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ABSTRACT

The theory of barotropic nondivergent waves trapped on an exponential shelf lying on an equatorial
B-plane is presented. The bottom contours are parallel to the equator so that phase propagation is either
eastward or westward, according to the following general rule: when the shelf region is entirely in the
Northern (Southern) Hemisphere the shallow water is to the right (left) of the direction of the phase
velocity. When both the shelf and deep sea regions are located in the same hemisphere (case 1), the results
concerning the dispersion curves and eigenfunctions are qualitatively similar to those obtained by Buch-
wald and Adams (1968) for shelf waves on a mid-latitude exponential sheif on an f-plane. However,
when the shelf region is on one side of the equator and the deep sea region extends across the equator
(case 2), the dispersion curves and eigenfunctions are quire different. In case 2 the dispersion curve for
each trapped mode has a long-wave cutoff. However, the cutoff for each mode generally does not preclude
the existence of a zero group velocity at an intermediate wavelength, a phenomenon which always occurs
in case 1. In case 2 the range of oscillation for each eigenfunction is generally much larger than that of
the corresponding eigenfunction in case 1. Finally, when the shelf region straddles the equator (case 3),
both westward and eastward propagating modes may exist. Further, one set of these modes has a long-
wave cutoff (e.g., if the coast is in the Southern Hemisphere with deep water to the north, the westward
propagating modes have a long-wave cutoff). In case 3 the oscillations of each eigenfunction tend to be
concentrated near the shelf edge. .

The theory is applied to the Gulf of Guinea, where a 0.07 cycle per day (cpd) oscillation in the sea
surface temperature has been observed to propagate westward along the Ghana-Ivory coast. It is shown
that this signal may be due to the presence of a fundamental mode shelf wave of the type discussed in
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this paper.

1. Introduction

A theory of barotropic, nondivergent, zonally
propagating waves on an equatorial beta plane with
topography has recently been presented by Mysak
(1978, hereafter referred to as M). In M the depth
profile H is assumed to be a function only of y, the
northward coordinate, and solutions are given for
long-period trapped waves on a number of profiles
that describe different types of escarpment and
continental shelf/slope regions. However, in M the
trapping of long-period waves on the exponential
shelf profile, first introduced into the literature by
Buchwald and Adams (1968), was not discussed.
The purpose of this paper is to fill this gap in the
literature. Also, because the Buchwald-Adams pro-
file has been extensively used in the midlatitude
shelf wave literature, it was felt that a separate
study should be made of equatorial shelf waves that
propagate on this profile.
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In Section 2 the boundary value problem for the
amplitude of nondivergent, equatorial trapped
waves on an arbitrary depth profile H(y) is pre-
sented. In Section 3 the problem for the exponen-
tial profile is then formulated. In Section 4 a number
of qualitative results concerning the phase and group
velocities are proved and bounds for the eigenfre-
quencies are established. Next, in Section 5, the im-
plicit dispersion relation (involving Bessel functions of
fractional order) is derived. In Section 6, the
dispersion curves for the first few modes along
with the profiles of the corresponding eigenfunctions
are shown. Finally, in Section 7 the theory is applied
to the Guif of Guinea, West Africa, in an attempt to
explain the presence of a long-period westward
propagating signal in the sea surface temperature.

2. Boundary value problem for the wave amplitude

Let ¥(x,y,r) denote the mass transport stream-
function; then the eastward (x) and northward (y)
velocity components are given by

u=-v,/H and v=V¥,H, 2.1

respectively. Further, if ¥ has the travelling wave
form
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¥ = w(y)ei(k.l'—wt), k > 0’ (2’2)

then the linearized equations for barotropic, non-
divergent, unforced motions on an equatorial beta
plane with depth profile H(y) imply that yi(y) satis-
fies [cf. Eq. (2.6) in M]

(W'/H)'" — [K*/H + (kBlw)(y/H)' ]y =0, (2.3)

where the prime indicates d/dy and B = 2Q./R,
Qg and R being the earth’s angular velocity and
radius, respectively.

