary layer and basin
widths, is also the ratio of the maximum velocity to the max-
imum § (the interior transport); a, the mean potential vorticity
gradient with respect to streamfunction, is the ratio of 8 to the
interior transport.
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be approximate solutions of (24). An example of an
approximate Rossby mode is given in Section 6.

There is another class of eigenmodes, however,
which are less familiar than the Rossby modes. They
are ones whose existence is crucially dependent
ypon the mean boundary jet. To expose them we
transform Eq. (24) to a boundary layer coordinate
n = Q(1 —y) and rescale the constants of the
problem

(¢ — u))Lim — K& + ¥L) — P}t = 0

Hlom — [K = (1 = 8yl + 8vL} — Pl =0, 27)
L,=0(=0 at =0 and Q

where
ac 3
30’
ity(n) = [cosh(Q — m)/sinhQ — 1/Q]
Pim) = —iy(n)

Pom) = 1/Q — Syiny(n)

For this scaling to be sensible, both K and y must
be O(1) or smaller; that is, the zonal perturbation
scale and the internal deformation radius must not
be small relative to the width of the mean jet.

In the following section, several approximate
solutions to (27) and (28) will be discussed. In
assessing these approximations it will be useful to
refer to an integral of the upper layer differential
equation. If we multiply the first equation in (27)
by {,/(¢ — i1,) and integrate in n, we obtain

Q . R a gl 2 R R
J dn(e — ul)zﬂ—( & )} + KIL /(@ — u,>]~2}
0 om\¢ — i

Q
- —(1Q) f dn@ - i)[L/@ — i)

0

&= K = (k2 + I)/0%

y =T/Q*

(28)

Q
, (29

0

Q
+y f dnlily + (& — a)LILIE — i)

0

where the last term can be shown to vanish for the
boundary conditions of (27). A similar quadratic
integral for the lower layer equation in (27) is

Q 1 + &
f dn[@m)z N [K Syl - )+ sz]
0 cQ
Q
= SY[J dn€1€2
0
ey [P ) oo
¢ Jo sinhQ 0

For solutions to (27) and (28) that have real values
of ¢, {, and {,, the eddy flux divergences assume a
particularly simple form, viz.,
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0 .
M= -2K - v)Q — (P&, #;=0. (31)
om
Furthermore, the eddy contributions are nil in the
mean energy and potential vorticity equations (22).

4. Jet- modes

In this section several approximate solutions to
(27) will be described. They are obtained by a mixed
numerical-analytical technique which requires that
K, v and ¢ be order unity numbers; in practice,
this restriction excludes the greater part of the
eigenmode spectrum and retains only the jet modes.

The strongest simplification which can be made to
the correct eigenvalue problem (27) involves the
following assumptions: 1) [¢,| < |¢,| almost every-
where so that the term proportional to ¢, may be
neglected in the upper layer equation; 2) the far
boundary at n = Q be removed to n = «; 3) the
mean velocity &, be approximated by a simple
exponential decay in m; and, similarly, 4) in @Z(n)
the planetary vorticity gradient 1/Q be neglected
relative to the term proportional to mean jet velocity
(which arises from a lower layer thickness gradient).
Under these assumptions, the eigenvalue problem is
only a second-order differential equation; viz.,

(€ — eM[Llm — KL, ] + e =05
L0 =0; L —>0 as n—>» (32)

The lower layer equation is then simply a forced
boundary value problem for ¢,, once the eigensolu-
tions ¢ and ¢, are known from (31). This problem is

Lo — [K — (1 = &)y + (8y/8)e "], = —8vL,

}. (33)
L0 =0 ;—>0 as n—o

The simplified equation (32) is a particular ex-
ample of an eigenmode equation for barotropic,
parallel flow. This subject has been extensively
studied (e.g., Drazin and Howard, 1966), most com-
monly with regard to the question of instability. In
our case, the question has been answered nega-
tively, since (32) was derived from the more general
equation (13) with only stable modes. Furthermore,
the more common treatments of parallel flow eigen-
modes have usually assumed a bounded domain in
y with a dimension comparable to the scale of the
mean flow; it is only for strong, narrow jets in a
broad domain [assumptions (2)—(4) above] that the
particular characteristics of jet modes arise.

It is convenient to further transform the inde-
pendent variable for (32) and (33) to £ = ¢~7; thus

€ —-OEL+ 4+ + K- CcKIE =0
EL+E+0(1 -9 - K

+ 8YEID), =
L= =0 at ¢=0 and 1

. 34
=dyly
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TasLE 1. Eigenmodes of (34).

(Kw Y 6) ¢ Clmax g(Clmax) czmax g(CZmax)
(0.5, 0.25, 0.16)  0.46 0.29 0.32 0.013 0.14
0.4, 0.25,0.16) 0.60 0.37 0.39 0.020 0.12
(0.5, 0.45, 0.16)  0.46 0.29 0.32 0.034 0.10
(0.5,0.25,0.100 0.46 0.29 0.32 0.008 0.12

I know of no closed-form solutions to these equa-
tions. Consequently, a numerical solution technique
is required; it is essentially a shooting technique
and is described in the Appendix. However, the
upper equation has two singular points (at £ = 0
and ¢), and explicit expansions about these points
are required to obtain a valid solution.?

