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Abstract. The entropy S of the horizon θ = π/2 of the Hawking wormhole
written in spherical Rindler coordinates is computed in this letter. Using
Padmanabhan’s prescription, we found that the surface gravity of the hori-
zon is constant and equals the proper acceleration of the Rindler observer.
S is a monotonic function of the radial coordinate ξ and vanishes when ξ
equals the Planck length.
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The connection between gravity and thermodynamics is one of the most surprising
features of gravity. Once the geometrical meaning of gravity is accepted, surfaces
which act as one-way membranes for information will arise, leading to some connection
with entropy, interpreted as the lack of information [1] [2].
As T.Padmanabhan has noticed [3], in any spacetime we might have a family of
observers following a congruence of timelike curves which have no access to part of
spacetime (a horizon is formed which blocks the informations from those observers).
Keeping in mind that QFT does not recognize any nontrivial geometry of spacetime
in a local inertial frame, we could use a uniformly accelerated frame (a local Rindler
frame) to study the connection between one way membranes arising in a spacetime
and the thermodynamical entropy.
Another principle to which the horizon entropy is strongly related is the Holographic
Principle ([4] and references therein) which states that the number of degrees of
freedom describing the physics inside a volume - including gravitation - is bounded
by the area of the boundary which encloses the volume.
As entropy counts the microscopical degrees of freedom of a physical system, it can
be shown that [4][5][6]

S ≤ A

4
(1.1)

where A is the boundary area. S equals A/4 only for a spacetime with a horizon
(black hole horizon, de Sitter cosmological horizon, Rindler horizon, etc.).
The purpose of the present letter is to compute the horizon entropy for the (Lorentzian
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version) of the Hawking wormhole entropy [7], written in (static) spherical Rindler
coordinates.

ds2 =
(

1− b2

ξ2

)2 (−g2ξ2cos2θdt2 + dξ2 + ξ2dΩ2
)

(1.2)

The spacetime (1.2) may be obtained from the Hawking wormhole metric written in
Cartesian coordinates [8]

ds2 =
(

1− b2

xαxα

)2

ηµνdxµdxν(1.3)

by means of the coordinate transformation

x1 = ξ sinθ cosφ, x2 = ξ sinθ sinφ,

x3 = ξ cosθ coshgt, x0 = ξ cosθ sinhgt.
(1.4)

xα (α = 0, 1, 1, 3) are the Minkowski coordinates, (t, ξ, θ, φ) - the spherical Rindler
coordinates, b - the wormhole’s throat radius (which will be taken of the order of
the Planck length), dΩ2 = dθ2 + sin2θdφ2, g - a constant with units of acceleration,
ηµν = diag (−1, 1, 1, 1) and xαxα = x2 − (

x0
)2.

The spacetime (2) has a horizon at ξ = b, which is also a null geodesic (the hy-
persurface ξ = b is in fact the Hawking wormhole which separates the two causally
disconnected, asymptotically flat regions, ξ >> b and ξ << b). The hypersurface
ξ = 0 from the Rindler geometry (b = 0) is no longer a horizon here due to the
conformal factor)
From now on we take into consideration only the region ξ > b. The units will be such
that c = G = ~ = kB = 1.
Let us now use Padmanabhan’s prescription [2] to calculate the entropy of the horizon
θ = π/2, where the time-time component of the metric (2) is vanishing (the hemi-
spheres 0 ≤ θ < π/2 and π/2 < θ ≤ π correspond to the two Rindler observers which
are causally disconnected).
One can show [9] that

R =3 R + KαβKαβ − (Kα
α )2 + 2 ∇α(Kuα + aα) ≡

L + 2 ∇α(Kuα + aα)
(1.5)

where R is the 4-dimensional Ricci scalar, 3R - the scalar curvature of a spacelike
hypersurface Σ with uα(α = 0, 1, 2, 3) as normal, Kαβ is the extrinsic curvature of
Σ with K = Kα

α , aα = uβ ∇βuα - the corresponding acceleration and L - the ADM
Lagrangean. We integrate eq.(1.5) over a four-volume Ω, bounded by Σ and by a
timelike surface B, with normal nα [2]. The induced metric on Σ is hµν = gµν +uµuν

and the metric on B is γµν = gµν − nµnν . The hypersurfaces Σ and B intersect on a
two-dimensional surface Σ ∩B on which the geometry is