Let us first suppose that the domain of (2.3) is
Ye <y < »(deep water to the north). To ensure that
Hu be zero at the coast and that the waves be
trapped against the shelf region, we impose the
boundary conditions

¢y =0 at
Y — 0 as

(2.4)
(2.5)

Y =DYes
y —> 0,
If H or H' is discontinuous at y = y, € (y.,%), then
the following jump conditions must be imposed
[cf. (2.9) and (2.10) in M where a derivation of these
conditions is given]:

(4] =0, at y=y,,
[W'/H] — (BkyclwW(y)[1/H] = 0,
at y=y. 2.7

We now consider a class of depth profiles of the
form

(2.6)

Hy), y < y. (shelf region)
Hy, y, <y < o (deep sea region)
where H(y,) = H; = constant. Then the solution

of (2.3) for y, < y =< o subject to the condition (2.5)
is

Ye S

H(y) = (2.8)

Gy = Aekv, 2.9)

where K = (k2 + kB/w)"? > 0. Let , denote the
solution of (2.3) for y. = y < y,. Then the appli-
cation of (2.6) and (2.7) to Y, and y;, gives

Y+ Ko =0 at y =y, (2.10)

Thus for profiles of the form (2.8), the boundary
value problem for ¢ reduces to one for s, alone
on the finite interval y. < y < y, with the endpoint
conditions being (2.4) and (2.10).

If the domain of (2.3) is —¢ < y < y, (deep water
to the south), then in place of (2.5) we have

yp—>0 as y— —cx, 2.5
Further, for profiles of the form
H(y), <y=<
HQ) = l O, Yesy =y, (2.8)'
Hd’ -0 =< y = Ye
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where again H(y,) = H; = constant, it follows that
the boundary condition (2.10) changes to

Y- Ky =0 at y =y, (2.10)'

3. The exponential shelf profile

The exponential shelf profile introduced into the
literature by Buchwald and Adams (1968, hereafter
referred to as BA) falls into the depth profile class
(2.8) discussed in the previous section. However,
since we are dealing here with an equatorial beta
plane rather than a mid-latitude f-plane (as in BA)
care must be taken to distinguish between the cases
1) deep water to the north and 2) deep water to the
south. In the first case the BA profile takes the form

H0€2by,
Hd’

where b >0, [ > 0 and 0 < H; = H,e?®¥; here y,
is the position of the shelf edge and / the width
of the shelf. In the second case

Hoezby’
H,,

where here b < 0,
We first consider the case b > 0. The substitution
of (3.1) into (2.3) gives

W — 26y’ — [K? — QbkBlw)y} = 0,
Ye—Il<y<y,. (3.2

The appropriate boundary conditions are (2.4) and
(2.10). Let us now introduce the normalized variable

Ye=Ye—Ilsy=y,

Ye Sy < ®

H) = [ 3.1)

YeSy sy +tl=y,

—XSYSY,

HQ) = [ 3.1’

M= -yt Dl=0G -yl (3.3)
Then (3.2) becomes
d* d
v _ 2B——¢ —[x* = +vy— D2Bx/QW = 0,
dn? dn
0Osn=<1, (3.4
where .
B=bl>0
Y =yl
k=ki>0 L. (3.5)
Q = w/Bl
X = (k% + /Y2 >0 |
The boundary conditions transform into
=0 at =0, (3.6)
d
—w-I-xLl;:O at n = 1. 3.7
dn
In (3.5) « and Q are the nondimensional wave-



460

number and frequency, respectively; B and y re-
spectively characterize the curvature of the shelf and
the location of the shelf relative to the equator. For
B <1 the shelf profile is approximately linear,
whereas for B > 1 the shelf is fairly flat near the
coast and then drops off rapidly as n — 1. In typical
ocean shelf/slope regions, B = O(1). There are three
important parameter ranges for y: 1 <, shelf is
north of the equator; 0 <y < 1, shelf straddles the
equator; y < 0, shelf is south of the equator.