An example of a solution to (34) is shown in Fig. 1.
The particular parameters chosen were K = 0.5,
v = 0.25 and 8 = 0.16; the resuiting eigenvalue was
¢ = 0.46, which confirms a posteriori the appropri-
ateness of the scaling which led to Eq. (27). The
phase speed is to the east, in the direction of the
jet, and has a value between the maximum and
minimum jet speeds. No other eigenvalues were
found in the range ¢ € [-2, 3]; however, the solu-
tion technique described in the Appendix is in-
adequate for small values of ¢ where the two sin-
gularities are very close to each other [which would
be the case for quiescent modes (26) with K
~ O(D)]. :

The critical layer behavior can be seen from the
upper left panel in Fig. 1 [as well as from the local
expansion, Eq. (A6)]. The eigenmode ¢, (&) is
smoothly varying across the layer, but has a
logarithmically infinite first derivative there; con-
sequently, the upper layer momentum flux di-
vergence from (31) is also locally infinite (see the
lower right panel of Fig. 1). The upper and lower
layer pressures are vertically in phase, and the
latter is only 3% of the former in the region of
largest {; values. However, the maximum value for
L, occurs at larger 7 than for {; and the decay is
slower. In fact, as n — o,

4 The second of these singularities is usually referred to as a
critical layer. In the Appendix, Egs. (A6)—(A9) and (A17)-(A18)
describe local solutions similar to the Tollmien solutions near a
critical layer in a parallel shear flow. Furthermore, they are such
that there is no phase shift across the critical layer. This is ap-
propriate as a linearized, inviscid approximation to the true
fluctuation equations when A = K'/VyLa®? is small (n.b., K’ is
the dimensional coefficient of horizontal eddy viscosity and «, a
wave Strouhal number, is the ratio of fluctuation to mean velocity
scales) as a and K’ — 0. In this case nonlinear effects are more
important than viscous effects locally, and the analysis of Benny
and Bergeron (1969) is appropriate, rather than that of Lin (1966).
Were A large and a phase shift required in the critical layer
solutions, then the results of Lin (1966) can be used to show that
no jet modes would exist (i.e., that there would be no neutral
modes with ¢ order 1 and positive).
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Fi1G. 1. A jet eigenmode from the approximate equations (34). The parameters selected were K = 0.5, y = 0.25 and
= 0.16. The eigenvalue is ¢ = 0.46.

{; « exp(—K'2n)
L < exp{—[K — y(1 — &]2n} |

The second exponential coefficient is a smaller
positive number (for 8 < 1) than the first. The merid-
ional momentum flux divergences in both layers
have patterns which tend to accelerate a divergent
mean flow (to the north in the northern part of the
jet and to the south in the south) perpendicular to
the jet axis. The cross-jet length scale of this pattern
is larger in the lower layer than in the upper.
These characteristics also apply to other solutions
of (34) for moderately different parameter values.
Table 1 indicates parametric tendencies. The eigen-
mode problem depends only on K, and ¢ varies in-
versely with it. As K increases, the maximum

(35)

amplitude for ¢, decreases [relativeto Z(¢ = 0) = 1,-

which is fixed by (A2)], and its location moves to
smaller ¢ (larger m) values. The lower layer pressure
maximum decreases, however, and moves outward

in ¢ as K increases. As I increases, the {;
maximum increases and moves inward in §; as
§ increases, the {, maximum increases and its loca-
tion varies little.

There appear to be no difficulties in obtaining
solutions to (34) as K decreases from the values of
Table 1. The eigenvalues ¢ increase but remain well
bounded by unity. On the other hand, solutions
cannot be found for K = 0.56. This failure is as-
sociated with ¢ decreasing toward zero [and the
singularities of (34) coalescing]. As remarked above,
the techniques of Appendix A fail in such a case.
However, it is clear from examining solutions as K
approaches this cutoff from below that the largest
values and gradient for ¢, are pushed towards small
£ values (large m values); thus, the solutions, even
if they exist, are not properly to be considered jet
modes in the sense defined by the transformation
preceding Eq. (27).

The solutions of the type shown in Fig. 1 seem
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self-consistent by the standards of the derivation of
(34); however, they are inconsistent with a literal
interpretation of the integral relation (29). Under the
assumptions preceding Eq. (32), all of the right-hand
side terms in (29) are absent; yet the left-hand
side terms are all positive. The contradiction is not
necessarily fatal: it is probable that the ¢ eigen-
values and the {,(n) solutions for order 1 values of
n may be adequately approximated from (32),
whereas the far field might not conform to the as-
sumptions preceding (32) yet contribute substan-
tially to (29). If we simply insert solutions such as
are in Fig. 1 into the two right-hand side terms
of (29), then the second is certainly positive—as
required for balance —and so is the first if ¢ is small
enough. Nevertheless, the issue deserves further
consideration.

We begin by examining the nature of the solutions
to the exact problem (27) in the neighborhood of 7
= (O, where we can neglect ¢™" relative to 1/Q in
(28). The solution which satisfies the boundary
conditions as well as the differential equations is

{ = 2A[sinha(n — Q) + B sinhf(n — Q)]

L = 2A[(1/p,) sinha(y — Q) , (36)
+ (B/us) sinhB(n — Q)]
where, in an expansion in (¢Q)7?,
1+86+ vy 1 A
o?=K + &y + —+—-Y——A—- 5
1+8 cQ
1 o2 1
—_ = -5 - — + ...
e 1+86¢Q .. (37
1+
¢cQ 1+3
t_,_ 1.3
s eQ1+86 7

The parameters A, B and ¢ are undetermined
here. The first can be identified with the indeter-
minate amplitude of an eigenvalue problem; the
other two parameters are required to match (36) with
the solution in the jet region [n ~ O(1)]. By com-
paring (36) with the n — « expansion (A4) for the
approximate eigenmode from (32), we can see two
major discrepancies: the exact solution has a decay
rate o, while the previous {; had a decay rate K/,
and there is an entirely new component to (36),
where B # 0, which is missing in (A4). Both of these
errors were caused by the layer decoupling assump-
tion preceding (32). For large ¢Q values, all of the
other assumptions preceding (32) seem to have only
minor consequences in (36). Therefore, as a minimal
improvement of the previous approximation for jet
modes, we can solve the following simplified version
of (27):
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= eMlm — K& +vL]1 - e =0 ]
5 )
Lo —| K= (1 —6>v+7’e-" L+ 8yl =0
gl(o) = gz(o) at 7 = 0,
() =~ exp[—(K + &y)'™] ) . . (38)
+ Bexp[—(K — y)'2n]+ ...
e as m—>®
Lo(m) = —8 exp[—(K + 8y)'n]
+ Bexp[—(K —y)"?n]+... | J

The asymptotic decay in (38) has been derived from
(36) and (37), and may be compared with (35). The
solution technique for (38) is also described in the
Appendix; it is a similar shooting method, except
that now there are two eigenparameters to be deter-
mined—¢ and B.

