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ABSTRACT

The problem of water waves propagating over a mud bottom, characterized as a laminar viscous fluid,
is treated in several ways. First, two complete models are present, each valid for different lower (mud)
layer depths, and second, a boundary layer model is presented as an appendix for the case where
the lower layer is thick with respect to the boundary layer.

These models are compared to the shallow water model and experimental results of Gade (1957, 1958)
and agree well. The results show that extremely high wave attenuation rates are possible when the
thickness of the lower layer is the same order as the internal boundary layer thickness and when the

lower layer is thick.

1. Introduction

Classical water wave theories for use in offshore
design have had the theoretical drawback of as-
suming a rigid, nonporous bottom overlain by an
inviscid fluid. In most offshore areas, however, the
bottom material interacts with the wave field, usually
resulting in an attenuation of the wave height due
to bottom friction, percolation losses and viscous
damping within the sediments. These interactive
effects are manifested also by changes in wave-
length and water particle motions as well as
changes in the location of the interface between
the fluid and the bottom sediments.

The damping of the surface waves can be con-
siderable; in fact, Gade (1958) notes that there is a
location in the Gulf of Mexico, known as the Mud
Hole, where the attenuation of waves due to the
mud bottom is so great that fishing boats use it as an
emergency harbor during storms. Silvester (1974,
p. 196) describes a location where waves are at-
tenuated after propagating only several wavelengths.

To an offshore designer, the implication of the
bottom-induced effects on the waves are reduced
wave loads on a structure, wave refraction and wave
scattering due to pockets of sediments (Lassiter,
1972), and significant soil motions around marine
pipelines.

The type of bottom material over which the
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waves are propagating in this paper is assumed to
be similar to a viscous fluid, characterized by a
viscosity and a density greater than the overlying
fluid. This type of bottom has been treated previ-
ously by Gade (1957, 1958) (for shallow water).
Other types of bottoms have also been studied
previously: elastic—Mallard and Dalrymple (1977);
porous—Hunt (1959) and Liu (1973) among many;
poro-elastic— Yamamoto (1977) and Liu and Dal-
rymple (1978).

The theories developed herein are for a linear
water wave propagating in a two-layer viscous
fluid system. The height of the surface wave is
specified and the forced interfacial wave is de-
termined, as well as the attenuation rate of the wave.

The first models, denoted the complete models,
are developed to be valid for any depth upper layer
and both deep and shallow lower fluid layers, thus
extending Gade’s results to deeper water. These
models also include the viscous effects in the upper
layer for completeness, although the damping ef-
fects there are quite small when compared to the
lower, more viscous layer. The second model, pre-
sented in Appendix C, is a boundary layer ap-
proach, which is analytically simpler, and yields
explicit solutions for the wave damping when the
thickness of the lower layer is greater than the
boundary layer thickness developed by the fluid mo-
tion.

The results of models are compared to the shallow
water experimental results obtained by Gade (1957)
and agree quite well; in fact, in most cases in
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F1G. 1. Schematic figure for the two-layer fluid model.

shallow water, the present complete models are
identical to Gade’s model. In deeper water, a second
example is presented for the complete models to
show the effects of larger water depths.

An interesting result of the experiments and the
complete models is that there is a maximum at-
tenuation rate which occurs when the thickness of
the lower layer is about 30% greater than the cor-
responding boundary layer thickness (o/2v,)'?,
where o is the wave angular frequency and », the
viscosity of the lower fluid. For these cases, the
attenuation of wave height can be very large; for
example, for Gade’s tests, a wave will be reduced
to one-tenth of its original height after propagating
only 2.6 wavelengths!

2. Complete model theory

The wave under consideration is propagating in
the x direction in water of depth & over a viscous
layer of thickness d. See Fig. 1 for notation. The
viscosity is of importance in both regions but is of
prime concern near the fluid boundaries. The free
surface displacement is denoted by n(x,?) and the
interface between the two fluids is &(x,7). These
displacements are given by = = ae™**~°® and
& = bei*==99 The amplitude a is assumed known as
well as the frequency o = 2@/T, where T is the
wave period.

The equations of motion for the fluid motions
are the laminar Navier-Stokes equations for an
incompressible fluid, which have been linearized
by neglecting the convective accelerations:

diy; 1 9P, 2, 0%y
G Loh (S g
ot pi 0x Ox? 9y?