We now consider the case b < 0 (deep water to
the south). The substitution of (3.1) into (2.3) again
gives (3.2), with the domain now being y, <y
<y, + | = y.. The appropriate boundary conditions
are now (2.4) and (2.10)". Next, if we put

N =@+ 11— y=Q@— ), (3.8)
we obtain the boundary value problem '
d? d
dnl’i i 37%

—[x2— (' — vy — D2B'«x/Q =0,

0syp'=<1 (3.9
=0 at n' =0, (3.10)
ﬂ+)(({1——0 at n' =1, 3.11)
dn’
where B’ = —bl > 0, the other parameters being

the same as in (3.5). While B’ has the same meaning
as before, it now follows that when 0 <+, the
shelf is north of the equator; when —1 <y <0,
the shelf straddles the equator; and when y < —1,
the shelf is south of the equator.

Comparison of the system (3.9)—(3.11) with that
for b > 0 reveals that the solution of (3.9)-(3.11)
for B' = B, and y = vy, is identical to that of
(3.4)-(3.7) for B = B, and y = —y,. Therefore,
henceforth we shall only focus our attention on the
system (3.4)—(3.7), with y taking on both positive
and negative values.

If we make the substitution

Y = B (3.12)

into (3.4), (3.6) and (3.7), we obtain the following
system:

4’ — 1)2Bk/Q — x* ~ B2
dn?
+ (2Bk/Qmlp =0, 0sn =<1, (3.13)
¢=0 at 5 =0, (3.14)
¢ =0 at n=1. (3.15

—5+(x+3)¢

The canonical form of (3.13) can now be identified
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as a variant of Bessel’s equation (see Section 5)
and can also be readily used to prove some
general results concerning the signature of the phase
velocity C = Q/k and the group velocity C, = 0{}/0«
(see Section 4).

4. Qualitative results

If we multiply (3.13) by ¢, integrate with respect
to m over (0,1) and then invoke (3.14) and (3.15),
we find

o 28| e+l
C=—=— > : , @4
" J [(x* + B*)¢* + ¢"*ldn+ E
0

where A = (y — 1)2B— 1,E =B + (k, + 1/C)"*]*(1).
We recall that for trapped waves, (k% + 1/C)Y2
> 0, which must hold for either positive or negative
C. Therefore the signature of C is determined by the
signature of the numerator in the right side of (4.1) since
the denominator there is positive. Since the first term
in the numerator is positive definite, we have

THEOREM 1. If A =(y — 1)2B — 1 > 0, then the
phase speed C > 0 (eastward phase
propagation with shallow water to the
right).

The condition A > 0 can be written as
vy>1+ 1/2B. 4.2)

Recalling that ¥ > 1 corresponds to the shelf being
strictly north of the equator, we see that (4.2) is
satisfied for B > 1 (sharp drop at shelf edge) when
the coast is just north of the equator. However,
when B < 1 (a linear shelf), the coast must be
sufficiently far north of the equator for (4.2) to hold.
Hereafter we shall refer to this topographic con-
figuration as case 1.

We now suppose that A > 0 and hence by
Theorem 1, that C > 0, which of course implies that

Q>0 4.3)

since « > 0. Further, let N and D denote respec-
tively the numerator and denominator of the right
side of (4.1). It follows that

N < (2B + A) j 1 ¢d2dn, 4.9)

0

D > («* + B?) Jl &*dn. 4.5)
: o

Using (4.4) and (4.5), Eq. (4.1) ;hus gives
Q N
K D &+ B’
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which implies

Q < (2B + A)x/(«*> + B?). (4.6)
Combining (4.3) and (4.6), we finally obtain
0 <Q < (2B + A)x/(k* + B?) 4.7)

for A>0(y > 1+ 1/2B). Thus Q] 0 as « | 0 and
as k T . Hence assuming that {(«) is continuous,
we have