A solution to the more accurate eigenvalue prob-
lem (38), which corresponds to the one shown in
Fig. 1, is shown in Fig. 2. On the whole the two
solutions are quite similar: the eigenvalue ¢ is only
4% larger from (48), the peak magnitudes for the
eigenmodes are some 20% larger (relative to a com-
mon asymptotic coefficient as ) becomes large), and
the momentum flux divergences are similarly mag-
nified. The general function shapes, though, are little
different. The quantity B is a small number (0.14),
which suggests that the upper layer asymptotics are
not badly represented by (35), as an approximation
to (36), until quite large values of 7.

The parameter dependences of (38) are illustrated
in Table 2, which is directly comparable to Table 1.
One is again more struck by the similarities rather
than the differences between the results of the two
approximations. The most important difference,

though, occurs when y approaches K from below

[i.e., when k> < T in (28), the downstream length
scale becomes much greater than the deformation
radius]. By the previous assumptions, layer coupling
was neglected in the upper layer equation and ¢
was consequently independent of y. A comparison
of the second lines in Tables 1 and 2, however,
demonstrates that this is inaccurate as y > K~. A
more striking illustration of this é(y) dependence
arises as K increases. For Eq. (32), there is at least
a practical cutoff to solutions around K = 0.56,

TaBLE 2. Eigenmodes of (38).

(K9 Y, 8) ¢ B Clmax g(glmax) CZmax §(€2max)
(0.5,0.25,0.16) 0.48 0.14 0.34 0.33 0.016  0.13
(0.4, 0.25,0.16) 0.61 0.14 0.42 0.39 0.025 0.11
(0.5, 0.45,0.16) 0.57 0.13 0.37 0.37  0.052 0.08
(0.5, 0.25,0.10) 0.47 0.09 0.33 0.32 0.009 0.13
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F1G. 2. The counterpart of Fig. 1 from the approximate equations (38). The eigenvalues are ¢ = 0.48 and B = 0.14.

whereas for (38) no such cutoff was found when vy
was held fixed at K — 0.05 and K increased. In
this sequence (shown in Fig. 3), the changes in
shape for ¢, and ¢, are slight, even though their
peak amplitudes change considerably. Both ¢ and B
are decreasing functions of K here. Nevertheless, it
remained true for (38), as it was for (32), that there
occurred a cutoff to solutions as K was increased
for a fixed value of v.

Many of the parameter dependences of the jet
modes may be anticipated from the integrals (29)
and (30). In (29), the positive right-hand side
should be balanced by both the far-field 8 term
and the layer coupling term. The contribution of
the former requires ¢ < max |#&,| = 1. Furthermore,
a larger contribution is needed as K increases;
hence 8¢/6K < 0. The contribution of the second
term relieves some of the necessity for ¢ to decrease
to balance an increasing K; hence §¢/0y > 0. Given
the additional fact that the ratio {,/{, tends to de-

crease as & decreases (i.e., upper layer intensifica-
tion increases as the layer gets thinner), then by
a similar argument 8¢/88 > 0. From Table 2, we can
see that the ¢(8) dependence is weak. In the lower
layer integral, a balance seems less difficult to
explain (i.e., the second term on the right-hand side
seems likely to contribute a great deal to the re-
quired positive value). Nevertheless, we might ex-
pect 8¢/8[K + y(8 — 1)] <0 and 8¢/8(dy) > 0;
both of these tendencies are consistent with the
upper layer ones, as well as the Table 2 results.
We now make a dimensional interpretation of
these results. If we choose a deformation radius
{i.e., [Aghy/(1 + 8)]'3f,~'} of 50 km, f, = 0.77%s~1,
Bf/L = 27Bcm™1s7, by = 0.75° cm, L = 2500 km,
and fix the transport by the mean jet (i.e., V,hoLB/a)
at 30 Sverdrups, then for the standard case of Figs.
1 and 2 we calculate a boundary layer thickness
of 30 km and ]L‘:’ [max = 140 c¢cm s~!. The resulting
eigenvalue of ¢ = 0.48 corresponds to a dimensional
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F1G. 3. A sequence of eigenmodes from the equations (38) for
6=0.16, y=K — 0.05 and K = 0.6, 0.8, 1.0 and 1.2. The cor-
responding eigenvalues &(K) and B(K) are listed in the upper
and lower panels, respectively.

eastward phase propagation at 67 cm s™! for a mode
with a wavelength of 350 km. Thus, the parameter
range for jet modes is not a wholly unrealistic
one compared, say, to the North Atlantic sub-
tropical gyre; the plausibility of the phase speed
prediction is discussed in Section 7.

The preceding solutions were obtained using an
analytic expansion about the critical layer singu-
larity. Frequently, however, numerical solutions
are sought in circumstances where critical layers
are present but where tailored local expansions
are infeasible (e.g., in the two-dimensional geometry
of an enclosed basin rather than a channel—see
Section 6). One can always assure the accuracy of

standard finite-difference formulas by including suf-

ficient friction, but such a ‘‘correction’ can trans-
form the dynamical nature of the fluid. Alter-
natively, the numerical solutions can be accepted

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 8

with the recognition that they will contain quanti-
tative deficiencies in the neighborhood of critical
layers but, one might hope, a qualitatively ade-
quate representation of the grosser features of the
true solutions.

This idea can be tested with our present solu-
tions. For Eq. (32) and the parameters of Fig. 1,
one can obtain a jet mode solution using the finite-
difference formula (A3) through the critical layer
[i.e., without matching to the formulas (A6)-
(A9)]. The resulting eigenvalue is ¢ = 0.70 (in con-
trast to the correct ¢ = 0.46 which is 30% smaller)
and the resulting eigenmode has a qualitatively
similar shape to that in Fig. 1 except that {;,., is
located closer to the wall. The defect, of course, is
due to the inability of a finite-difference repre-
sentation to resolve the logarithmic singularities
which occur in (32) and (A2); this defect is not a
strong function of the grid spacing. The parameter
tendencies of ¢ are indeed qualitatively similar in the
purely finite-difference and the correct solutions,
but quantitative differences of the order of 50% do
occur. Undoubtedly, this discrepancy could lead to
false conclusions about some aspects of the solu-
tions.