D P, 29, 29,
%z_i£+1}i(6u,+av,)’ )
ot p; Oy ox* oy?

with the subscripts i = 1, 2 indicating the upper
and lower layers, respectively, x, y denote the
horizontal and vertical axes situated at the mean
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water level, and P, is the dynamic pressure defined
as P, = P!+ p;gy + P?, where P! denotes the
total pressure and

0, for i=1
P} = . 3
(p: — p1)gh, for i=2.
The conservation of mass (continuity) equation is
i, &b,
o %% . @)
Ox ay

The solutions to these equations for &, 9;, P; are
assumed separable and periodic in time and the x
direction. They are expressed as

fli(X,y; t) = ui(y)ei(k.r—qg)
f)i(-x,y; t) = vi(y)ei(k.r—q—g)
Px,y; t) = Pyy)eikz—on

where k = 2w/L is the wavenumber. From the
continuity equation (4),

(&)

6)

where the prime indicates differentiation with re-
spect to y. Introducing this expression for u; into
the horizontal momentum equation (1) yields an
expression for P;, i.e.,

P; = (pwi/K®)[v; — v{(k® — iov;™")].

u; = iv{ [k,

Q)

Substituting P; into the vertical momentum equation
(2) yields the governing differential equation for v;:

WY — 2k — iov)o] + KX(K* — iovi ), = 0
or
i — (k2 + A2l + kB\2v; = 0, ®

&)

These equations, for the upper and lower fluids,
may be solved readily, but first it simplifies the
problem to examine the influence of the A;. For
most problems v; is quite small with respect to k by
several orders of magnitude. Consequently, the A;
are quite large and in fact represent the viscosity-
dominated flow in the vicinity of boundaries. Away
from the boundaries, i.e., outside any boundary
layers, the viscous terms are negligible. Therefore,
solutions will be chosen which contain viscous
terms near the boundary (terms preceded by C, D,
G, H, below), but they will be neglected far from
the boundaries. Appendix B will discuss the case
where the lower layer is of the same order as the
boundary layers, which is the case used for com-
parison to Gade’s experimental results, and Ap-
pendix C presents a boundary layer model for the
lower fluid alone, which yields an explicit analytical
solution.

The assumed solutions here are

where
AE = k* — iov;7L



NOVEMBER 1978

v,(y) = A sinhk(h + y) + B coshk(h + )

+ Ce)\ly + De—)\x(h*}-]]), (10)

va(y) = E sinhk(h + y + d) + Fcoshk(h + y + d)
+ Gexz(h-i-y) + He_)‘Z(’H"Hy), (11)

and the u;(y) are given by (6).

"With the assumed solutions containing eight un-
known constants (A— H) and the interface displace-
ment, also unknown, nine boundary conditions must
be specified; plus, as in the case of an irrotational
wave, one additional condition is required to pro-
vide a dispersion relationship relating & to o

At the fixed bottom, y = —(# + d), the velocities
in both the horizontal and vertical directions must
be zero, i.e.,

D, =0 } 12)
, =0 at y=—(h+d)
or

F+H=0

} .13
kE — N H =0 from (6) and (11)

Note that the G term is considered to be zero this
far from the interface between the two fluids.

At the interface, denoted by & = be'**—99  with
b being a priori unknown, a kinematic condition is
specified which, due to the assumed linearity of the
problem, is applied at y = —A.

9¢/0t=9; on y= -h
or

—ioh = B + D. (14)

The vertical and horizontal velocities must also be
continuous

Dy = D,
=10, on y= —h,
or
B + D = E sinhkd + F coshkd + G, (15)
Ak — \\D = Ek coshkd + Fk sinhkd + GX,. (16)

The normal and tangential stresses will also be
continuous across the interface. The normal stress
is written as o,,(x,y) = P! — 2p,v(00;/0y). To
evaluate o,, at the interface, a Taylor Series
expansion is used about y = —#k. To first order in
wave amplitude,

o-ﬂll(x’ -h + f) = le!(x, _h)
b, 9P!
~2pm 2 + L (x, —h)E.
dy dy

The continuity of ¢, and 7., across the interface,
where 7., = w(0it/dy + 89/6x) is then written as
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. D)
Pl 2P1V1 — - p1g§
dy
R a
= P, — 2pw, — — pogé, (7)
dy
on, 8d,
P1V1( P M
of, 8D,
= 2 472) on y=—h, (18)
P2V2( 3y Ox ) y

or
M1A + 2p, v\ D
= M,[E coshkd + F sinhkd] — 2p,»:A\G

= (p2 — p)gb, (19)
where '
M, = (% - 2pivik) , (20)
pi[2K2B + (A% + k2)D]
= p,vo[2k2E sinhkd + 2k*F coshkd
+ (A2 + KHG]. 21