THEOREM 2. If A >0, then C, = 8Q}/8x = 0 for
some value of k = k,, say, where
0 <k <o

The discovery of the existence of a zero group
. velocity for shelf waves on the midlatitude BA
shelf was one of the highlights in BA's paper. Thus
it is interesting to see that the same result also
carries over to equatorial shelf waves on the BA
shelf, provided the coast is sufficiently far north of
the equator so that the criterion (4.2) holds. As a
consequence of Theorem 2 it follows that for
k < k; (“‘long’” waves) the energy and phase both
propagate eastward, whereas for k > k, (‘‘short”
waves) the energy propagates in the opposite sense
to the phase.

We now establish bounds for the frequencies
when A < 0. We first consider the case A < —2B,
which implies that

y < 1/2B. (4.8)

Since B = O(1) in practice (see Section 7), this case
generally corresponds to the shelf being in the
Southern Hemisphere with the deep water to the
north. We shall refer to this topographic con-
figuration as case 2. Now, since B > 0, we have

1 1 1
AJ H?dn < ZBJ n*dn + AJ d*dn
0 o o
1

*d).

< (2B + A) J (4.9)

0

Further, we recall that for trapped waves, «?
+ «/QQ > 0, which holds (for « > 0) provided
Q >0o0r Q< —1/k, i.e., provided Q does not lie
in the closed interval [—1/«,0]:

Q & [—1/k, 0]. (4.10)

Under the restriction (4.10), the denominator D of
the right side of (4.1) is positive. Therefore, on
dividing (4.9) by D and using (4.1) we obtain

A [ dan

0

1
(B + A) J d2dn
<—< 2
D K D

Therefore for case 2, in which 2B + A < 0, the
right-hand inequality of (4.11) implies that the fre-

4.11)
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quency is always negative. But since (4.10) must
also hold, the following in equality is deduced:

Q < —1/k. (4.12)

Now in view of (4.5) and the fact that A < 0 for
case 2, (4.11) also implies that

1
Al ¢d
Q Jod’" A
>

—> . (4.13)
K D k2 + B2
Combining (4.12) and (4.13), we thus find
Ax/(k? + B?) < Q) < —1/k 4.14)

for case 2, A < —2B(y < 1/2B).
Finally, we consider the
—2B < A < 0, or equivalently,

12B<vy<1+ 172B.

intermediate case

(4.15)

Generally speaking, this corresponds to the situation
in which the shelf straddles the equator with deep
water to the north; it will be referred to as case 3.
For this case we note that while A <0, 2B + A
> (; therefore, (4.11) implies that both negative and
positive frequencies are possible. However, in view
of (4.10), Eq. (4.11) must be broken up into two
parts:

1
A 2d
Jod> LIS )
<l < - -
D K K>
or
1
(ZB+A)J d2dn
0<—< u
K D

Again using (4.5), we hence obtain

Ax/(® + B2) < Q) < —1/k
or

0< Q< @B+ Akl(x® + B?)  (4.16)

forcase 3, -2B< A< 0(12B<vy <1+ 1/2B).

The inequalities (4.7), (4.14) and (4.16) giving
upper and lower bounds for the frequencies were of
considerable help in computing the dispersion
curves shown in Section 6. For a prescribed pair of
values of B and vy, the corresponding value of A
was computed, which in turn specified which type of
topographic configuration was being considered.
The appropriate frequency bounds were then in-
corporated into the program, which thus ensured
that no modes were missed in the search for the
roots of the implicit dispersion relation F(Q,x) = 0.