The solutions we have examined in this section
are those of (24), not (13); that is, we have been
considering a particularly stringent form of quasi-
geostrophy where all of 8, RI" and R are vanishing
small. For large basins with horizontal dimensions of
several thousand kilometers, the first two param-
eters can be much larger than the last, and many
of the eigenmodes can reflect contributions of O(g)
or O(RT). For the jet modes, however, we can
inquire a posteriori whether corrections of these
orders could be included in a quasi-geostrophically
consistent manner.

The essential quasi-geostrophic approximation is
the balance, in the momentum equation, between
the horizontal pressure gradient and the Coriolis
force. This requires the neglect of the particle
accelerations relative to either of these, or o’ < f’
(where o’ is a dimensional frequency). This neces-
sary inequality can be alternatively expressed in
terms of the nondimensional quantities of our jet
mode solutions,

<1 + BAy,
on

where K = (K? — y)'2. Thus, for jet modes with
order unity values for ¢, K and 8, the inequality is

‘satisfied for 8 < 1, but it is not so strongly satisfied

that the second term on the right-hand side can be
consistently retained relative to the neglected ageo-
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strophic particle accelerations. Thus, for jet modes,
the differences between Egs. (24) and (13) are
unimportant. As a general proposition, it will only
be modes with small phase speed and/or large
horizontal scale that the less restrictive approxima-
tions of (13) will be meaningful.

5. A double-gyre solution

In Sections 3 and 4, various quantities were
derived for a mean zonal jet on the northern wall
of a zonal channel. With only slight alterations,
we can also consider the case of a narrow, east-
ward jet in the center of the channel with weak,
westward return flows on either side. This solution
for the mean flow is a special case of Eqgs. (11)
and (12), where the constants a, b and ¢ are, in
principle, different in the northern and southern
halves of the basin. Their particular values are
chosen so that, in a basin extending from 0 to 2 in
y, there are no boundary layer jets ony = 0 and 2,
and both ¢,(y) and h,(y) are continuous and have
continuous first derivatives at y = 1. The choices
which permit this are

a¥ = a’

N —

{b—1+B (39)
bS=1-8

c¥=c

(in an expansion in R), where now the Coriolis
parameter has been centered at the jet [i.e., yo = 1
in (4)] and the superscripts N and S refer to y > 1
or y < 1, respectively. The resulting solution is
identical to (23) with odd symmetry in ¢y about
y = 1. The resulting mean zonal velocity profile

i (y) = =0y, /0y = —Bla + (Bla)Q/sinhQ

coshQy, y<l1

(40)
coshQ2 —y),y > 1

has a cusp at y = 1. While no doubt the addition of
a small amount of friction to the mean equations
(7) would smooth out this cusp, we shall not do this
here in order to retain the guarantee of stability
from (10) [n.b., dP,/0¢; = a > 0 over the whole
domain of the double gyre (40)]. In reality, cusps
cannot exist, but neither would a strong mean jet
likely be absolutely stable in the ocean.

Because the mean profile (23) remains valid for
the southern half of the double gyre and the northern
half is identical by a negative reflection, then the
eigenvalue differential equations (24)—(25) apply for
the double gyre as well if we wish to solve for either
the symmetric or anti-symmetric eigenmodes. For
the latter modes, {; = {, = Oaty = 1, and the solu-
tions of Sections 3 and 4 are appropriate here as
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well. For the former modes, the only alteration to
Section 3 is in the y = 1 boundary conditions; for
symmetric double gyre modes, we require

8L,/dy = 8L/0y = 0 at (41)

These conditions require that the shooting targets in
(A2) and (A12) be changed to (A19) and (A20); other-
wise the formulas of the Appendix are applicable
for this case as well.

Shown in Fig. 4 is a double-gyre symmetric
solution for the same parameters as in Figs. 1 and 2.
This particular solution is from the Egs. (38) and
(41). If the more approximate equations (34) had
been used, then a similar level of discrepancy would
occur as in the single gyre modes described in
Section 3; for this section, only the more accurate
eigenmodes will be presented.

In Fig. 4, the eigenmodes have their maximum
amplitudes at the center of the jet (n = 0) instead
of on the wings; the lower layer amplitudes are not
as weak relative to the upper ones; there is no
critical layer (i.e., ¢ > 1); the asymptotic layer
coupling is stronger (i.e., B has increased from 0.14
to 0.22); and the momentum flux divergences are
stronger and of one sign in y < 1 (n.b., they will
be antisymmetric about y = 1, implying a forcing of
a mean meridional divergence about the center of
the jet).

The absence of a critical layer can be justified
heuristically from the upper layer integral (29). For
the symmetric mode conditions (41), the final term
does not vanish as before; rather it contributes '

0 8 g

y=1.5

(42)

¢ -1
This is a large positive number for ¢ > 1, and it
can serve as the primary balance for the left-hand
side terms in (29), supplanting the first right-hand
side term from which was previously obtained the
¢ < 1 condition. This result is somewhat artificial
since it depends upon the existence of the cusp in
the mean velocity (i.e., i, # 0 at n = 0).