At the free surface, a kinematic boundary
condition, requiring the surface particles to follow
the surface, is applied as well as the imposition of
zero normal and tangential stresses:

i}

_’:’ = i}l, on y= 7],1
. oD
Ptl - 2p1V1 "_1 = ] on y - 77 ’

dy
(a&, af)l) 0,on y=n

V — ——e— = N =

P11 3y o

or after a first-order Taylor Series expansion
about y = 0,

—iga = A sinhkh + B coshkh + C, (22)

M,(A coshkh + B sinhkh)
- piga —2p,v N C =0, (23)
2Ak®sinhkh + 2Bk? coshkh + (A2 + k2)C=0. (24)

Ten conditions have now been prescribed for eight
unknowns, the interface displacement b, and %
which are all complex. The solution may be found
by substitution and iteration as is discussed in
Appendix A.

3. Comparison with experiment

The resulting models were applied to model
tests performed by Gade (1957) in a wave tank with
a length of 1.83 m, a depth of 0.3 m and a width
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of 0.152 m. The two-fluid systems consisted of
kerosine in the upper layer and a water-sugar
solution in the lower layer. The wave system was
created by a wave maker at one end and wave ab-
sorbers at the other end were used to reduce the
reflection. His test conditions were based on fixing
the depth of the upper layer at # = 3.81 X 1072 m
and varying d, the lower layer depth. Further,
o=4488s7', p, = 859.3kgm™3, p, = 1504 kg m™3,
v; =242 X 10m? s, p, = 2.60 X 1073 m3 s~

The experimental measurements included rates of
wave height decay along the tank, and the max-
imum horizontal displacements at the correspond-
ing points on the interface and the surface.
Photographs were taken of the tank for the measure-
ments of wavelength and surface and interfacial
profiles. Floating chips of cork or wood, measured
against a fixed scale, were utilized for these
measurements.

Errors in the experiment noted by Gade were oc-
casioned by 1) the frictional resistance of the side
walls, 2) the irregularity of the generated wave
profile and its deviation from a sinusoidal profile, and
3) reflection from the end wall, particularly at the
two observations obtained at (6/2v,)'?d = 1.4, 1.68.

Fig. 2 shows the model test results for wave
damping in terms of k;, the imaginary part of the
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wavenumber. The relationShip between the wave
amplitude a and k; is

a.= age %",

where a, is the reference amplitude at the origin. The
figure clearly shows that there is a maximum of the
wave damping with respect to the lower depth thick-
ness. This maximum occurs due to the nature of the
work done in the lower layer by the upper layer.
This work consists of two parts, the pressure in
the upper fluid working on the vertical velocity of
the interface, Pid,, and the shear stress working on
the interface, 7,,;,. In most cases, i.e., when the
lower layer is of reasonable thickness with respect
to the boundary layer scale, (0/2v,)'2d > 1, the first
of these is of most importance, and its efficiency
depends on the phase difference between P} and
D,(=0¢&/0t) being a maximum when they are in
phase. As the depth of the lower layer increases,
9, changes in phase monotonically from —7 to
—m/2 and the work therefore increases up to a
maximum and then decreases.

It is interesting to note that the complete model
and Gade’s theory agree quite well, except at the low
values of (0/2v,)V2d, which is the ratio of the thick-
ness of the lower layer to the boundary layer thick-
ness (when the damping in the upper layer is rela-

0.8f

{gh) 7o

o
o
T

k;

0.4

Gode {1958)
0.2

1 L 1

! Il 1

o] 1.O 2.0 3.0

1
4.0 5.0 8.0

V(O'/lez) d

FiG. 2. Comparison of dimensionless damping coefficient k; (the complex part of the
wavenumber) versus dimensionless lower layer depth d as calculated by the complete models.
The data points correspond to Gade’s (1957) experiment and the dashed line is the result
of the boundary layer model developed in Appendix C. The characteristics of the fluids and
waveare T = 1.4s, h =381 x 102 m, v; = 2.42 X 10°* m? s7%, », = 2.6 X 107° m® 57!,

p, = 859.3 kg m~3, p, = 1504 kg m~®.