5. The dispersion relation and eigenfunctions

We now derive the solution of the system (3.13)—
(3.15) in terms of Bessel functions. If ) > 0 then
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the coefficient of n in (3.13) is positive. Therefore
when > 0, we let [cf. (3.13)]

A = Ax/Q — k® — B? + A%y, ;.Y

where A = (2Bk/Q2)'? > 0. Then the system (3.13)-
(3.15) becomes

dZ
d:: +Mudp =0, pospsp, (6.2
¢ =0 at u=p,, (5.3)

d
-ﬁ-+(x+3)¢=0 at pw=pu;, (G4
where

o = (Ak/QY — k% — B?)/\2, (5.5)
M1 = po + 1. (5.6)

The general solution of (5.2) can be written as
(Abramowitz and Stegun, 1965, p. 362)

b = A p' BT 5(FBAER) + ATy n(ZBAR). (5.7)

Alternatively, since (5.2) is a simple variant of Airy’s
equation (see Abramowitz and Stegun, 1965, p. 446),
the solution can also be written in the form

¢ = AAI(-NPu) + A,Bi(-2*Pu),  (5.7)

where Ai and Bi are the Airy functions. These
are entire functions of u which are oscillatory if
u > 0 and are of exponential character if p < 0.
It can be shown that u'2J;,; and u'2J_,;3 are also
entire functions of w with a similar behavior when
@ > 0and u < 0. However, when p < 0 (which can
occur when say u, < 0), the Bessel functions
J.y3 become proportional to the modified Bessel
functions I.,; [see Eq. (5.12)]. The dispersion
relation is obtained from the conditions (5.3) and
(5.4). Substituting (5.7) into these equations gives

Mo P{A TGy + AT} = 0, (5.8
i P{A(x + B)J{; + )\Mlllz-](—l:ila]
+ A[(x + B)J Y3 — MBI T = 0, (5.9)

where J® = J,(%5A\ud?) and similarly for J{. In
arriving at (5.9) we have used the well-known
Bessel function recurrence relations to eliminate
the derivatives of J{!; that arise in (5.4) (Abramo-
witz and Stegun, 1965 p. 361). For a nontrivial
solution for A, and A,, we require that the de-
terminant of coefficients in (5.8) and (5.9) be zero,
ie.,

(M0M1)IIZ{J(1%[(,X + B)JY)5 — A, t2T6]
—JOl(x + B)JE + A 209, = 0. (5.10)

For given values of B and vy, Eq. (5.10) represents
an implicit form of the dispersion relation ) = Q(«k).
The presenceof the factor (uou,)'? in (5.10) ensures
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that each term is analytic in both g, and u,. Since
the Bessel functions are oscillatory in character,
there will be an infinity of solutions (eigenfre-
quencies) & = Q,(k),n =0,1,2,3,...0of (510).
Since Q > 0, we shall adopt the ordering Q, > Q,
> ... > 0 for these eigenfrequencies. The eigen-
function in terms of the mass transport stream-
function [see (3.12)] for the nth mode is given by

ll‘n(/-‘*) — eB'rl'ullZ l:-]—lls(%)\/“"slz)

0)
I

0)
JIIS

Jl,g(%w’“’)] ,

Mo S < o + 1, (5.11)
where n(u) = (\2u + k2 + B? — Ax/Q,)/A% and it is
understood that in A and wy, = Q,. In arriving at
(5.11) we have used (5.8) to eliminate A, in (5.7) and
then set A, = 1.

When Q < 0, the coefficient of n in (3.13) is nega-
tive and the solution of this equation can be
written as

¢ = A p/ 1 BL (AN w3R) + Agp VL 5(35N PR,

pos<p <p=pp+ 1, (5.12)
where
N = (=2Bk/)”2 > 0,
N2 = k? + B* — Ax/Q) + \2q,  (5.13)

wo = (k2 + B2 — Ax/Q)/N'2.