σαβ = gαβ + uαuβ − nαnβ(1.6)

We observe that the metric (2) can be put in the form [3]

ds2 = −N2(x)dt2 + fij(x)dxidxj(1.7)
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where i, j = 1, 2, 3. In our case

N(x) = gξ

(
1− b2

ξ2

)
cos θ,(1.8)

Taking Σ to be the surface of constant time and keeping in mind that the metric (2)
is static, the trace K is vanishing. By integration of R/16π over Ω, the term with L
will give the ADM energy.
Let us consider B as the surface θ = π/2, the horizon obtained from the condition
N = 0. The last term in the r.h.s. of (5) may be transformed in a surface integral
over B, giving the entropy of the horizon

S =
1
8π

∫

B

aαnαN
√

σdξ dφ dt,(1.9)

where σ is the determinant of the metric on the two-surface Σ ∩ B. Since the accel-
eration vector aα is spacelike, we can put a0 = 0 at a given event in a local Rindler
frame [3]. Therefore

aα ≡ Nα

N
=

(
0, ξ−1(1− b2

ξ2
)−1(1 +

b2

ξ2
), − tg θ, 0

)
(1.10)

As the surface B approaches the horizon, the expression N aµnµ tends to the surface
gravity κ of the hotizon θ = π/2. In our static spacetime (1) with a horizon, the
Euclidian action will be periodic in imaginary time with the period T = 2π/g. In this
case t ∈ (0, T ).
The normal vector to the hypersurfaces Σ and B appears as

uα =
[

g ξ (1− b2

ξ2
) cos θ, 0, 0, 0

]
(1.11)

and, respectively

nα =
[
0, 0, ξ (1− b2

ξ2
), 0)

]
(1.12)

The corresponding metrics become

ds2|Σ =
(

1− b2

ξ2

)2

(d ξ2 + ξ2 d Ω2)(1.13)

and

ds2|B =
(

1− b2

ξ2

)2

(−g2 ξ2 cos2θ dt2 + d ξ2 + ξ2 sin2θ dφ2)(1.14)

while the geometry on the two - surface Σ ∩B acquires the form

dσ2 =
(

1− b2

ξ2

)2

(dξ2 + ξ2sin2θ dφ2)(1.15)
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The surface gravity κ will be given by

κ = Naαnα|θ=π/2 =
√

gαβN,αN,β |θ=π/2 =

g (1− b2

ξ2
)−1

√(
1 +

b2

ξ2

)2

cos2θ +
(

1− b2

ξ2

)2

sin2θ |θ=π/2 = g.

(1.16)

In other words, the meaning of the constant g is just the surface gravity of the horizon
θ = π/2. Therefore, the expression of the entropy S will be given by

S =
g

8π

∫ T

0

dt

∫ 2π

0

∫ ξ

0

√
σ dξdφ(1.17)

After an integration over the imaginary time, the entropy of the horizon θ = π/2 is
given by the well known formula S = A/4, A being the horizon area.
It would be interesting to find the function S(ξ). Keeping in mind that

√
σ = ξ

(
1− b2

ξ2

)2

sin2θ,(1.18)

we have from (16) (with θ = π/2)

S(ξ) =
πξ2

4b2

(
1 +

4b2

ξ2
ln

b

ξ
− b4

ξ4

)
(1.19)

where l2P = b2 was introduced at the denominator. It is an easy task to show that
S(ξ) is a monotonic function. It vanishes at ξ = b and, for ξ >> b, S increases to the
value πξ2/4b2 (“A” represents a circle of radius ξ in this case). The horizon θ = π/2
(the equatorial plane) being flat, the energy of the horizon vanishes (the same is valid
for the horizon of a Rindler observer, in Cartesian coordinateas).
To summarize, we applied Padmanabhan’s method to compute the entropy of the
horizon θ = π/2 for the Hawking wormhole spacetime, written in (static) spherical
Rindler coordinates. The surface gravity is constant (note that the lapse function N
depends on two variables, ξ and θ). In addition, the Hawking temperature of the
horizon is given by g/2π, since κ = g. The entropy is a monotonic function ; it
increases from zero at ξ = b to πξ2/4b2 at ξ >> b (note that ξ2 is just the Minkowski
interval x2 − (x0)2).
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