NOVEMBER 1978

ROBERT A. DALRYMPLE AND PHILIP L.-F. LIU

1125

k. Vigh) /7o

0.2 4
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[¢] 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Vies2 v,) d

F1G6. 3. Comparison of dimensionless wavenumber k, (real part of the wavenumber)
versus the dimensionless lower layer depth d. Data from Gade (1957). The dashed line is

the boundary layer model.

tively important) and for high values of this
parameter, which begin to exceed the shallow water
conditions imposed by Gade.

In Fig. 3, the wavelength of the wave system
(inversely proportional to k,) is plotted. There is
little disagreement with Gade’s theory (not shown).
As can be seen, the real part k, of the wave-
number decreases with the depth of the lower layer,
as expected from shoaling considerations. The
agreement with the experimental results again in this
case is quite good.

In Fig. 4, the relative amplitude of the inter-
facial wave for Gade’s test parameters is shown,
in terms of magnitude and phase. As the lower fluid
layer becomes thicker, d increasing, the magnitude
of the interfacial wave increases (as stated before,
the upper fluid’s ability to do work on the lower
layer becomes more efficient) and its phase with
respect to the free surface profile monotonically
decreases. At great depths in the lower layer, the
interfacial wave becomes more in phase with the
free surface wave, lagging it only slightly. The

1.0 T T T — T T T 2.0
o.8¢ P TI.G
- = =
-
-~
0.6 P~ I.2
5 1
Ibl Y €
a Vi
o4 W, Hos
o /
/
/
o2f 7 Ho.4
/ *—
/
/ .
] 1 1 . 1 4 i
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Viesev,) d

FIG. 4. Ratio of interfacial to surface wave amplitude and phése difference plotted
against dimensionless lower layer depth d. Note that Gade’s data points are for phase.
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errors in phase between measured and predicted (by
either model) are the worst here by about a factor of 2.

The velocity profiles and dimensionless pressure,
P, — P are plotted in Fig. 5 for (¢/2v,)2d = 1.119.
Due to the shallowness of the upper layer, the &,
and P, do not vary significantly with depth, while
D, is almost linear with depth. In the lower layer
where the boundary layers are of the same magni-
tude as the thickness d, there is a strong variation

of &, with depth. The phase shifts € over the depth’

are also shown, and it is indicated for the horizontal
velocity, for example, that the maximum velocity in
the upper layer precedes the crest arrival by a small
amount, while in the lower layer the velocity lags
significantly, almost by «/4.

4. Case II: Deeper water

A second example, more corresponding to actual
field conditions, was carried out for the following
data: h = 4 m, o = 1.2566 s, p, = 1028 kg m~3,
p=1800kg m=3, v, = 2.6 X 107 m?s71, v, = 0.1
m? s, In Fig. 6 the dimensionless damping is shown
for various values of d and again a peak is evident.
The thickness of the lower layer corresponding to
this case is about 0.6 m. In Gade’s tests the peak
damping occurred at (o/2v,)V2d = 1.3, while in this
case (0/2v,)%d =~ 1.5, leading to the general con-
clusion, supported by other cases, that where the
depth of the lower fluid is about 10-50% more
than the boundary layer thickness parameter,
(6/2v,)"12, then peak damping will occur. This evi-
dence of peak damping occurring for a fixed ratio of
(0/2v,)Y2d has design implications for the use of
bottom-mounted breakwaters, filled with viscous
fluids (see, e.g., Weigel, 1964; Frederiksen, 1971).

In Fig. 7, the real part &k, of the wavenumber is
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plotted, showing the significant decrease in wave-
length for very shallow lower layer depths when
compared to the same wave over a fixed bottom,
where k.(gh/o)'? = 1.0. .

For actual cases, when the boundary layer in the
upper layer is negligible, the relevant dimensionless
numbers characterizing the model are d/h, p,/p,,
o*h/g and (o/2v,)'?d. For the previous example,
d was varied while & had been fixed at 4 m. In
Fig. 8, v, alone has been varied for various ratios
of d/h, to illustrate the influence of viscosity.
Clearly, the thicker the lower layer [with (o/2v,)V2d
of O(1)], the greater the damping. For d/Ah = 0.5,
or d =2 m, peak damping occurs at (o/2v,)2d
= 1.3, at a value about 3.8 times greater than for the
case above. (The wave height will be reduced to one-
tenth its original height within 7.7 wave lengths, or
225.5 m.)