Alternatively, when ) < 0 the solution of (3.13) can
be written as

b = A AiN2Bu’) + A,Bi(A2Bu’).  (5.12)
It is again important to note that even when < 0,
mo can be negative (since A < 0) and therefore
' < 0 for part of the range of u'. That is, the solu-
tion is oscillatory and the modified Bessel functions
transform into the standard Bessel functions. Pro-

ceeding as in the case > 0, we find that the
implicit dispersion relation for {1 < 0 is given by

(o {IRI(X + BYs + N ui'PIE3]

= I19[(x + BYIT} + Ny P19t = 0, (5.15)
where I® = I35\ 1??) and similarly for I,. For
a given pair of B, y values we shall order the
roots Q,(k) of (5.15) as follows: Q, < £, < €,

< ... < 0. The mass transport eigenfunction cor-
responding to the eigenfrequency (2, is given by

= €| LGN )

)
1%

0)
I3

LaGaN ) |

o< p' s o+ 1, (5.16)
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Fic. 1. The dispersion curves of the first five modes
(n=0, 1, 2, 3, 4) computed from Eq. (5.10) for B = bl
=2(b>0)and y = 3, 4, 5 and 6. The parameter v = y, /[ > 0
is a measure of the distance of shelf break (at y = y,) northward
from the equator (see insets). In view of the comments
prior to (3.12), these curves also apply to the cases B = —2
(b < 0)andy = —3.0, —4.5, —6.0 (shelf in Southern Hemisphere
with deep water to the south).

where n(p') = M’ + Ax/Q, (k) — k* — B2]/\2
and O, (k) is the solution of (5.15).

6. Numerical results

Dispersion curves and the corresponding eigen-
functions were computed from the solutions pre-
sented in Section 5. Values of B and y were chosen
so that all three types of topographic configurations
defined in Section 4 were represented: 1) vy > 1
+ 12B(A > 0); 2) y < 12B(A < -2B); 3) 1/2B
<y <1+ 12B(—2B < A < 0). Figs. 1-3, Figs. 4
and 5, and Figs. 6 and 7 respectively show repre-
sentative solutions for these three cases. _

The dispersion curves  vs k of the first five
modes for positive values of B and vy such that
v > 1+ 1/2B (case 1) are shown in Figs. 1 and 2.
As expected all the roots are positive, implying
eastward phase propagation. In accordance with
Theorem 2, we note from Figs. 1 and 2 that each
mode has a zero group velocity at an intermediate
wavenumber. Further, at long wavelengths (small
k) the waves are nondispersive, and as k — ©,
() — 0. These curves are thus qualitatively very
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similar to those for a mid-latitude exponential shelf
on an f-plane (cf. Fig. 4 in BA). In particular, we
note that for a fixed shelf width /, the frequency
® at a given wavenumber increases as either y,
increases or b increases. This is to say, the phase
speed is increased when the shelf is located further
north of the equator or the shelf curvature is in-
creased.

Fig. 3 shows the eigenfunctions i, for a fixed pair
of positive B, y values and for an intermediate value
of k; the corresponding eigenfrequencies are ob-
tained from Fig. 2c. For n = 1, these curves are
oscillatory in character, with the nth mode eigen-
function having n zero crossings. The lowest mode
eigenfunction Y, does not have a zero crossing,
however, and consists of both an oscillatory part
(0.7 < m < 1) and a monotonic part (0 < n < 0.7).
This is because in this case u, <0 < u, and
hence u in the solution (5.7) or (5.7)' takes on both
negative and positive values.

Fig. 4 shows the dispersion curves for the case
B = 3 and three values of y < 0, chosen so that
v < 1/2B (case 2). Now the waves all propagate
westward, but as in case 1 each mode has a zero
group velocity at an intermediate value of «. The
presence of the long-wave cutoff at ) = — 1/« does
not generally preclude the existence of the zero
group velocity for each mode. Fig. 5 shows the
eigenfunctions of the first four modes corresponding

w/p4

FREQUENCY, @

12 16 20
WAVENUMBER, & =k2

F1G. 2. As in Fig. 1 except for B = 3.
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FiG. 3. The eigenfunctions 4, of the first four modes
(n =0, 1, 2, 3) computed from (5.11) (written in terms of ) for
the case B =3,y = 6and k = 5. .

to values of Q,(x = 5) found in Fig. 4c. Qualita-
tively, they are similar to the eigenfunctions for
case 1 (see Fig. 3). In particular, it was found that
the eigenfunctions ¢, for n = 1, 2, 3 did turn back at
m. < 1, in accordance with the boundary condition
(3.7), which implies that s, and its derivative have
opposite signs at » = 1. However, at these turning
points, y,(n.) is well off the vertical scales shown.