The parametric dependences for the symmetric,
double-gyre modes are shown in Table 3. In general
the tendencies are the same as for the single-gyre
case; we note that 9¢/0K < 0, d¢/dy > 0, 0B/0S
> 0, and, weakly, 8¢/d6 > 0 and dB/8K < 0. The
exception is that now dB/dy is a large positive
number rather than the weak positive number indi-
cated in Table 2. There are no difficulties in ob-
taining solutions for the double-gyre modes, neither
as K gets very small or very large. This latter is
contrary to the single-gyre case, no doubt because

5 Ambiguity between the claimed symmetries and the y = 1
boundary conditions could arise if there existed modes with
simultaneously {, = 8{/8y =0 at y = 1. None were found,
although no special search was made for them.
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FiG. 4. A symmetric, double-gyre jet mode from Eqs. (38) and (41). The parameters selected were K = 0.5, y = 0.25
and § = 0.16. The eigenvalues are ¢ = 1.46 and B = 0.22.

the differential equation singularities no longer the resulting jet mode has a phase speed to the
can coalesce by ¢ decreasing toward zero. A di- east at 200 cm s7'. :

mensional interpretation for the Fig. 4 solution,
analogous to that given at the end of Section 4, is
‘that the mean jet transports 60 Sverdrups to the In this section several eigenmodes to the two-
east within a width of 60 km, (i.e., Ay = 2), and dimensional equation (13) are presented for a square

6. Basin modes

TaBLE 3. Eigenmodes of (38) with (41).

(K., 8) 2 B L 4(1) M® (o) 100 M)

A ¢ LGS N _ My

4 ' ? 0K =9 | max ’ 0K =) | max
0.5, 0.25, 0.16) 1.46 0.22 0.82 0.064 0.86 (0.58) 2.8 (0.26)

(0.4, 0.25, 0.16) 1.60 0.26 0.85 0.099 0.84 (0.56) 5.6 (0.21)

(0.5, 0.45, 0.16) 1.71 0.51 1.07 0.35 1.08 (0.52) 54.0 (0.16)
(0.5, 0.25, 0.10) 1.45 0.14 0.76 0.038 0.75 (0.58) 1.0 (0.26)

0.2, 0.1, 0.16) 2.07 0.225 0.88 0.064 0.69 (0.45) 1.9 (0.13)

(1, 0.25, 0.16) 1.21 0.18 0.78 0.024 1.12 (0.69) 0.6 (0.41)

(1, 0.95, 0.16) 1.53 0.77 1.21 0.60 1.6 (0.57) 200.0 (0.29)
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ocean basin. The simplifications resorted to in Sec-
tions 3-5 are, for the most part, abandoned; only
the rigid lid approximation [A = 0 in (11), (14), (18)
and (22)] is retained. On the other hand, the nu-
merical techniques which were used to obtain these
basin modes (see the Appendix) have two major
defects, both of which likely introduced signif-
icant quantitative errors. The first of these defects
is the lack of a correct critical layer representa-
tion [as, for example, in (A6)]. As discussed for
the channel case in Section 4, this defect can lead
to errors in the phase speed and the location of eddy
extrema on the order of 50%. The second defect is
a marginally inadequate spatial resolution for many
of the eigenmodes. For the maximum, economically
feasible numerical resolution (described in the
Appendix), some features of the modes—partic-
ularly the phase speeds of the jet modes—are not
yet invariant with respect to resolution (the remain-
ing resolution errors are of the order of 20% in c).
Nevertheless, jet modes were present in each of a
large number of examples considered by the in-
vestigator. Thus, it seems highly probable that basin
modes of the general character of those shown
below always do exist and that these examples
fairly demonstrate the occurrence, under more
general circumstances, of the jet modes more
rigorously derived in the channel geometry with
{R,8,RI', 07} — 0.

Solutions to (12)-(13) will be shown for only a
single set of parameter values; viz.,

R=14x 10 a = 0.025
6 =0.11 b = 0.86
B =027 c= —11
I' =100 Q=13
o=0

These are not accurate values for the North Atlantic
Ocean. In order to minimize the resolution defect,

¥ C.l=2
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the parameters (43) have been chosen to represent
a basin which is either too small or has too broad
a boundary current width (~Q~') and which is ex-
cessively stratified so that the deformation radius
(~I'"2) is too large. Fig. 5 shows the nondimen-
sional solutions for ¢, and 4,. They exhibit a broad
interior region of nearly uniform westward flow,
with stronger and narrower return flows near the
walls. There is also a weak westward current ad-
jacent to the southern wall, even though (43) implies
b =1 — B/2, which is sufficient to eliminate the
southern wall current in the asymptotic limits of
Section 3. ¢, and h, do not have the numerical
defects discussed above.

A first example of the basin modes for Fig. S is
shown in Fig. 6. This is not a jet mode but a
slightly altered gravest barotropic mode. Asymp-
totically as {8,R} — 0 in a quiescent ocean (y, = 0,
h, = 1), this mode would have the form

{, = & = sinwy sinwx[cos(B2wR)(x — V5)

— i sin{B2wR)(x — V5)], (44)
where

o = B2 27R). (45)

This quiescent solution is closely related to the chan-
nel solution (26), and, furthermore, is similar to the
basin mode in Fig. 6. The major differences in the
basin mode are a 7% reduction of the frequency
[n.b., @ = 217 is predicted from (43) and (45)] and
the appearance of some smaller scale structure in
¢, in the basin interior; {, is remarkably similar to
(44). The momentum flux divergences M;, from (20),
are also shown in Fig. 6. The M, patterns have
a large spatial scale and correspond to what would
result from the quiescent modes (44). In the upper
layer, however, the small amplitude departures from
(44) dominate M ,; the patterns are of relatively small
scale and would tend to force a secondary mean

B C.I=0.04

=

° J

fl

>,

FiG. 5. The mean streamfunction ¢, and layer thickness 4, for the upper layer. These are

solutions of (11)-(12) for the parameters (43). *

C.1.” is an abbreviation for contour interval.
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circulation primarily away from the boundary jets.
In general, the basin modes contain many ex-
amples of slightly altered quiescent barotropic
modes; as their spatial scale decreases the altera-
tions due to the mean gyre increase. No examples
were found of slightly altered quiescent baroclinic
modes; since in a closed basin they necessarily
have a small zonal scale of O(I'"'?)—unlike the
channel baroclinic modes (26)—it is perhaps
not surprising that the mean gyre influences are
strong.