5. Conclusions

Two models [for small and large values of
(0/2v,)12d] of water waves propagating over a very
viscous fluid, such as might characterize bottom
muds have been developed, which extend the analy-
sis of Gade (1957, 1958) to deeper water conditions
and includes the viscosity in the upper fluid. A
boundary layer model valid for large values of
(0/2v,)Y%d has also been developed and has been
shown to agree well with the complete model. One
model (for shallow water) was applied to Gade’s
model tests and agrees with the data quite well for
wave damping and wavelength, whereas the phase
between the interface and the free surface dis-
placements are in error by about a factor of 2, as
was Gade’s analysis.

For values of (6/2v,)V2d between 1.1-1.5, there
is a peak value of the damping coefficient %;.

o] 0.5 1.0 1.5 -15 -10 -05 0
O 1 T 1 L
-0.05 vl Pl' lul €, €Pd su%
paa
-0.10F ’—/& -
y
~0.15} N
52_ EP« €,
-0.20 paa .
-0.25 —1 L 1 " N N

F1G. 5. Magnitude of the velocities (cm s™!) and dimensionless pressure and
the associated phases (with respect to wave profile) plotted for (6/2v,)"2d = 1.119

and Gade’s test parameters.
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Further, as d/h increases the damping increases
also. This damping can be significant, reducing
wave heights drastically over a distance of several
wavelengths.
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FiG. 6. Dimensionless damping coefficient for the Case II wave as a function
of dimensionless lower layer depth. The characteristics of the fluids and waves
are T=5s, h=4m, v, =26 x 10 m? s}, », = 0.1 m?® s!, p, = 1028 kg
m~3, p, = 1800 kg m-3.
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From Fig. 2, where Gade’s model and the present
model agree well, despite Gade’s neglect of inter-
facial shear stress in upper fluid, the conclusion is

drawn that the principal method of energy transfer

F1G. 7. Dimensionless wavenumber &, versus the dimensionless lower
layer depth for the Case II wave.
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[eXel} of

— 1 1

o

V(cr/2vz) d

F16. 8. Dimensionless damping coefficient for the Case Il wave
as a function of dimensionless lower layer viscosity v,. Note
that peak damping occurs at (0/2v,)'2d = 1.1-1.3 for these cases.
The characteristics of the fluids and wave are T = 5s, h = 4 m,
v, =26 x 10 m?s, p, = 1028 kg m~3, p, = 1800 kg m~>.

to the lower layer is the pressure of the surface
wave working on the lower fluid.
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APPENDIX A
Solution Techniques

The solution to the two-layer viscous fluid model
follows from the use of the ten boundary conditions
which were derived for the nine complex unknowns
(A-H,b) and the unknown complex wavenumber k.

The brute force solution technique would be to
reduce one of the two inhomogeneous equations
(22) and (23) to a homogeneous form using the
other. This would then leave a 9 X 9 homogeneous
matrix for the nine unknowns. In order for a
homogeneous matrix equation to have solutions the .
coefficient matrix would have to be singular (cf.
Wylie, 1960). Therefore an iterative technique based
on, say, the secant method, would be used to find
the value of k for which the determinant is zero;
then the matrix equation would be solved for the
nine unknowns. This solution would be correct to
within an arbitrary constant, which would then be
eliminated by use of the remaining homogeneous
equation. This technique, while feasible, has the
drawback that a large determinant must be evalu-
ated numerous times. .