Finally, in Fig. 6 we show that dispersion curves
for B =3 and values of y so that 1/6 <y < 7/6
[(case 3), 1/2B <y < 1 + 1/2B]. Figs. 6a and 6b
illustrate the interesting result that for a given B
and vy pair, both positive and negative frequencies
are possible, which is in agreement with the fre-
quency bounds in (4.16). When y = 1/3 (Fig. 6a),
most of the shelf is in the Southern Hemisphere
and accordingly, as this is a configuration tending
toward one like case 2, apparently all but one of the
eigenfrequencies are negative. The one positive
eigenfrequency, labeled n = ““0”’, is very small, im-
plying a very small phase speed.? When y = 2/3
(Fig. 6b), the configuration is approaching one like
case 1 and apparently all but one of the eigen-
frequencies are positive. The phase speed associ-
ated with the negative root, labeled n = 0" is
again very small. Finally, we note that in Fig. 6¢ all
the modes are positive, which is not unexpected
since the shelf is now in the Northern Hemisphere.
" Fig. 7 shows the eigenfunctions for n = 0, 1, 2, and
n = 0" corresponding to the set of eigenfre-
quencies obtained from Fig. 6b at « = 7. It is in-

3 The possibility of other, smaller positive eigenfrequencies has
not been ruled out; however, none was found to the numerical
accuracy employed.
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teresting to note that the oscillations in Fig. 7a are
concentrated near the shelf break. However, the
eigenfunction ¢ (Fig. 7b) becomes large at rela-
tively small values of  and is monotonic for nearly
the whole distance across the shelf.

7. Application to Gulf of Guinea

During the coastal upwelling in 1974 Houghton
and Beer (1976) observed that the sea surface
temperature along the Dahomey-Ghana coast, Gulf
of Guinea, exhibited periodic variations at a fre-
quency of 0.07 cpd which propagated westward.
Based on temperature data from Cotonou and
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Takoradi (A and D in Fig. 8 and three other
stations between these cities, they estimated the
average wave (phase) speed to be 55 = 10 km
day~!. Also, they observed that the wave slowed
down slightly as it progressed westward. A similar
westward-propagating wave of this frequency was
also observed by Picaut and Verstraete, 1978) along
the more extensive Dahomey-Ivory Coast. They esti-
mated the average speed to be approximately 47 km
day~! and also observed that the wave slowed down as
it moved westward. In particular, along the Ivory
coast itself, the speed was in the range 24-28
km day—'.

Houghton and Beer (1976) suggested that this
wave is most likely an internal Kelvin wave,
whereas Picaut and Verstraete suggested that the
observed oscillation may be tidal in origin, arising
out of a nonlinear interaction between the M, and
S, tides in the northeast corner of the Gulf of
Guinea. It is suggested here that this wave may
instead be interpreted as a fundamental mode equa-
torial shelf wave propagating westward along an
exponential shelf profile.* Based on the cross sec-
tions A—F shown in Fig. 9 and the shelf locations
relative to the equator, y was estimated for each
section; the average of these values was found to
be ¥ = 5.85. An average shelf width was found to
be [ =92.4 km and an exponential profile with
B = —2.25 was found to give a reasonable fit to all