Finally, an example of a closed basin mode
which is approximately a jet mode is shown in Fig. 7.
We can recognize the structural features identified
in the channel solutions of Section 4: this basin
mode is confined to the region of strong mean
currents, its eddies are vertically in phase but
strongest in the upper layer, its horizontal scale is
broadest in the lower layer, and its phase propa-
gation is in the direction of the mean jet.

An identification of the jet mode wavelength can
only be done approximately since it varies from
eddy to eddy. However, if we identify w/k with
the typical separation of eddy centers along the
northern wall, then we can calculate the jet mode
parameters defined in (28). They are y = 0.6, K
= 2 and ¢ = 0.8, which at least qualitatively match
those of the previous, more exact solutions.®
¢ < 1 is again the statement that the jet mode has
a phase speed somewhat less than the maximum
speed of the mean jet.

The patterns of momentum flux divergence for
this jet mode are also shown in Fig. 7. These
patterns are again such as to force a diverg-
ence in both layers along the axis of the mean
jet. In addition, there are some eddy-scale struc-
tures which would locally accelerate or de-
celerate the jet in the direction of its flow. This
latter tendency is absent in the channel jet modes;
it also has a scale comparable to the resolution
~ scale for the mode calculation and is therefore

numerically questionable. The heat flux divergence
# is nonzero for the mode in Fig. 7—again in
contrast to the channel jet mode —but its amplitude
is small compared to what one would estimate from
a scale analysis of the {; and {, patterns.

In addition to the mode in Fig. 7, there exist
many other basin modes for the mean gyre in
Fig. 5 which have the general character of jet
modes. They differ from each other in their wave-
length along the jet and the extent to which they
extend along the perimeter of the basin and, con-
sequently, in their phase speed and {,/{, ratio.

¢ The match is particularly good with the channel solutions
obtained without a local critical layer expansion. Recall that they
did not exhibit an upper limit on the value of KX — y for which
solutions could be obtained (Section 4).

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 8§

7. The jet mode as an archetype

The solutions which have been presented in
Sections 3-6 are valid for very particular geometries
and mean flow profiles. I offer the conjecture,
however, that the qualitative features of these jet
modes will be reproduced under much more general
circumstances. When the mean jets are strong
[i.e., their local Rossby numbers are much larger
than the non-dimensional 8 from (5)] and narrow
[their widths are not larger than the deformation
radius], there should be eigenmodes whose ampli-
tudes are small away from the jet and whose phase
speed is in the direction of the jet. Furthermore,
when the jet is layer intensified as here, the jet
modes are as well, and the lower layer, cross-jet
scale is larger than the upper. The parameter
dependences of the phase speed should perhaps also
be as described in Sections 4 and 5. This con-
jecture will not be proved here; -its final demon-
stration rests on finding enough theoretical results
and at least a few observations which conform to it.

Let us consider those statements which can be
made fairly generally. If there exists a mean
profile #(y) and parameters and scales which cor-
respond to the assumptions preceding Eq. (24), then
that equation is generally valid if we write the
potential vorticity gradients without recourse to
(11). In general, for small 8, R and RT’,

P, =1Q — liyyy, P, =1/Q — &yit,. (46)
If the mean velocity vanishes away from a ‘‘jet re-
gion’’, then from (46) we recover (36) for the eigen-
modes. That relation implies exponential decay for
the modes away from the jet, thus assuring their
effective “‘trapping’® within the jet region. The
relative weakness of the lower layer eigenmode is
also assured by (42), in the layer-decoupled ap-
proximation (33), because of the smallness of the
parameter &y. This quantity is small both for oceans
with shallow thermoclines (where 8 < 1) and where
RT < 1, as has been previously assumed. Note that
v = RI'/a from (23) and (28); thus, the solutions of
Sections 4 and 5 are formally only valid for small vy.

The parameter dependences of the eigenvalue ¢ on
K, y and 8 have all been heuristically identified
from the integral constraints (29) and (30); for more
general ‘‘strong and narrow’’ i1,(n) jet profiles, many
of the same tendencies should persist. These inte-
grals are real ones only for stable eigenmodes. For
the case of complex {(n) and ¢, one can derive a
pair of such integrals [as in Pedlosky (1964)]; in
such a case, however, it is more difficult to identify
the parameter dependences of Re{¢}, except when
Im{¢} is relatively small (i.e., the instability is weak).
Nevertheless, it is often true that actual solutions for
unstable modes share many of the characteristics of
the jet modes presented here. In the case of a
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““Bickley Jet”’ [i(y) = sech?y], for example, the real
part of the phase speed was found to be a de-
creasing function of the zonal wavenumber for
modes of odd symmetry and an increasing func-
tion for even modes (Drazin and Howard, 1966).
The former property matches the result of Section 4,
while the latter conflicts with that of Section 3;
again it seems as if a cusp in the mean jet
profile yields peculiar modal behavior.

In Haidvogel and Holland (1978), a parameter
study of the most unstable modes was made for
a particular class of narrow jets (ones without any
special potential vorticity properties, however). The
maximally unstable modes they examined did ex-
hibit strong trapping in the upper layer and within
the jet region; the pressures were more often than
not nearly in phase in the two layers; the lower
layer patterns showed a horizontal scale expan-
sion relative to the upper; and the parameter
dependences 8¢/08 > 0 (except for some anomalous
behavior for very small 8) and 9¢/8y = 0 for small
vy were found (0¢/dK was not tested). One dis-
crepancy was that their maximum jet velocity ex-
ceeded the eastward phase speed (unlike Section 5),
but, of course, their mean velocity had no cusp. In
a similar manner the spatial structure of the un-
stable modes found by Orlanski and Cox (1973)
qualitatively matched the jet mode structures (n.b.,
their Figs. 3—4).