A more laborious technique is to solve the ma-
trix equation directly. This follows by making the
following substitutions which reduces the 10 X 9
matrix to a 4 X 3. '

Egs. (13), (14), (15), (16), as well as 2k* times
Egs. (22)—(24), yield six equations for F, E,b,B, A,
C, respectively, which depend on D, G and H, with
the exception of C(= —2wvak?). Substitution of these
expressions into the 10 X 9 matrix yields a 4 x 3
matrix:

D _Mlka
. P
' +pga _ .
(cii) . G ’ 1= 1, 3? J = la 4’ (Al)
—4pvlak?\,
M,
H 0
where the c¢;; are
A .
(—);:— sinhkh — coshkk) . (—kz— sinhkh + coshkh) (—S sinhkh — Q coshkh)
A .
(ikl— coshkh — sinhkh) (-72 coshkh + sinhkh) —S coshkh — Q sinhkh (A2)

pvi(\2 — k)

A
—kl— M, + 2pvi\,

%
k

o, k* — pava(N? + k?))

i
M, + 2p,v50; + ‘; (ps — P)g)

(2pevok* — 2p,v1k7)

(M, — M,)S - ﬁ (p2 — P gQ
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and where S = sinhkd — (\;/k) coshkd, Q = coshkd
— (Ag/k) sinhkd, and M,, M, are defined in Eq. (20).
The c¢3, and c¢;; may be simplified to —ipo and
ipa(\/k?), respectively. Therefore, c,, may be
reduced to zero by subtracting A,/k2-(row 3) from
row 4.

Therefore row 4 states

G = - _c.ﬁﬁ .

Cqo

By back substituting into rows 3 and 2, D and
G are found in terms of &k and a; of which a is as-
sumed known. Therefore only the value of k remains
to be found and the remaining row (row 1) is used for
this purpose. This is done by a complex secant
method which is used iteratively until a complex k
is found to solve row 1 in an acceptable manner
(10~° was used). The problem is therefore solved.

In practice the accuracy of the complex arithmetic
for the coefficients is of paramount importance and
double precision is recommended for computational
purposes.

APPENDIX B
Thin Lower Layer

In order to compare the results of the model to
Gade’s results and to make the technique generally
applicable, it is necessary to solve the case for
which the lower layer is of the same order of
magnitude as the boundary layers within the region,
i.e., d = O(a/2v,)"2.

The forms of the solution in the lower layer
are modified

v, = E sinhk(h +d +y) + Fcoshk(h + d + y)
+ G sinhAy(h + d + y) + H coshh,(h + d + y). (B1)

The u, is still given by (6) and P,, (7). The solution
technique follows exactly as before.

APPENDIX C
Boundary Layer Approximation

When the parameters
0.2 v; 1/2
2"

are small, the flow motion is essentially irrotational
except near boundaries where viscous boundary
layers are of thickness the order of (vi/o)'2,
i =1, 2. Energy dissipation takes place in 1) the
essentially inviscid core, 2) the free-surface
boundary layer, 3) the boundary layer near the solid
bottom, and 4) the boundary layers near the inter-
face. If the free surface is uncontaminated, these
contributions are, respectively, proportional to
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v; i=1,2), v, and »'? (i =1,2) (see Mei
and Liu, 1973, and Johns, 1968). Therefore, the
boundary layers near the 'solid bottom and the
interface are most significant.

Following the approach taken by Liu (1973), one
can split the velocity field into a potential part
V¢; and a rotational part U;, i = 1, 2. The rota-
tional velocity is significant only near the solid bot-
tom and the interface. The linearized Navier-Stokes
equations [Egs. (1) and (2)] and the continuity
equation [Eq. (4)] can be rewritten in the following
forms:

Vi, =0, —h<y<0, (C1)
Vi =0, —(h+d)<y<—h, (C2)
v, ©3)
P=—p 2% (C4)

ot

The potential velocity can be readily solved,
which is subject to the linearized boundary condi-
tions as follows:

1) Free-surface boundary conditions (y = 0)

9 _ 94y (C5)
ot dy

ﬂﬂ+gn=& (C6)
ot

2) Interfacial boundary conditions (y = —h)

s A (C7)
ot Oy
ﬁb‘_ = 0¢, , (C8)
ady oy
0 0
002 4 et = 22 pg. (C9)
ot ot

3) Solid bottom boundary condition (y = —h — d)
0,
dy

where the free-surface profile n = aei**~79. After
some algebra, the potential flow solutions can be
obtained as follows:

¢, = —(iga/o) sinhky[(0?/gk)
_ + cothkylei®==o?  (C11)
¢, = —(igal/c)coshkh/sinhkd) cosh[k(y + h + d)]
X [(o?/gk) — tanhkh]e®*==o0  (C12)