* Houghton and Beer (1976) also suggested that the wave may
be a first mode shelf wave; however, the numerical computa-
tions which led them to this conclusion were not given in their

paper.
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the cross sections (see Fig. 9). The dispersion
curves for these values of y and B are shown in
Fig. 10. Using the value / = 92.4 km, we find that
Q = —2.4 corresponds to the observed frequency
(0.07 cpd). Careful examination of Fig. 10 reveals
that there are four possible wavenumbers x that
yield a frequency of 3 = —2.4. The best fit to the
data is given by « = 1 on the n = 0 curve, cor-
responding to a dimensional wavelength of 580 km.
For («,}) = (1, —2.4), the dimensional phase speed
is 40 km day™?, which is just below the observed
average values. The other values of x which also
give )} = —2.4 are much larger and lead to con-
siderably smaller phase speeds, It thus appears that
the observed wave may be due to a fundamental
mode, nondispersive shelf wave propagating along
an exponential shelf.

The eigenfunction for this mode at k = 1 is very
similar to the n = 0 eigenfunction shown in Fig. 5
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FiG. 6. The dispersion curves of the first five modes com-
puted from (5.10) and (5.15) for B = 3 and three intermediate
values of y. These curves also apply to the case B = —3(b < 0)
and y = —1/3, —2/3, —1 (shelf straddling equator with deep
water to the south).
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and hence has not been reproduced here. The dis-
persion curves were also computed for the case
B = —2.25and y = 4.35, the latter being an average
value of y for the three western stations D, E and
F (see Fig. 8), which are all much closer to the
equator than the three eastern stations. An average
shelf width for these western stations is / = 103 km.
In this case the theoretical speed of the funda-
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F16. 8. The Gulf of Guinea showing the location of the 200 m
depth contour. Topographic cross sections at lines A~F are
plotted in Fig. 9.
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FiG. 9. Topographic cross sections at lines A-F shown in
Fig. 8. The best-fit exponential profile shown corresponds to
B = -2.25.

mental mode, nondispersive wave of a frequency of
0.07 cpd was found to be 32 km day~', in good
agreement with the observations. Thus we conclude
that the slowing down of the wave could be mainly
due to the fact that as it propagates westward it
enters a shelf region which is substantially closer
to the equator.

It is perhaps somewhat surprising that a baro-
tropic model gives such good agreement with the ob-
servations, which relate to sea surface temperature
fluctuations. However, the thermocline is often very
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FiG. 10. The dispersion curves for the Gulf of Guinea
parameters B = —2.25 and y = 5.85.
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shallow in the Gulf of Guinea, so that much of the
shelf is essentially unstratified. It was found by
Wright and Mysak (1977) that at midlatitudes, a
near-surface thermocline which extends across the
shelf and which is characterized by an interndl
deformation radius that is less than the shelf width
hardly affects the speed of a barotropic shelf
wave. Thus it is conceivable that the same result
may also apply to barotropic equatorial shelf waves.

8. Summary

We have investigated theoretically the propa-
gation of barotropic nondivergent trapped waves on
an exponential shelf that lies parallel to the equator
on an equatorial B-plane. When both the shelf and
deep-sea regions are located in one hemisphere, the
wave properties are very similar to those of shelf
waves on a midlatitude exponential shelf located
on an f-plane. Thus for each mode, the equatorial
shelf wave also is nondispersive at long wave-
lengths, has a zero group velocity at intermediate
wavelengths and in the Northern (Southern) Hemi-
sphere the shallow water is to the right (left) of the
direction of phase propagation. Further, the
eigenfunctions generally have an oscillatory behavior
across the shelf. When the shelf region is on one
side of the equator and the deep-sea region on the
other (case 2), the waves have a long-wave cutoff
for trapping. However, each mode still has a zero
group velocity and the above rule regarding direc-
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tion of phase propagation still applies. Finally, when
the shelf straddles the equator (case 3), both west-
ward and eastward propagating modes may exist.
We have also shown that the theory may explain
the presence of a long-period, westward propa-
gating wave along the Gulf of Guinea, West Africa.
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