Another situation where transient eddies have
exhibited jet mode characteristics is reported in
McWilliams er al. (1977). From a numerical
simulation of the statistical equilibrium state of a
steadily forced, two-layer channel flow, calculations
were made of the principal components of stream-
function variance (i.e., the eigenmodes of the matrix
Px;, W(x;,0)0(dV;dV;)2, where ¥ is the streamfunc-
tion, the overbar is a time average and dV,; the
fractional volume element associated with the grid-
point x;). These principal components were found to
usually occur in pairs, approximately displaced from
each other by a quarter-cycle in time and the zonal
direction, and thus representing zonal propagation.
Their phase speed was in the direction of the mean
jet, they vanished outside the jet, and they were
vertically in phase and upper-layer intensified
(though less so than the solutions of Sections 4-—
6 because there was a mean lower layer jet as well).
The pairs which were evenly symmetric about the
jet center had an increasing phase speed with in-
creasing zonal wavenumber, which is a further indi-
cation that the d¢/0K < 0 tendency found in Section
5 is not generally characteristic of the symmetric
modes of thin jets away from boundary walls.
Some of the principal component pairs were baro-
clinically unstable (i.e., they provided a significant
rate of conversion of mean potential to eddy po-
tential energy) and some were not.
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The jet modes provide at least one potentially
very important observational caution. In the North
Atlantic subtropical gyre, the low-frequency vari-
ance is largest in the vicinity of the Gulf Stream
(Schmitz, 1976). It has been argued that this is evi-
dence for this region as a generating one for
fluctuations by an instability (or else why should the
amplitudes be largest there?). However, the stable
modes presented here also have their amplitude
maxima in the jets, and the conclusion of local
eddy generation is not a necessary one. There are
at least some aspects of the observations, though,
which are not well explained by jet modes; for
example, Hansen’s (1970) eastward phase speeds for
Gulf Stream meanders are an order of magnitude
smaller than the dimensional values discussed
above, though it is doubtful whether his observa-
tional techniques would have detected rapid phase
speeds. Robinson et al. (1974) do refer to ‘‘large-
scale variations’’ in the Gulf Stream with a length
scale of 40 km and a time scale of approximately
a day. While these scales approximately match jet
mode scales, their observational documentation is as
yet very crude. Luyten (1977) did not observe rapid
zonal propagation from a bottom array of current
meters beneath the Gulf Stream but little jet mode
signal would be expected at this depth.

In summary, the theoretical evidence generally
supports the usefulness of jet modes as an arche-
type for ocean transience, while the observational
evidence is inconclusive. The structural form of the
solutions presented here may be their most gen-
eralizable characteristic, while their stability and
predicted dispersion relation may be valid only in
much more restricted circumstances.

Acknowledgments. This research was supported
by the National Science Foundation through its
grant to the National Center for Atmospheric
Research. Computational assistance was provided
by J. H. S. Chow, and the manuscript was pre-
pared by Karla Nolan. I am particularly grateful
to J. E. Hirsh who shared his finite element
algorithms for the computations of Section 7. This
paper is MODE Contribution No. 91.

APPENDIX

Numerical Solution Techniques

To solve the upper-eigenvalue equation of Egs.
(34), we convert the system to one of first order in
vy and explicitly extract the leading order asymp-
totic term as { — 0; that is, we define

Z = f_KHZCu
Y = (& - HEFE - (KMPE)L,],

and write the eigenvalue problem as

(A1)
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Z' = YN - é)

EY' = —-Z - 2VK + 1 + & — &Y (A2)
ZO)=1, Y0)=-Q2VK + 1)!

Z) =0

This coupled system will be solved by initially
guessing a value for ¢ and then integrating away
from ¢ =0 by Runga-Kutta finite-difference
formulas. For example, for the first equation in (A2)
we write

1
Zi+l = Zi + 1/2A§Yl[ — +
¢ — &

x(l-f—Af

1

¢ - §i+1

) @

to obtain a value of Z;,, = Z(¢,,,) from dependent
variables at lower values of & = A&(j — 1). The
integration proceeds until &y, = 1, where Zy,, is
tested for a zero value. If it is nonzero, a new
¢ guess is made and the integration is repeated. This
iteration process is continued until Zy,; converges
to zero.

The formula (A3) is inadequate near a singular
point of (A2). The first singular point is at £ = 0.
There a simple Taylor series expansion is of the form

Z®=1+3

; Agt
=2 (J = D!
| wo | , (Ad)
Yo&) = — B!
O=-GvErn AT
where 4, = —1/[¢Q2VK + 1)] and
‘ (A2\/?+j.)3j = —jA, ] (AS)
CAjry = (J — DA; + B;

for j > 2. This expansion is used to evaluated Z
and Y from £ = 0 to an intermediate &, (in practice
0.05 = &, = 0.1) where Z(&,) and Yy(&,) are used
as starting values for the Runga-Kutta integration
(A3). The solutions obtained were not overly sensi-
tive to the values used for &, and M,.

The other singular point for (A2) occurs at the
critical layer ¢ = ¢, assuming ¢ is real and between
0 and 1—the first is assured by the stability of the
mean flow (Section 1) and the second always occurs
for the particular profile (23). Here again an explicit
expansion is employed. We define a critical layer
independent variable r = ¢ — ¢. The Runga-Kutta
integration proceeds up to —7, from below and from
7o to more positive values of 7; in between the
solutions are evaluated by the expansion, whose
free constants are chosen by matching to the Runga-
Kutta values at —7, and which provides starting
values at +7, for (A3). There are two linearly
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independent solutions to (A2) near 7 = 0, and the
matching at —7, provides their constant coefficients
for a given ¢ value. These two solutions are

My N
Z(®) =1+ Y (an + by In|7/e|)m
m=1
>, (A6)
My
Y,(r) = — 3 (map + by + mbyIn|7/e|)rm
m=1 S
where a, = 0, b, = 1/¢, and
m 1 2VK
bu = ~-0 11 [1 - = + 25|
=2 Jj—1 J
2m -1
s m—p "
m(m L (A7)
l[ 1 2\/K] .
- T 1 - + am_l
¢ m-—1
B 2[ VK +m -1 ] b
¢l mm -1 m )
form=2,..., M, and
My
Zy(1) = —7 — CpT™ 1
? 2, , (A8)
M2
Yo(r) =7+ X (m + Deym™H!
m=1
where Vi
m ; 2 K 7y —
en =11 (-J( K+ 1), (A9)
i=1 ¢ + 1) _
for m=1,..., M, Again the results were not

overly sensitive to the values chosen for 7,, M,
and M,.