=0, (C10)
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& = (gka/o?) coshkh

x [(o?/gk) — tanhkh]e®*==9. (C13)
The dispersion relation reads
o*/gk = [ — (I> — 4mn)"?)2m,  (C14)
I = —(p./p,) tanhk(h + d)
X (1 + tanhkd tanhkh), (C15)
m = (py/p;) + tanhkh tanhkd, (C16)

n = [(ps/p;) — 1]tanhkdtanhkh. (C17)

It is easy to show that the following special cases
are true:

(i) p2 = py

o?/gk = tanhk(h + d) (C18)
i)d=0
o?/gk = tanhkh (C19)
(ili) kd < 1 and kh < 1
o%/gk = Vak
x{d + h + [(d = h)? + 4p,/p.)hd]"?}. (C20)

The boundary layer solutions near the interface
must satisfy the governing equation

oU, _ o,

—, i=1,2, C21
ot 9y? 20
and the boundary conditions
0 a
9 0, =% Ly, y=-n 2
ox ox '
oU U,
PV - = P2V2 2 , y=—h. (C23)
dy dy

Here U;, i = 1, 2, denotes the rotational velocity .

components in the direction of wave propagation in
the upper and lower layer, respectively. The cor-
responding vertical rotational velocity components,
which are one order of magnitude smaller than the
horizontal velocity components, can be obtained by
integrating the continuity equation (see, Mei and
Liu, 1973). The rotational velocity diminishes out-
side the boundary layers.
Introducing the solution forms

ljl = (jl

x exp[—(1 + )(o/2v)"*(y + h)]e®**-o0, (C23)
l}g = (jg
x expl(l + D(a/2v)"*(y + h)]ei®k=—oD  (C24)

which satisfy the governing equation [Eq. (C21)]
and substituting them into Egs. (C22) and (C23) yield
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gka [(p2/p1) (W2 /v ) 2]
o sinhkh [1 + (po/p1)(we/v,)"2]
x {(a%/gk) — V4 sinh2kh[cothkh + cothkd]
x [(a?/gk) — tanhkh]}, (C25)
Cy = —(po/p) (w1 /v)V2C,. (C26)

Similarly, near the solid bottom a rotational
velocity must be added in order to satisfy the
no-slip condition,

0,

Ox

CH = -

+U;=0, y=~-(h+d), (C27)

where U; represents the horizontal rotational
velocity component inside the boundary layer. As-
suming a solution form

Us = G
X exp[—(1 + )(o/2v,)"*(y + h + d)]e?**—9D (C28)

and applying the boundary condition [Eq. (C27)]
results in

2
_ gka C?Shkh(i - tanhkh)- (C29)
o sinhkd

C' =
3 gk

To estimate the wave damping, one can follow the
wave energy front and write the total rate of change
of time-average wave energy density (Ippen, 1966) as

dE _ C, i’g = —P,,
dt dx
where C, = dw/dk is the group velocity, E the time-
average wave energy density and P, the average
rate of energy dissipation.

The time-average wave energy density can be

written as

_ “h+E
E=zj

—(h+d)

(C30)

n

p28ydy + 2 J p1gydy

—h+§
= pign® + (p2 — p1)g&. (C31)

Equal partition of potential energy and Kkinetic
energy has been employed. The overbar denotes the
time-average over one wave period. The energy dis-
sipation occurs in the boundary layers, thus

- =" U, \? k19U, \2
Pd=P1V1f ( 1)dy+P2V2J ( 2) dy
dy dy

ool 6 2
+ povs f (aUa)dy, €32)

—(h+d) y

where "+o" indicates the location outside of the
boundary layers.

Substitutions of Eqs. (C13), (C23), (C24), (C28),
(C31), and (C32) into Eq. (C30) result in

17— ol
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(ov)2[CP + (p2/p) W2 /v)VHCE + C?)]

ki

" 24C,a(1 + [(pa/p) — 11(kg/0®)? cosh®kh[(c*/gk) — tanhkhP}’

(C33)

where C,, C, and C; are given in Egs. (C25), (C26) and (C29), respectively. For the shallow water situations,
kh < 1 and kd < 1, the damping coefficierit can be written as

ki=

(2d)*(gklo*)(wi/a)*{[k(d + h) — (0®gk)I* + [1 + (ps/p.)(wa/v1)*1[(0®/gk) — kh]*}

(C3%

[1 + (p1/p2)(w1/v2) K1 + [(p2/py) — 11 — (gk/0®)kh]}
The corresponding dispersion relation is given in Eq. (C20).
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