The lower equation in (34) was solved as a matrix
problem for the vector (&), i =1,..., N, with
a second-order difference approximation to the dif-
ferential equation and {,(£;) obtained by the pro-
cedure described above. The singularity at £ = 0
gave no difficulty, and there is no singularity at
the critical layer through two derivatives of {;(£).

To solve the layer coupled eigenvalue equation
(38), we redefine the independent variableas & = ™"
and define additional dependent variables,

yi(§) = (€ = HLE), yA8) = £6(8). (AlQ)

In terms of these quantities, the system of first-order
equations to be solved is (A10) plus

yi = ~[Ug + 1@ - Ol
c—¢ ¢ — ¢
—(I/E—K?—)a—v?—cz AL
,_[K-y1-8 8y] &
Ye [ P - }gz P &
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The Runga-Kutta integration procedure will again be
as illustrated in (A3); now, however, the iteration
will be in ¢ and B values, until

Cl(‘fzvﬂ) = €2(§N+1) = 0.

The system (A10)—(A11) again has two singular
points, at ¢ = 0 and ¢. Near ¢ = 0, we represent
the solution as

{ = {u + Blu;

(A12)

Y1 =Yu + By,

(A13)
lo = Lo1 + Bleo; Yo = Yo + Bym
The individual terms in (A13) are
No 9
Clj = 2 ajn€n+ej
n=0
. No
Y1;= Qe €9 20 [e(n + 1 + e)aynss
—(n + ey, JE" ¥ (A14)
No
boj = 20 Biné™te
No
Y25 = Eo (e; + n)BjE"e
n= J
forj =1, 2 and
Qnei[C(n + 1 + ) — CK] + BjursCy
= apf(e; + n)E — 1 — K] + B
il (€ K] + By (AL5)
Binrilles + n+ 1) — K + y(1 — 9)]
+ 18y = —8V/CBjni1
forn=0,..., N, — 1, where
ey = (K + ", ap=1, By = “BJ . (A16)
e, = (K — I, g =1, By =1

The critical layer expansion [the counterpart of (A6)
and (A8)] now consists of a sum of four independent
solutions, each of which can be written in the form

~

Ny
Ly(r) = gl (@m + In|7/2|bp)m™ + aj

_ ..
Yu(7) = = 3 (naj, + by[l + nIn|w/e|]
n=1 .

Ny
L) = co + 3 (e + In|7/2|dyy)r L AL
Yoi(1) = &cyy + dy) + &dyy In| /]
+ nﬁ_v:ll {ncim + di + &(n + Dcjniq
+ &d; niy + In|7/2|[nd;,
+ (n + Déd; i} |
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forj = 1, 2, 3, 4, with recursion relations (deleting
the j subscripts)

ap[n(n + DI + b,yq[20 + 1]
=a,[(n + 1 — 2n¥/¢] + b,(1 — 4n)/c
+ a,4[1 + K — (n — 1)2)¢&*
+ b,_1[2(1 — n)/¢] — cp_yylc?
bpu[n(n + D] = bl(n + 1 — 2n)/¢]
+ b1 + K — (n — 1)?2Yé* - d,_ylc
Cpsa[n(n + D] + dyil2n + 1]
= —c[n(2n — 1)/&] — d,(4n — 1)/
— Cply — K + (n — 1)2)/¢?
—dp12(n — 1) = €, pY/C® — ay,_&Y/C?
dpiin(n + 1)] = —d,[n(2n — 1)/¢]
—dp [y — K + (n — 1)?)/2?
— dypy8Y/C* — by_,8y/C* |

forn — 2, ..., Ny — 1. The starting values for the
recursion relations (A18) are given in the following
table:

PN

>, (A18)

J 4 a a, by by ¢ < Ca2 d, d,
1 0 1 0 0 0 0 o 0 0 0
2 0 o —y/2¢? 0 0 1 0 (K-—yi2¢2 0 0
3 0 0 0 0 0 0 1 —1/2¢ 0 0
5 1 0 (K-2)2%* 1/¢ 0 0 O —&y/2¢? 0 0

Notice that for j =1, 2 and 3 the logarithmic
terms in (A17) are entirely absent, while for j = 4,
they begin with b, and d; nonzero in the upper and
lower layer solutions respectively.

For symmetric modes in a double gyre (cf. Section
4), the boundary conditions (41) require different
targets for the shooting method. For the solutions to
(34), iterate in ¢ until

VT(Z(&NH) + (¢ — D7'Y(éys) = 0; (A19)

for the solutions to (38), on the other hand, the
targets are

€ = D)7'yi(éne1) = yo€ner) = 0. (A20)

Finite-element numerical techniques were used in
obtaining closed basin solutions to Egs. (12) and
(13). In this method each of the dependent vari-
ables is represented as a series of basis func-
tions; e.g.,

Ui(%,Y) = 3 andu(x,). (A21)
n

For our square geometry, a separable set of basis
functions were used, i.e.,

ba(x,3) = 5(x,%,)5(Y, ), (A22)
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where the s(x,x,) is a cubic B spline centered
about the point x, (Hirsh, 1975). Eqgs. (12) and (13)
were solved in forms obtained by multiplying them
by ¢,, and integrating over the basin. Thus trans-
formed, the steady equation (12) was solved iter-
atively until convergence. Eq. (13) was solved as a
matrix eigenvalue problem for the eigenfre-
quencies .

The cubic B spline s(x,x,) is nonzero over an
interval of 44 centered about a node point x,, where
his the interval between node points. The maximum
resolution available for the calculations of Section
6 permitted 14 node points in each of the x and y
directions (which corresponds to an 4 of 1/11 of the
domain width). Because these basis functions are
cubic polynomials, one may crudely identify their
resolution capabilities with those of three times as
many linear basis functions (such as second-order
finite differences).
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